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Joint Bayesian Model Selection and Estimation of
Noisy Sinusoids via Reversible Jump MCMC

Christophe Andrieu and Arnaud Doucet

Abstract—In this paper, the problem of joint Bayesian model
selection and parameter estimation for sinusoids in white Gauss-
ian noise is addressed. An original Bayesian model is proposed
that allows us to definea posteriordistribution on the parameter
space. All Bayesian inference is then based on this distribution.
Unfortunately, a direct evaluation of this distribution and of
its features, including posterior model probabilities, requires
evaluation of some complicated high-dimensional integrals. We
develop an efficient stochastic algorithm based on reversible jump
Markov chain Monte Carlo methods to perform the Bayesian
computation. A convergence result for this algorithm is estab-
lished. In simulation, it appears that the performance of detection
based on posterior model probabilities outperforms conventional
detection schemes.

Index Terms—Bayesian methods, MCMC, model selection,
spectral analysis.

I. INTRODUCTION

M ODEL selection is a fundamental data analysis task. It
has many applications in various fields of science and

engineering. Over the past two decades, many of these prob-
lems have been addressed using information criteria such as
Akaike information criterion (AIC) [1] or Rissanen’s principle
of minimum description length (MDL) [23]. The widespread
use of these criteria is mainly due to their intrinsic simplicity.
AIC and MDL are applied by evaluating two terms: a data
term that requires the maximization of the likelihood and
a penalty term of the complexity of the model. Within a
Bayesian framework, model selection appears more difficult
as it involves the evaluation of Bayes factors, which typically
requires the computation of high-dimensional integrals with
no closed-form analytical expression. These computational
problems have limited the use of Bayesian model selection,
except for the cases for which asymptotic expansions of the
Bayes factors are valid [5].

In this paper, we address the problem of joint detection and
estimation of sinusoids in white Gaussian noise. This problem
is of great interest in many fields, including seismology,
nuclear magnetic resonance, and radar. Under the assumption
of a known number of sinusoids, several algorithms have been
proposed to obtain the maximum likelihood (ML) frequency
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estimator [22], [24]. However, in practice, there are numerous
applications where this number is unknown and has to be
estimated [13]. The use of AIC and MDL requires reliable
procedures for ML parameter estimation for each possible
model and the evaluation of the criteria. Experimental evidence
shows that AIC and MDL, which are criteria designed using
asymptotic arguments, do indeed tend to estimate a wrong
number of components for a small sample size and a low
signal-to-noise ratio; see [13, Sec. VI].

We follow a Bayesian approach whereby the unknown
parameters, including the amplitudes, the radial frequencies,
and the noise variance, together with the number of sinusoids,
are regarded as random quantities with known prior distri-
bution. Several previous works have already addressed this
problem, in some restricted scenarios, following the Bayesian
approach. Bayesian parameter estimation and model selection
for such signals have been addressed in a series of papers
by Bretthorst [8]–[10] and, more recently, in [14] and [15].
In [12], the problem of power spectrum estimation in the
case of harmonic signals is treated. Bayesian model selection
for such signals based on posterior model probabilities has
also been investigated by Djurić [13]. The main problem
of the Bayesian approach is that it typically requires the
evaluation of high-dimensional integrals that do not admit any
closed-form analytical expression. In a few cases, for example
when the sinusoids are well-separated and many samples are
available, suitable analytic approximations to these integrals
can be performed [8]. In [13], an asymptotic (in the number
of data) expansion around an ML estimate of the frequencies is
performed. These approximations are difficult to quantify and
not valid in the interesting cases where the amount of available
data is small, and some sinusoids are close to each other. If we
want to perform Bayesian inference in these important cases,
it is necessary to numerically approximate these integrals.
Some early attempts to solve this computational problem using
classical deterministic multiple integration and Monte Carlo
methods are presented in [10] and [12]; see also [7] in the
context of damped sinusoids. The main problem of these
methods is that they are not flexible and are difficult to use
when the dimension of the integrand is large. Recently, Dou
and Hodgson derived a Markov Chain Monte Carlo (MCMC)
method [14], [15], but their algorithm suffers from several
severe drawbacks; see Section IV-D for a discussion. Another
MCMC method for parameter estimation of damped sinusoids
is presented in [4].

To the best of our knowledge, the joint detection/estimation
problem of harmonic signals has never been addressed in a
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Bayesian framework. In this paper, a new approach to jointly
solve these problems is proposed. An original Bayesian model
is proposed that allows us to define a posterior probability
distribution over the space of possible structures of the signal.
Similar to previous related works [8], [10], [12], [14], the
posterior distribution appears highly nonlinear in its parame-
ters, thus precluding analytical calculations. The case treated
here is even more complex. Indeed, since the number of
sinusoids is assumed random, the posterior distribution to
be evaluated is defined on a finite disconnected union of
subspaces of various dimensions. Each subspace corresponds
to a model with a fixed number of sinusoids. To evaluate
the joint posterior distribution of the number of sinusoids and
their parameters, we propose an efficient stochastic algorithm
based on reversible jump MCMC methods [17]. MCMC’s
are powerful stochastic algorithms that have revolutionized
applied statistics; see [6] and [25] for some reviews.

The paper is organized as follows. In Section II, the signal
model is given. In Section III, we formalize the Bayesian
model and specify the prior distributions. Section IV is de-
voted to Bayesian computation. We first propose an MCMC
sampler to perform Bayesian inference when the number of
sinusoids is given. Then, a reversible jump MCMC algorithm
is derived when the number of sinusoids is unknown. The uni-
form geometric convergence of this algorithm is established.
The performance of these algorithms is illustrated by computer
simulations and compared with classical detection methods in
Section V. Finally, some conclusions are drawn in Section VI.
Appendix A defines the notation used in the paper. The proof
of convergence of the algorithm is given in Appendix B.

II. PROBLEM STATEMENT

Let be an observed vector of
real data samples. The elements ofmay be represented by

different models corresponding either to samples of noise
only ( ) or to the superposition of ( ) sinusoids
corrupted by noise; more precisely for and ,
respectively

(1)

where for and , , are,
respectively, the amplitudes and the radial frequency of theth
sinusoid for the model with sinusoids. The noise sequence

is assumed zero-mean white
Gaussian of variance . In vector–matrix form, we have

(2)

where , , and
for . The matrix is defined as

(3)

for and . We assume
here that the number of sinusoids and their parameters

are unknown. Given the data set, our
objective is to estimate and .

III. B AYESIAN MODEL AND AIMS

We follow a Bayesian approach where the unknowns
and are regarded as being drawn from appropriate prior
distributions. These priors reflect our degree of belief of the
relevant values of the parameters [5]. We first propose a
model that sets up a probability distribution over the space of
possible structures of the signal. Subsequently, we specify the
detection/estimation aims. Finally, we exploit the analytical
properties of the model to obtain an expression, up to a
normalizing constant, of the posterior distribution .

A. Prior Distributions

The overall parameter space can be written as a finite

union of subspaces , where

and for with

and .1 We also define

, where . There is a natural
hierarchical structure to this setup [17], which we formalize
by modeling the joint distribution of all variables as

(4)

where is the prior model probability, is the
parameter prior, and is the likelihood. From the
model given in Section II, the likelihood is

(5)

For , we assume the structure

(6)

where is a scale parameter that is assumed to be distributed
according to a conjugate inverse-Gamma prior distribution,
i.e., . When and , we
obtain Jeffreys’ uninformative prior [5]. For

, we introduce the prior distribution

(7)

where . The prior probability model
distribution is a truncated Poisson distribution. Condi-
tional on , the frequencies are assumed uniformly distributed
in . Finally, conditional on , the amplitudes are

1The constraint2k < N is added because otherwise, the columns of
D(!!!k) are linearly dependent, and the parameters!!!k may not be uniquely
defined from the data [see (2)].



ANDRIEU AND DOUCET: JOINT BAYESIAN MODEL SELECTION 2669

assumed zero-mean Gaussian with covariance . Pro-
portionality in (7) comes from the fact that .
The terms and can be, respectively, interpreted as an
expected signal-to-noise ratio and the expected number of
sinusoids. The influence of can, of course, be removed
by computing Bayes factors, namely, . The
prior distribution corresponds to the popular
-prior distribution; see [26] for motivation. We can also

obtain (7) using a maximum entropy method [3]. In the case
, we adopt the following conventions:

and .

B. Estimation/Detection Aims

The Bayesian inference of and is based on the
joint posterior distribution obtained from Bayes’
theorem. Our aim is to estimate this joint distribution from
which, by standard probability marginalization and transfor-
mation techniques, we can “theoretically” obtain all posterior
features of interest. In particular, it allows us to evaluate
the posterior model probability , which can be used
to perform model selection by selecting the model order
as . In addition, it allows us to
perform parameter estimation by computing the conditional
expectation . However, it is clear that it is not
possible to obtain these quantities analytically. Indeed, it
requires the evaluation of high-dimensional integrals of nonlin-
ear functions in the parameters, as we shall see in Section III-
C. We propose here to use an MCMC method to perform
Bayesian computation. MCMC techniques were introduced
in the mid 1950’s in statistical physics but have only been
introduced in applied statistics in the early 1990’s and, more
recently, in signal processing [6], [25]. The key idea is to build
an ergodic Markov chain IN whose equilibrium
distribution is the desired posterior distribution. Under weak
additional assumptions, the samples generated by the
Markov chain are asymptotically distributed according to the
posterior distribution and thus allow easy evaluation of all
posterior features of interest. For example

and

(8)

However, for our problem, some integrations can be performed
analytically and do not require any Monte Carlo integration
scheme.

C. Integration of the Nuisance Parameters

The proposed Bayesian model allows for the integration
of the so-called nuisance parameters and and, sub-
sequently, to obtain an expression for up to a

normalizing constant. According to Bayes theorem

(9)

with

(10)

The integration of (normal distribution) and then of
(inverse gamma distribution) yields

(11)

It is worth noticing that this posterior distribution is highly
nonlinear in the angular frequencies and that an expression
of cannot be obtained in closed form. We develop in the
next sections MCMC methods to estimate the required poste-
rior distribution or, if needed, .

IV. BAYESIAN COMPUTATION

For the sake of clarity, we first assume in Section IV-A
that is given, and for notational convenience, we will not
include in the probability distributions in this subsection.
In this case, the posterior distribution of interest is given

by , where or

, depending on the posterior distribution
from which we want to sample. In Section IV-B, we present
an algorithm for the case when is unknown.

A. Hybrid MCMC Sampler for a Fixed Dimension Model

We propose to use an hybrid MCMC sampler that combines
Gibbs steps and Metropolis–Hastings (MH) steps, see [6] and
[25, Sec. 2.4]. is a real number satisfying .

MCMC algorithm for spectral analysis

1. Initialization. Set and .
2. Iteration

• For
— Sample .
— If , perform an MH step with

as invariant distribution
and as proposal distribution,
see (Section IV-A1).

— Else perform an MH step with
as invariant distribution
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and as proposal distribution
see (Section IV-A1).

End For.

3. Optional step: sample the nuisance parameters
, see (Section IV-A2).

4. and go to 2.

These different steps are detailed in the following subsec-
tions. In order to simplify notation, we drop the superscript

from all variables at iteration.
1) Updating of the Frequencies:Sampling the frequencies

is difficult because the distribution is nonlinear in these pa-
rameters. We have chosen here to sample the frequencies
one-at-a-time using a mixture of MH steps. This well-known
algorithm is described in [6] and [25, Sec. 2.4]. An MH
step of invariant distribution, say, , and proposal distri-
bution, say, , consists of sampling a candidate value

given the current value according to . The
Markov chain moves toward with probability

; otherwise, it remains
equal to . This algorithm is very general, but to perform well
in practice, it is necessary to use a clever proposal distribution
to avoid rejecting too many candidates. In our application,
the target distribution is the full conditional distribution of a
frequency

(12)

With probability , we perform an MH step with
proposal distribution independent of the current
state

(13)

where is the value of the squared modulus of the Fourier
transform (FT) of the observations at frequency .
Typically, we will take , but we can use
to improve the interpolation of the FT via zero padding. The
basic idea is to propose a frequency independent of
in the regions where the modulus of the FT has high values.
The motivation for using such a proposal distribution is that
the regions of interest of the posterior distribution are reached
quickly. A related idea involves performing a piecewise con-
stant approximation of the target distribution. However, the
results are similar in simulations. With probability , we
perform a MH step with proposal distribution

(14)

This proposal distribution yields a candidate that is a
perturbation of the current frequency. The perturbation is a
zero-mean Gaussian random variable with variance . This
random walk is introduced to perform a local exploration of
the posterior distribution and to ensure irreducibility of the
Markov chain. In both cases, the acceptance probability is

given for by

(15)

where , , and are similar to , , and

with replaced by , ,
. Several other proposal distributions for

the MH steps can be used, but we have found the combination
of the two MH steps we propose to be very efficient in
simulations.

2) Updating the Nuisance Parameters:

(16)

By straightforward calculations, we obtain, using (9)

(17)

with , , and defined in (10).

B. Bayesian Computation for an Unknown Model Dimension

Now, let us consider the case whereis unknown. Here, the
Bayesian computation for the estimation of the joint posterior
distribution is even more complex. One obvious
solution would consist of running independent
MCMC samplers, each being associated with a fixed number

. However, this approach suffers from severe
drawbacks. First, it is computationally very expensive since

can be large. Second, the same computational effort is
attributed to each value of. In fact, some of these values
are of no interest in practice because they have a very weak
posterior model probability . Another solution would be
to construct an MCMC sampler that would be able to sample
directly from the joint distribution on .
Standard MCMC methods are not able to “jump” between
subspaces of different dimensions. However, recently,
Green has introduced a new flexible class of MCMC samplers
(the so-called reversible jump MCMC) that are capable of
jumping between subspaces of different dimensions [17]. This
is a general state-space MH algorithm. We propose candidates
according to a set of proposal distributions. These candidates
are randomly accepted according to an acceptance ratio that
ensures reversibility and, thus, invariance of the Markov chain
with respect to the posterior distribution. Here, the chain must
move across subspaces of different dimensions, and therefore,
the proposal distributions are more complex; see [17] for
details. For our problem, the following moves have been
selected:

1) birth of a new sinusoid, i.e., proposing a new sinusoid
at random on ;

2) death of an existing sinusoid, i.e., removing a sinusoid
chosen randomly;

3) update of the parameters of all the sinusoids, when
, and the variance of the observation noise.
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The birth and death moves perform dimension changes, re-
spectively, from to and to . These moves are
defined by heuristic considerations, the only condition to be
fulfilled being to maintain the correct invariant distribution. A
particular choice will only have influence on the convergence
rate of the algorithm. Other moves may be proposed, but we
have found that the ones suggested here lead to satisfactory
results.

The resulting transition kernel of the simulated Markov
chain is then a mixture of the different transition kernels
associated with the moves described above. This means that
at each iteration, one of the candidate moves (birth, death, or
update) is randomly chosen. The probabilities for choosing
these moves are , , and , respectively, such that

for all . The move is
performed if the algorithm accepts it. For , the death

move is impossible; therefore, . For , the

birth move is impossible, and thus, . Except in the
cases described above, we take the probabilities

(18)

where is the prior probability of model , and is
a parameter that tunes the proportion of dimension/update
move. As pointed out in [17, pp. 719], this choice ensures
that , which means that an MH
algorithm on the sole dimension in the case of no observation
would have 1 as acceptance probability. We take and
then for all [17]. We can then describe
the main steps of the algorithm.

Reversible jump MCMC algorithm

1. Initialization: set .
2. Iteration .

• Sample .
• If

— then ‘‘birth" move (see Section IV-B1).
— else if then ‘‘death" move

(see Section IV-B1).
— else update the parameters (see

Section IV-B2).

End If.

3. and go to 2.

We describe more precisely these different moves below.
In what follows, in order to simplify notation, we drop the
superscript from all variables at iteration.

1) Birth Move/Death Move:Suppose that the current state
of the Markov chain is in . Then, we have the
following.

Birth move

• Propose a new frequency at random on
.

• Evaluate , see (21), and sample .
• If then the state of the Markov chain

becomes , else it remains at .
• or (Optional) If then the state of the

Markov chain becomes ,
else stay at where are
sampled according to ,
(see Section IV-A2).

Assume that the current state of the Markov chain is in
. Then, we have the following.

Death move
• Choose a sinusoid at random among the

existing sinusoids: .
• Evaluate , see (21), and sample .
• If then the state of the Markov chain

becomes , else it remains .
• or (Optional) If then the state of

the Markov chain becomes , else it
remains , where
are sampled according to , (see
Section IV-A2).

The acceptance ratio for the proposed moves are deduced
from the following expression [17]:

posterior distributions ratio proposal ratio
(19)

After simplifications

(20)

Then, the acceptance probabilities corresponding to the de-
scribed moves are

(21)

2) Update Move:The update move does not involve chang-
ing the dimension of the model. It requires an iteration of the
hybrid MCMC sampler presented in Section IV-A.

C. Uniform Geometric Convergence of the Algorithm

It is easy to prove that the algorithm converges, i.e., that
the Markov chain IN is ergodic. We prove here

a stronger result by showing that IN converges
to the required posterior distribution uniformly geometrically,
i.e., at a geometric rate independent of the starting point. We
have the following result.
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Theorem 1: Let IN be the Markov chain
whose transition kernel has been described in Section III.
If span for any

, then this Markov chain converges to the probability
distribution . Furthermore, this convergence occurs
at a uniform geometric rate, i.e., there exist a and

such that whatever the initial point
is

(22)

where is the distribution of , and
is the total variation norm [25].

Proof: See Appendix B.
Corollary 1: If for each iteration , one simulates the nui-

sance parameters , then the distribution of the series

IN converges uniformly geometrically
toward at the same rate.

In other words, independent of the starting point of the
Markov chain, the distribution of the Markov chain converges
at least at a geometric rate to the required equilibrium distri-
bution .

Remark 1: In practice, we cannot evaluate, but Theorem
1 proves its existence. This type of convergence ensures that
a central limit theorem for ergodic averages is valid [25].
Moreover, in practice, there is empirical evidence that the
Markov chain converges quickly.

D. Discussion

In the case where the number of sinusoids is known,
an MCMC algorithm based on the Gibbs sampler has been
proposed by Dou and Hodgson [14], [15]. Our sampler has
several major differences to theirs and is more efficient.
Their algorithm samples the amplitudes and the noise

one at a time. In our algorithm, these simulation steps
can be avoided if we are not interested in these parameters,
and in this case, all these parameters are simulated jointly.
Theoretical results established by Liuet al. [18] suggest that
our sampling scheme is more efficient as it leads to a higher
mixing rate for the simulated Markov chain. To simulate
the radial frequencies, they sample for eachfrom the full
conditional density . As a direct
simulation is impossible, they approximate this distribution by
an expansion at its maximum. This yields a univariate Student-
t distribution from which we can easily sample. However,
this method requires a maximization that can be difficult if
the SNR is low. Moreover, the algorithm is no longer a
theoretically valid MCMC method as samples are drawn from
an approximation of . Thus, the
associated convergence results of MCMC algorithms are not
applicable. Our algorithm based on a MH step avoids such
a maximization and remains theoretically valid. Furthermore,
the proposal distribution based on the FT of the observations
enables the Markov chain to avoid getting stuck in local
maxima of the distribution.

TABLE I
PARAMETERS FOR THE FIRST EXPERIMENT

TABLE II
PARAMETERS FOR THESECOND EXPERIMENT

V. SIMULATION RESULTS

In this section, we present an extensive Monte Carlo study
of the performance of the method and algorithm that we
have proposed to solve the problem of detection/estimation of
sinusoids embedded in noise. It is not possible to theoretically
evaluate such a performance as the quantities required (correct
detection and over and under estimation probabilities) are not
available in closed form. We thus propose a Monte Carlo
simulation study for two experiments.

A. Description of the Data

The parameters for the first experiment are as follows:

. We define , and the parameters
of the three sinusoids are given in Table I. The signal-to-

noise ratio is defined as SNR . For the
weaker sinusoid, the SNR is 5 dB less than the SNR for the
other sinusoids. The parameters of the second experiment are

. The two sinusoids are defined in Table II. In
the simulation we performed, we used . The signal-
to-noise ratio for this experiment has the same definition as
in the first one.

B. Parameters of the Algorithm

The developed algorithms require the specification of pa-
rameters that have no influence on the posterior distribution.
These parameters only have an influence on the speed of
convergence of the algorithm. The parameters we used are
equal to and . Parameter has
been determined in a rather heuristic way. They are the first
values we tried, and they provide the Markov chain with
very satisfactory properties. Parameter was set so that
the mean acceptance probability was 0.4/0.5, which is often
considered as a good indicator for a random walk with few
parameters [16].
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Fig. 1. Estimation of the posterior distributionsp(kjy) (top) andp(�jy) (bottom) for SNR= 3 dB and�
�

= 1; 10; 100 (left to right).

C. Extended Bayesian Model and Hyper-Hyperparameters

The Bayesian model is specified by, , , and . For
the parameters of the noise, we set , i.e., we select
the uninformative Jeffreys’ prior. In practice, it is necessary
to estimate and to given values. Typically, rough values
of these parameters give good results. However, for sake of
rigour, we have opted for a “blind” strategy, which is certainly
more convincing. Note that the way we proceed is closely
related to [21], for example, in a totally different context. The
method consists of considering and as random, that is, we
define an extended hierarchical model. The Bayesian model is
thus slightly modified, and the posterior distribution we aim
to estimate is now

(23)

As is a scale parameter, we ascribe a vague conjugate prior
density to it: and .
We do not use Jeffreys’ prior as can then be an
absorbing state of the Markov chain.2 We apply the same
method to by setting an uninformative conjugate prior
[5] ). To estimate
the distribution , we need now to simulate
the parameters each time an update is performed
(Section IV-A). The probability densities allowing this update
require the simulation of the nuisance parametersand .
We obtain

(24)
and is updated using a MH step with
as proposal distribution. In practice, estimates of and

are quickly obtained, from which values of and

2We could of course avoid this problem by defining a reversible jump
between�0 and�1 that would sample�2 from any instrumental probability
density.

can be estimated. Then, the original algorithm can be
implemented with these values. We have chosen to numerically
integrate and out, as in [21]. This approach was also
suggested in [26, Remark 1, p. 237].3

D. Bayesian Robustness of the Prior on

The strategy we propose requires the specification of hyper-
hyperparameters and for the random variable
(the prior for is uninformative). ensures an
infinite variance, and the crucial parameter is then.4 Here,
we experimentally demonstrate its weak influence on the
posterior distributions and . This general prob-
lem, namely, Bayesian robustness, still remains an unsolved
problem. This stems from the fact that it is, in general, not
possible to obtain any closed-form expression for the quantities
of interest in realistic models. Simulation methods allow for
numerical study of the effect of such a prior on the results.

We demonstrate the weak influence of the choice of
for a wide range of values. Note, however, that an ex-
haustive study is impossible. For both models, we have
applied the algorithm described in Section IV to the first
experiment (Table I). Fig. 1 displays the estimates of
and for a SNR of 3 dB and the following values
of , thus covering a large range of values
(even inconsistent values). It is experimentally observed that
for all the signal-to-noise ratios and values of , results
are very stable. Additional simulation results are presented
in [3]. The detection procedure appears rather insensitive to
the specification of hyper-hyperparameters.

E. Performance of the Detection

We do not present here estimation results because of a
lack of space. Estimation is a by-product of the algorithm

3Simple convergence is still true, but we have not established a uniform
geometric convergence result. There is empirical evidence that the algorithm
still converges quickly.

4Recall that the mean ofIG(�; �) is �=(�� 1).
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Fig. 2. Instantaneous estimation ofp(kjy) (top)—Final estimation of
p(kjy) (bottom) for one realization of the noise at 0 dB for experiment
1.

as it provides us with samples
from the joint distribution . However, as there
is no identifiability constraint on the radial frequencies, the
posterior distribution for a given dimension is a mixture
of similar distributions up to a permutation of labels. A
way to eliminate these artificial modes to ensure identifiability
and perform practical estimation is to postprocess the samples.
More precisely, we sort the radial frequencies of the samples;
see the discussion in [21] for related approaches.

In this subsection, we compare the results for model order
selection based on the maximum of the posterior model prob-
ability , i.e., , and those
obtained on the same set of data using MDL and the crite-
rion introduced by Djuríc denoted D-MAP [13]. To perform
efficiently the maximizations needed to evaluate MDL and D-
MAP, we used a simulated annealing version of reversible
jump MCMC algorithms; see [2] for details.

1) First Experiment: We have applied the algorithm pre-
sented in Section IV to 100 realizations of the first experiment.
The number of iterations was 50 000, which was shown to
be sufficient (histograms of the posterior model probability

were stabilized; see Fig. 2).
The algorithm was coded using Matlab, and the simulation

was performed on a Cyrix 200+. Each processing of a
realization required on average 130 s. The criterion we used
was themaximumof . Obtained results are presented
in Table III.

2) Second Experiment:We applied the algorithm presented
in Section IV for 100 realizations of the second experiment.
The number of iterations of the algorithm was 50 000. The
detection criterion we used was still themaximumof .
The obtained results are presented in Table IV.

F. Discussion

The results obtained using MDL and D-MAP are consistent
with those of [13]. AIC was also implemented but tends to
systematically overestimate the model order. Compared with
results obtained using the posterior model probability ,
we observe that in all cases, this model order estimate outper-
forms other criteria for all signal-to-noise ratios. Depending on
the signal-to-noise ratio andvalues, correct detection rates
can be improved by 10 to 30%.

TABLE III
PERFORMANCE OFDETECTION FOR THEFIRST EXPERIMENT

VI. CONCLUSIONS

In this paper, joint Bayesian model selection and parameter
estimation of sinusoids in white Gaussian noise have been
addressed. An original Bayesian model was proposed that
allows us to define a posterior distribution over the space
of possible structures of the signal. The evaluation of this
posterior distribution and of its features of interest requires nu-
merical methods. An efficient computational algorithm based
on reversible jump MCMC methods was derived to estimate
this posterior distribution. An extensive simulation study is
carried out, and results show that model selection based on
the posterior model probabilities performs better than
other classical criteria. This method is of great interest when
addressing scenarios for which a low SNR, small sample size,
or closely spaced frequencies are encountered. Of course, in
more favorable cases, computationally cheaper methods are a
good alternative.

We would like to point out that there are several possible
extensions to this work. Indeed, the framework we propose is
flexible enough to allow the inclusion of any additional prior
knowledge. It could be adapted to address the cases of damped
sinusoids [4], non-Gaussian noise, or the more challenging
problem of sinusoids in colored noise [20].

APPENDIX A
NOTATION

• is the th row, th column of matrix .
• is the determinant of matrix .

• If , then

.
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TABLE IV
PERFORMANCE OFDETECTION FOR THESECOND EXPERIMENT

• is the null matrix of dimension .
• is the identity matrix of dimension .
• is the indicator function of the set (1 if ,

0 otherwise).
• is the highest integer strictly less than.
• : is distributed according to .
• : the conditional distribution of given is

.

Probability
distribution

F fF (�)

Inverse Gamma IG(�; �)
�
�(�)

z���1

exp(��=z) [0;+1)(z)

Gamma Ga(�; �) �
�(�)

z��1 exp(��z) [0;+1)(z)

Gaussian N (m; �)
j2��j�1=2

exp(�1
2
(z�m)t��1(z�m))

Uniform UA
[ A dz]�1 A(z)

APPENDIX B
PROOF OF THEOREM 1

Before proving Theorem 1, we need the two following
Lemmas:

Lemma 1: We denote as the matrix for which
. This is the projection matrix onto the space orthogonal

to span . Let then
if and only if belongs to the space spanned by

the columns of .
Then, noting that

, we obtain the following results.
Corollary 2: If the observed data are really noisy, i.e.,

span for any
, then there exists such that for all

( ), and

(25)

Lemma 2: For all , , and

(26)

Proof of Theorem 1:Let denote
the transition kernel of the Markov chain, i.e., for fixed

where . By construction
admits as an invariant probability distribution. We
now prove the -irreducibility of the Markov chain. To
prove this result, we first establish -irreducibility of the
Markov chain, where is another probability measure on

.
For each and , we have

(27)
for any , where is the prob-
ability of choosing one of the sinusoids to suppress it, and

such that
. Then, from (20) and for all we

obtain

(28)

where we have used Lemmas 1 and 2 for the existence of
and .

Thus, a sufficiently high exists such that

(29)

and there exists such that for all and

with (30)



2676 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

Therefore, for all , we can reach the empty configuration
with a nonzero probability. Let be the probability dis-

tribution defined as . As is
an invariant distribution of , and the Markov chain is

-irreducible, then from [19, Prop. 4.2.2] and [25, Th. 1*, p.
1758], the Markov chain is -irreducible. Aperiodic-
ity is straightforward. Indeed, there is a nonzero probability of
choosing the update move in the empty configuration leading
to

(31)

(In this case, i.e., , we keep for notational convenience
the same notation for the transition kernel even if does
not exist.) The Markov chain thus admits as
equilibrium distribution [25, Th. 1*, p. 1758].

We now prove that the Markov chain is uniformly ergodic
using the fact that is included in a compact set, i.e., we
show that is a small set. From (30) and (31), we deduce for

that when we iterate times the kernel
, then the resulting transition kernel denoted

satisfies

(32)

The last inequality is also valid for . It allows us to
write for any

(33)

where . Thus, from [19, Th.
5.4] and [25, Prop. 2], there exists such that for all

(34)
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