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Joint Bayesian Model Selection and Estimation of
Noisy Sinusoids via Reversible Jump MCMC

Christophe Andrieu and Arnaud Doucet

Abstract—In this paper, the problem of joint Bayesian model estimator [22], [24]. However, in practice, there are numerous
selection and parameter estimation for sinusoids in white Gauss- applications where this number is unknown and has to be
ian noise is addressed. An original Bayesian model is prOposedestimated [13]. The use of AIC and MDL requires reliable
that allows us to definea posteriordistribution on the parameter . . .
space. All Bayesian inference is then based on this distribution. procedures for ML pgrameter e.St'r.nat'on fo_r each p‘?ss'b'e
Unfortunately, a direct evaluation of this distribution and of ~model and the evaluation of the criteria. Experimental evidence
its features, including posterior model probabilities, requires shows that AIC and MDL, which are criteria designed using
evaluation of some Complicated high'dimensional integrals. We asymptotlc argumentS, do |ndeed tend to est|mate a Wrong

develop an e_ff|C|ent stochastic algorithm based on reverS|bIe]_ump number of components for a small sample size and a low
Markov chain Monte Carlo methods to perform the Bayesian

computation. A convergence result for this algorithm is estab- Signal-to-noise ratio; see [13, Sec. VI].
lished. In simulation, it appears that the performance of detection ~ We follow a Bayesian approach whereby the unknown

based on posterior model probabilities outperforms conventional parameters, including the amplitudes, the radial frequencies,

detection schemes. and the noise variance, together with the number of sinusoids,
Index Terms—Bayesian methods, MCMC, model selection, are regarded as random quantities with known prior distri-
spectral analysis. bution. Several previous works have already addressed this

problem, in some restricted scenarios, following the Bayesian
approach. Bayesian parameter estimation and model selection
o i for such signals have been addressed in a series of papers
M ODEL selectlor_1 is & fundamgntal Qata analys_ls task. gt, Bretthorst [8]-[10] and, more recently, in [14] and [15].

_ ha_s many applications in various fields of science an [12], the problem of power spectrum estimation in the
engineering. Over the past two decades, many of these prghse of harmonic signals is treated. Bayesian model selection
lems have been addressed using information criteria SUChtgs q\,ch signals based on posterior model probabilities has
Akake_ mformatlon. criterion (AIC) [1] or Rlssanen’s_ principle s peen investigated by Djari[13]. The main problem
of minimum description length (MDL) [23]. The widespreadyt {he Bayesian approach is that it typically requires the
use of these criteria is malnly due to thelr intrinsic simplicitya, o 1uation of high-dimensional integrals that do not admit any
AIC and MDL are applied by evaluating two terms: a datg|geq.form analytical expression. In a few cases, for example
term that requires the maximization of the "ke"h°9d, anflhen the sinusoids are well-separated and many samples are
a pe”f”"ty term of the complexny.of the model. W'th_'n, aa\vailable, suitable analytic approximations to these integrals
Bayesian framework, model selection appears more d|ﬁ|c%5n be performed [8]. In [13], an asymptotic (in the number
as it involves the evaluation of Bayes factors, which typicall f data) expansion around an ML estimate of the frequencies is
requires the computation of high-dimensional integrals wi rformed. These approximations are difficult to quantify and

no_closed-form _an_alytlcal expression. T_hese computatp t valid in the interesting cases where the amount of available
problems have limited the use of Bayesian model selecuoa’h%l

t for th f hich toti . £t ta is small, and some sinusoids are close to each other. If we
except for the cases lor which asymplolic €xpansions o nt to perform Bayesian inference in these important cases,

Bayes factors are valid [5]. it is necessary to numerically approximate these integrals.

'.” th'.s paper, we "?‘ddfess the problem of qut detgctlon a@%me early attempts to solve this computational problem using
estimation Of. 5|nu50|d_s in white _Gau55|_an NOISE. Th_|s proble ssical deterministic multiple integration and Monte Carlo
is of great interest in many fields, including Se'smomg%ethods are presented in [10] and [12]; see also [7] in the

nuclear magnetic resonance, and radar. Under the assumplion. .+ of damped sinusoids. The main problem of these

of a known numb_er of smusqu, seyergl algorithms have ber%%thods is that they are not flexible and are difficult to use
proposed to obtain the maximum likelihood (ML) frequenc%

I. INTRODUCTION

hen the dimension of the integrand is large. Recently, Dou
and Hodgson derived a Markov Chain Monte Carlo (MCMC)
Manuscript gecbe”i‘ig’:’*a{lgv 1998; fe\gSEdbM:fCh 62k19Ag9b C. Andrigethod [14], [15], but their algorithm suffers from several
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Bayesian framework. In this paper, a new approach to jointfgr ¢ = 0,---.N — 1 and j = 1,---,k. We assume
solve these problems is proposed. An original Bayesian modhelre that the numbek of sinusoids and their parameters
is proposed that allows us to define a posterior probabiligy, EN (al, wi, 03)t are unknown. Given the data sgt our
distribution over the space of possible structures of the signghjective is to estimaté and ;.

Similar to previous related works [8], [10], [12], [14], the

posterior distribution appears highly nonlinear in its parame- m

ters, thus precluding analytical calculations. The case treated ]
here is even more complex. Indeed, since the number ofVe follow a Bayesian approach where the unknowvins

sinusoids is assumed random, the posterior distribution @d 6 are regarded as being drawn from appropriate prior
be evaluated is defined on a finite disconnected union @gtributions. These priors reflect our degree of belief of the
subspaces of various dimensions. Each subspace correspéfigyant values of the parameters [5]. We first propose a
to a model with a fixed number of sinusoids. To evaluaf®odel that sets up a probability distribution over the space of
the joint posterior distribution of the number of sinusoids arRPSSible structures of the signal. Subsequently, we specify the
their parameters, we propose an efficient stochastic algoritiigtection/estimation aims. Finally, we exploit the analytical
based on reversible jump MCMC methods [17]. MCMC'Properties of the model to obtain an expression, up to a
are powerful stochastic algorithms that have revolutionizérmalizing constant, of the posterior distributipfk, wx|y).
applied statistics; see [6] and [25] for some reviews.

The paper is organized as follows. In Section II, the signé\. Prior Distributions

model is given. In Section Ill, we formalize the Bayesian The overall parameter spag® can be written as a finite
rodeland specty the o dinbutons. Secton 1V b Selion of subspace® — Ui () O, where, 2
. A X .

sampler to perform Bayesian inference when the number 319 Aek = R x @ x ]§+ for k€ {1, -+, huax} with

) S . . . A k . A _ 1 :
sinusoids is given. Then, a reversible jump MCMC algorithd®x = (0, m)" and knax = [(NV — 1)/2].7 We also define
is derived when the number of sinusoids is unknown. The ur = U’,:‘;‘g‘ {k} x Q4, where Qg 2 ¢. There is a natural
form geometric convergence of this algorithm is establishelierarchical structure to this setup [17], which we formalize
The performance of these algorithms is illustrated by computay modeling the joint distribution of all variables as
simulations and compared with classical detection methods in
Section V. Finally, some conclusions are drawn in Section VI. p(k, Or, ) = p(y|k, 01 )p(Or|k)p(k) (4)
Appendix A defines the notation used in the paper. The ProQhere (k)
of convergence of the algorithm is given in Appendix B.

. BAYESIAN MODEL AND AIMS

is the prior model probabilityp(éy|k) is the
parameter prior, ang(y|k, @) is the likelihood. From the
model given in Section Il, the likelihood is

Il. PROBLEM STATEMENT

r 1
k, 0x) = (2ma}) /2 <—— — D(wi)ar)!
Lety = (y[0], »[1], - - -, ¥[IN—1])* be an observed vector of p(ylk, On) = (270i) P 207 ¥ (Wi)a)

N real data samples. The elementsy/ahay be represented by

different modelsiM,, corresponding either to samples of noise x(y — D(“’k)ak)>' ()
only (¢ = 0) or to the superposition ot (k > 1) sinusoids

corrupted by noise; more precisely féar= 0 and & > 1, For (k, 6;), we assume the structure

respectvely p(k, 64) = plk, 2, wiloD)p(?) ©)
Mo: yli] =noli] whereo is a scale parameter that is assumed to be distributed
My yld] :Ele(a% v cos[w; xt] + as, . sinfwy, xi]) according to a conjugate inverse-Gamma prior distribution,

+ nfi] (1) i.e., o ~ IG(vo/2, v0/2). Whenv, = 0 andy = 0, we

obtain Jeffreys’ uninformative priop(c3) o 1/o} [5]. For
wherew;, x # wj, x for ji # jo anda, ,, a,, ., wj  are, (k, ax,wy), we introduce the prior distribution

respectively, the amplitudes and the radial frequency ofthe AF 1
sinusoid for the model with: sinusoids. The noise sequence p(k, ax, wi|oz) o T xp(—M) o517
A . ) ! |27 03 30|

ng = (ng[0], ---, nu[N — 1])* is assumed zero-mean white

t s —1
Gaussian of variance;. In vector—matrix form, we have X exp [_ a X, a’“} I (k, wr.) (7)

203 k

y = D{wi)ag +ny ) whereX; ! = 62D (w;)D(wy,). The prior probability model

A A A distribution p(%) is a truncated Poisson distribution. Condi-

Where[ak]%fl, 1= ae, s [Aak]2i 1 = s, a”Fj[“’k]i,_l = Wik tional onk, the frequencies are assumed uniformly distributed

fori=1,---, k. The N x 2k matrix D(wy) is defined as i, @, Finally, conditional on(k, wy), the amplitudes are
[D(wk)]i-i—l,Qj—l — Cos [wj,ki] 1The constrain2k < N is added because otherwise, the columns of

. ] D(w;.) are linearly dependent, and the parametegrsmay not be uniquely
[D(wr)]it1,2; =sin[w; xt] (3) defined from the data [see (2)].
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assumed zero-mean Gaussian with covariamg¢®;. Pro- normalizing constant. According to Bayes theorem

portionality in (7) comes from the fact that < k... 9

The termsé? and A can be, respectively, interpreted as anp(a’“’ Wk, O K[y)

expected signal-to-noise ratio and the expected number of o p(ylag, wy, o3, k)p(k, ax, wilog)p(o})

sinusoids. The influence ak can, of course, be removed 2\—N/2 [
x (2mwoy) exp

(an — ) M (ay, — my)

by computing Bayes factors, namely(y|k1)/p(y|kz). The 202
prior distributionp(ay, 02|k, wy) corresponds to the popular 1 . 2\ —vg/21
g-prior distribution; see [26] for motivation. We can also x eXP[F (vo+y PkY)} (oi)™"
obtain (7) using a maximum entropy method [3]. In the case K (A /)
. . / ™
k = 0, we adopt the following conventions, <7 ay 2 0 x |20 8poz| 72 2 g (k, we) 9)
2% |1/2 A k!
and |2ro530) ¢ = 1. with
B. Estimation/Detection Aims M, ! =D*(wi)D(wi) + T
The Bayesian inference of and 6, is based on the my, = M D*(w)y
joint posterior distributionp(k, é,|y) obtained from Bayes’ Py =In — D(wi)M. D (wy). (10)

theorem. Our aim is to estimate this joint distribution from . , o 9
which, by standard probability marginalization and transfoﬂ;he integration Of?‘k _(normal c_j|str|but|on) and then of;
mation techniques, we can “theoretically” obtain all posteri(ﬂm’erse gamma distribution) yields

features of interest. In particular, it allows us to evaluate p(k, wily) o< (0 + y'Pry) ~ N Fo)/2
the posterior model probability(k|y), which can be used (AJ((82 + 1)m)
to perform model selection by selecting the model order X A lo(k, wi).  (11)

as arg maxyc (o, ---, kmay} P(Kly). In addition, it allows us to o ) ) S
perform parameter estimation by computing the conditionH |s_worth_ noticing that this posfcerlor distribution is hlghly
expectationE(fy|y, k). However, it is clear that it is not nonlinear in the angular.frquencnas and that an expression
possible to obtain these quantities analytically. Indeed, f ?(kly) cannot be obtained in closed form. We develop in the
requires the evaluation of high-dimensional integrals of nonliff€xt sections MCMC methods to estimate the required poste-
ear functions in the parameters, as we shall see in Section [ir distributionp(k, wi|y) or, if neededp(k, ay., wi, o3 [y)

C. We propose here to use an MCMC method to perform

Bayesian computation. MCMC techniques were introduced IV. BAYESIAN COMPUTATION

in the mid 1950’s in statistical physics but have only been For the sake of clarity, we first assume in Section IV-A
introduced in applied statistics in the early 1990’s and, motRat % is given, and for notational convenience, we will not
recently, in signal processing [6], [25]. The key idea is to builhclude % in the probability distributions in this subsection.
an ergodic Markov chairik®, 6, ),y Whose equilibrium |n this case, the posterior distribution of interest is given

distribution is the desired posterior distribution. Under Weellfy p@ly, k) o p(y|k, 9:)p(dx|k), where A {w) or

additional a_ssumpt|0ns, thB.>> 1 S"."mP'eS generateq by theﬂk 2 {ax, wi, o7}, depending on the posterior distribution
Markov chain are asymptotically distributed according to thfeom which we want to sample. In Section IV-B. we present
posterior distribution and thus allow easy evaluation of azlin aloorithm for the case wEeln is unknown ' P
posterior features of interest. For example g '

1L ‘ A. Hybrid MCMC Sampler for a Fixed Dimension Model
Bk =4ly) =5 Z Iy (k(z)) We propose to use an hybrid MCMC sampler that combines
q =1 Gibbs steps and Metropolis—Hastings (MH) steps, see [6] and
an P [25, Sec. 2.4].\ is a real number satisfying < A < 1.
04 1y (KD
X . ; ko by (F7) MCMC algorithm for spectral analysis
Ebrly, k= j) == . (8)
> iy (k) 1. Initialization. Set 8 = (a{”, w{”, 02y and i = 1.
i=1 2. lteration ¢
However, for our problem, some integrations can be performed e Forj=1---k
analytically and do not require any Monte Carlo integration — Sample v ~ Ujg 1.
scheme. — If v < A, perform an MH step with
plw; x|y, w(jzk) as invariant distribution
C. Integration of the Nuisance Parameters and q1(w} |wj,x) as proposal distribution,

. . . see (Section IV-Al).
The proposed Bayesian model allows for the integration — Else perform an MH step with

of the so-called nuisance parametess and o7 and, sub- (i) . : S
sequently, to obtain an expression fpfk, wi|y) up to a p(wjkly, w”; ) as invariant distribution
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ﬂQ(k, w%)}

(15)

and gz(w} 4|wj, 1) as proposal distribution
see (Section IV-Al).
End For.

given for: = 1, 2 by

tp, v\ (NVtvo)/2
minxk 1, <W7tfy>
Yo+ y'PLy

¢ (wj, klwjx)
: . i (@) g lws,x)
3. Optional step: sample the nuisance parameters

(01D, al) ~ p(o2, ayly, w'”), see (Section IV-A2).

4. i — i+ 1 and go to 2. where P}, M), and X/ are similar to P,, M;, and

u )37 with Wi replaced bywk i (wl Ky "ty Wy—1, k,w ko
These different steps are detailed in the following subsngH Ky~ Wi, k). Several other proposal dlstnbuuons for
tions. In order to simplify notation, we drop the superscrighe MH steps can be used, but we have found the combination

- from all variables at iteratior. of the two MH steps we propose to be very efficient in
1) Updating of the FrequenciesSampling the frequencies simulations.

is difficult because the distribution is nonlinear in these pa- 2) Updating the Nuisance Parameters:
rameters. We have chosen here to sample the frequencies
one-at-a-time using a mixture of MH steps. This well-known
algorithm is described in [6] and [25, Sec. 2.4]. An MH ) ) . .
step of invariant distribution, say;(x), and proposal distri- BY Straightforward calculations, we obtain, using (9)
bution, say,q(x’|x), consists of sampling a candidate value
x’ given the current valuex according toq(x’|x). The
Markov chain moves towarst’ with probability a(x, x') =
min{1, (rm(x)q(x'|x)) "' 7(x")q(x|x')}; otherwise, it remains
equal tox. This algorithm is very general, but to perform wel

in practice, it is necessary to use a clever proposal dlstrlbutlon
to avoid rejecting too many candidates. In our applicatio
the target distribution is the full conditional distribution of a
frequency

p(o%; arly, wr) = p(aily, wrx)p(arly, wi, 7). (16)

vo+ N v+ y'Pry
O—l%|(Y7wk) NIg( 02 ) 2 9 k

ak|(Y? Wi, O—l%) NN(mkv O—I%Mk) (17)

ith Py, myg, and My, defined in (10).

% Bayesian Computation for an Unknown Model Dimension

Now, let us consider the case whérés unknown. Here, the

Bayesian computation for the estimation of the joint posterior
[’Vo+ythy]_(N+”°)/2ﬂn(/€7 wy). (12) distribution p(k, 8x]y) is even more complex. One obvious

solution would consist of runnings,,.. + 1 independent
With probability 0 < A < 1, we perform an MH step with MCMC samplers, each being associated with a fixed number
proposal distributiony; (w/, ; |w;, ) independent of the current® =0, -~ -, kuax. However, this approach suffers from severe
state w; 1 drawbacks First, it is computationally very expensive since
kmax Can be large. Second, the same computational effort is
attributed to each value of. In fact, some of these values
are of no interest in practice because they have a very weak
posterior model probability(k|y). Another solution would be
to construct an MCMC sampler that would be able to sample
wherep; is the value of the squared modulus of the Fourigfirectly from the joint distribution or® = Uk mecdk} x O

p(“—’j,k|y7 w—j,k) x

(13)

Q1(w37k|CUj7k) 8 Z pl“[lﬂ-/]\ , (I+1)7/Np )( )

transform (FT) of the observationg at frequencyir/N,.
Typically, we will take vV, = N, but we can usév, > N

Standard MCMC methods are not able to “jump” between
subspaced®d, of different dimensions. However, recently,

to improve the interpolation of the FT via zero padding Thereen has introduced a new flexible class of MCMC samplers

basic idea is to propose a frequerwyk independent of;, i

(the so-called reversible jump MCMC) that are capable of

in the regions where the modulus of the FT has high valuggmping between subspaces of different dimensions [17]. This
The motivation for using such a proposal distribution is tha a general state-space MH algorithm. We propose candidates
the regions of interest of the posterior distribution are reachgfécording to a set of proposal distributions. These candidates
quickly. A related idea involves performing a piecewise comgre randomly accepted according to an acceptance ratio that
stant approximation of the target distribution. However, thénsures reversibility and, thus, invariance of the Markov chain
results are similar in simulations. With probability— A, we  with respect to the posterior distribution. Here, the chain must
perform a MH step with proposal distribution(w} ,|w;, )  move across subspaces of different dimensions, and therefore,
the proposal distributions are more complex; see [17] for

Wi plws ke ~ N(wj 1, 0Fw)- (14) details. For our problem, the following moves have been
selected:
This proposal distribution yields a candldalzg . that is a 1) birth of a new sinusoid, i.e., proposing a new sinusoid

perturbation of the current frequency. The perturbation is a
zero-mean Gaussian random variable with variarigg . This

at random on(0, =);

2) death of an existing sinusoid, i.e., removing a sinusoid

random walk is introduced to perform a local exploration of
the posterior distribution and to ensure irreducibility of the 3)
Markov chain. In both cases, the acceptance probability is

chosen randomly;
update of the parameters of all the sinusoids, when
k # 0, and the variance of the observation noise.
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The birth and death moves perform dimension changes, re- Birth move

spectively, fromk to £+ 1 andk to & — 1. These moves are

defined by heuristic considerations, the only condition to be. Propose a new frequency at random on 0, 7): w ~

fulfilled being to maintain the correct invariant distribution. A Ueo, r)-

particular choice will only have influence on the convergence« Evaluate o, See (21), and sample « ~ U, 11

rate of the algorithm. Other moves may be proposed, but we. |f 4, < ), then the state of the Markov chain

have found that the ones suggested here lead to satisfactory hecomes (k+1, wpy1), else it remains at (k, wy,).

results. e or (Optional) If v < apiin then the state of the
The resulting transition kernel of the simulated Markov  Markov chain becomes (k + 1, ag;1, Wiy1, ot i),

chain is then a mixture of the different transition kernels e|se stay at (k, ax, wy, o7) where (0'1%+1v apy1) are

associated with the moves described above. This means that sampled according to p(gl%H’ apqilk + 1, wig1, ¥)

at each iteration, one of the candidate moves (birth, death, or (see Section IV-A2).

update) is randomly chosen. The probabilities for choosing

these moves aréy, d, and uy, respectively, such that

b, +dip +u, = 1 for all 0 < k < kn... The move is

performed if the algorithm accepts it. Féar= 0, the death

move is impossible; thereforel, 2 0. Fork = kmax, the

[ ]
Assume that the current state of the Markov chain is in
{k +1} x ®41. Then, we have the following.

birth move is impossible, and thus;_ 20. Except in the Death move
cases described above, we take the probabilities « Choose a sinusoid at random among the & + 1
plk+1) existing sinusoids: I ~ U ... g41}-
b, = ¢ min {1, T}  Evaluate ageatn, S€€ (21), and sample u ~ Ujg, 13-
p e If v < ageatn, then the state of the Markov chain
dit1 2 . nin {17 ﬂ} (18) becomes (%, wy,), else it remains (k + 1, wp41).
p(k+1) « or (Optional) If w < gean then the state of

the Markov chain becomes (k, ax, wy, 07), else it
remains (k + 1, agq1, wit1, 0py;) Where (o7, ag)
are sampled according to p(o3, axlk, wi, y), (see
Section 1V-A2).

where p(k) is the prior probability of modelM,,, andc is

a parameter that tunes the proportion of dimension/update
move. As pointed out in [17, pp. 719], this choice ensures
that b.p(k)[dr+1p(k + 1)]7* = 1, which means that an MH
algorithm on the sole dimension in the case of no observation

would have 1 as acceptance probability. We take 0.5 and - -
thenby, + dy, € [0.5, 1] for all & [17]. We can then describe The acceptance ratio for. the proposed moves are deduced
the main steps of the algorithm. from the following expression [17]:
Reversible jump MCMC algorithm —— (posterior distributions ratiox (proposal rati.
(19)
1. Initialization: set (£, 8\”) ¢ @. After simplifications
2. lteration i. . :< Yo+ V' PLy )(N+v0)/2 20)
«  Sample u ~ U 1. T\ 0 + ¥ Py (k+1)(1+462)

o I (u < broy)
— then “birth" move (see Section IV-B1).
— else if (v < by + dyy) then “death” move
(see Section 1V-B1). piren = min{1, rppen b
— else update the parameters (see
Section 1V-B2).

Then, the acceptance probabilities corresponding to the de-
scribed moves are

Xdeath = Inin{la T];iith}' (21)

2) Update Move: The update move does not involve chang-
End If. ing the dimension of the model. It requires an iteration of the

3. i—i+1andgoto2 hybrid MCMC sampler presented in Section IV-A.

| | . . .
. . . C. Uniform Geometric Convergence of the Algorithm
We describe more precisely these different moves below. 9 9

In what follows, in order to simplify notation, we drop the It is easy to prove that the algorithm converges, i.e., that
superscript® from all variables at iteration. the Markov chain(k®, wi”),.y is ergodic. We prove here

1) Birth Move/Death Move:Suppose that the current statea stronger result by showing thét(, w,(j))idN converges
of the Markov chain is in{k} x ®;. Then, we have the to the required posterior distribution uniformly geometrically,
following. i.e., at a geometric rate independent of the starting point. We
have the following result.




2672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

Theorem 1:Let (k). w{’), .y be the Markov chain TABLE |
whose transition kernel has been described in Section IIl. PARAMETERS FOR THE FIRST EXPERIMENT

If y ¢ spad [D(wi)i:v, ;55 =1, -+, 2k} for any (k, wy) €

Q, then this Markov chain converges to the probability ¢ B —arclen(as/ac)  wi/2m
distributionp(k, wy|y). Furthermore, this convergence occurs .
. . : : 120 0 0.2
at a uniform geometric rate, i.e., there existCa > 0 and
p € [0, 1) such that whatever the initial poitt®, w'”) € @ 2 6.3246 /4 024 1/N
is
32 /3 0.2+ 2/N
1 (k, wi) = p(k; wily)llrv < Coptllmesd— (22)
TABLE I

PARAMETERS FOR THE SECOND EXPERIMENT

wherep®(wy, k) is the distribution of £, "), and||-||7v

is the total variation norm [25]. i B; —arctan(as,/ac,) wi/ 2
Proof: See Appendix B. [ |
Corollary 1: If for each iterationi, one simulates the nui- 1 20 0 0.2
sance parameter(sxk,ak) then the distribution of the series
(KD, a?, | 02@). | converges uniformly geometrically 2 20 /4 0.2+ 1/ (IN)

towardp(k, ak,wk, o7ly) at the same ratp.

In other words, independent of the starting point of the
Markov chain, the distribution of the Markov chain converges
at least at a geometric rate to the required equilibrium distri-
bution p(k, 9&|y). In this section, we present an extensive Monte Carlo study

Remark 1: In practice, we cannot evaluate but Theorem of the performance of the method and algorithm that we
1 proves its existence. This type of convergence ensures thaye proposed to solve the problem of detection/estimation of
a central limit theorem for ergodic averages is valid [25kinusoids embedded in noise. It is not possible to theoretically
Moreover, in practice, there is empirical evidence that theyvaluate such a performance as the quantities required (correct
Markov chain converges quickly. detection and over and under estimation probabilities) are not

available in closed form. We thus propose a Monte Carlo
simulation study for two experiments.

V. SIMULATION RESULTS

D. Discussion

In the case where the number of sinusoids is knownp,
an MCMC algorithm based on the Gibbs sampler has be'g Description of the Data
proposed by Dou and Hodgson [14], [15]. Our sampler hasThe parameters for the f|rst experiment are as follows:
several major differences to theirs and is more efficienV = 64, k = 3. We definek; —a +a5 , and the parameters
Their algorithm samples the amplitudes, and the noise of the three sinusoids are glven in Table I. The signal-to-
o,f one at a time. In our algorithm, these simulation stepfoise ratio is defined as SNE 10 log,, E1/(202). For the

can be avoided if we are not interested in these parametgigaker sinusoid, the SNR is 5 dB less than the SNR for the
and in this case, all these parameters are simulated joindyher sinusoids. The parameters of the second experiment are
Theoretical results established by Lét al. [18] suggest that N = 64, & = 2. The two sinusoids are defined in Table II. In
our sampling scheme is more efficient as it leads to a highee simulation we performed, we usée: 1, 2, 4. The signal-
mixing rate for the simulated Markov chain. To simulatéo-noise ratio for this experiment has the same definition as
the radial frequencies, they sample for egcfrom the full in the first one.

conditional densityp(w;, x|y, k. ar, w_; &, o7). As a direct
simulation is impossible, they approximate this distribution b
an expansion at its maximum. This yields a univariate Stude
t distribution from which we can easily sample. However, The developed algorithms require the specification of pa-
this method requires a maximization that can be difficult fameters that have no influence on the posterior distribution.
the SNR is low. Moreover, the algorithm is no longer &hese parameters only have an influence on the speed of
theoretically valid MCMC method as samples are drawn frosonvergence of the algorithm. The parameters we used are
an approximation ofp(w; x|y, k, ax, w_; x, o3). Thus, the equal toA = 0.2 and ogrw = 1/(5N). Parameter has
associated convergence results of MCMC algorithms are rimen determined in a rather heuristic way. They are the first
applicable. Our algorithm based on a MH step avoids sughlues we tried, and they provide the Markov chain with
a maximization and remains theoretically valid. Furthermorgery satisfactory properties. Parametgfyy was set so that

the proposal distribution based on the FT of the observatiolie mean acceptance probability was 0.4/0.5, which is often
enables the Markov chain to avoid getting stuck in localonsidered as a good indicator for a random walk with few
maxima of the distribution. parameters [16].

. Parameters of the Algorithm
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Fig. 1. Estimation of the posterior distributiopék|y) (top) andp(é|y) (bottom) for SNR= 3 dB and3s2 = 1, 10, 100 (left to right).

3
e

C. Extended Bayesian Model and Hyper-Hyperparameters A can be estimated. Then, the original algorithm can be
The Bayesian model is specified by, o, A, and§2. For implemented with these values. We have chosen to numerically
R tegrate2 and A out, as in [21]. This approach was also

the parameters of the noise, we sgt=v9 = 0, i.e., we select in )
gested in [26, Remark 1, p. 237].

the uninformative Jeffreys’ prior. In practice, it is necessasH9
to estimateA and é? to given values. Typically, rough vaIuesD. Bayesian Robustness of the Prior &h

of these parameters give good results. However, for sake of

rigour, we have opted for a “blind” strategy, which is certainly The strategy we propose requires the specification of hyper-
more convincing. Note that the way we proceed is Cbseﬁyperpgrametem_y and f3s= for the random variables?
related to [21], for example, in a totally different context. Théthe prior for A is uninformative). «;> = 2 ensures an
method consists of consideridg andA as random, that is, we infinite variance, and the crucial parameter is tifen* Here,
define an extended hierarchical model. The Bayesian modef¥@ experimentally demonstrate its weak influence on the
thus slightly modified, and the posterior distribution we airRosterior distributiong(8%[y) andp(kly). This general prob-

to estimate is now lem, namely, Bayesian robustness, still remains an unsolved
5 problem. This stems from the fact that it is, in general, not
p(6°%, A, &, 0i]y) cp(ylk, 0r)p(k, 01) possible to obtain any closed-form expression for the quantities

p(8°|k, ax, wi, o7)p(Alk).  (23) of interest in realistic models. Simulation methods allow for
As §2 is a scale parameter, we ascribe a vague conjugate pfgimerical study of the effect of such a prior on the results.
density to it: 62 ~ ZG(as, fBs> ) s = 2 and B2 > 0). We demonstrate the weak influence of the choicesgf
We do not use Jeffreys’ prior a8 = 0 can then be an for a wide range of values. Note, however, that an ex-
absorbing state of the Markov ch&nWe apply the same haustive study is impossible. For both models, we have
method to A by setting an uninformative conjugate prio@pplied the algorithm described in Section IV to the first
[5] A ~ Ga(1/2 + &1, e2)(e; < 1 i = 1, 2). To estimate experiment (Table I). Fig. 1 displays the estimategp@f|y)
the distributionp(62, A, k, 8x]y), we need now to simulate and p(k|y) for a SNR of 3 dB and the following values
the parameterg6?, A) each time an update is performedf s = 1, 10, 100, thus covering a large range of values
(Section IV-A). The probability densities allowing this updatéeven inconsistent values). It is experimentally observed that
require the simulation of the nuisance parametgrando?. for all the signal-to-noise ratios and values @, results

We obtain are very stable. Additional simulation results are presented
al D! (w,)D(ws)ay, in [3]. The detection procedure appears rather insensitive to
8| (k, 01) ~IG <’f + gz, = 207 + /%2) the specification of hyper-hyperparameters.
(24)

andA is updated using a MH step witha(1/2+k+¢1, 1+¢2) E. Performance of the Detection

as proposal distribution. In practice, estimateg@’|y) and ~ We do not present here estimation results because of a
p(Aly) are quickly obtained, from which values ¢f and lack of space. Estimation is a by-product of the algorithm

3Simple convergence is still true, but we have not established a uniform
2We could of course avoid this problem by defining a reversible jum@eometric convergence result. There is empirical evidence that the algorithm
between®, and®, that would samplé? from any instrumental probability Still converges quickly.
density. 4Recall that the mean &fG(«, 3) is 3/(a — 1).
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=% TABLE 1lI
o — PERFORMANCE OF DETECTION FOR THEFIRST EXPERIMENT
H ;
H
804 B
§ NN e s o e T S I Criterion SNR k<1 k=2 k=3 k>4
i T
DO 0.5 1 15 2 25 ;! as 4 4:5 5 OdB 0 39 43 18
:: " i " " " " 1 MDL 1dB 0 24 53 23
Rl 1 2B 0 13 59 28
o !
£l H ] 3dB 0 6 63 3l
o . — . ,
! 2 lembcr of lmu‘;ds ? °
0dB 1 92 7 0
Fig. 2. Instantaneous estimation gqf(k|y) (top)—Final estimation of
11)(k|y) (bottom) for one realization of the noise at 0 dB for experiment D— MAP 1dB 0 72 28 0
2dB 0 80 20 0

as it provides us with sampleg%(®, o§j>), i=1,-,P}
from the joint distributionp(k, @x]y). However, as there

. ; e : . . 3dB 0 51 49 0
is no identifiability constraint on the radial frequencies, the

posterior distribution for a given dimensiaon is a mixture 0dB 15 33 59 0
of k! similar distributions up to a permutation of labels. A
way to eliminate these artificial modes to ensure identifiability — argmax p(k|y) 1dB 0 35 63 9
and perform practical estimation is to postprocess the samples . €{0,....kmax}
More precisely, we sort the radial frequencies of the samples; 2dRB 0 19 81 0
see the discussion in [21] for related approaches.

In this subsection, we compare the results for model order 3dB 0 6 93 1
selection based on the maximum of the posterior model prob- ‘
ability p(kly), i.e., argmaxpcqo,... k... } P(k|y), and those VI. CONCLUSIONS

obtained on the same set of data using MDL and the crite-

rion introduced by Djuié denoted D-MAP [13]. To perform In this paper, joint Bayesian model selection and parameter

efficiently the maximizations needed to evaluate MDL and [gstimation of smu_squ In wh@e Gaussian noise have been
MAP, we used a simulated annealing version of reversib dressed. An original Bayesian model was proposed that
jump MCMC algorithms; see [2] for details allows us to define a posterior distribution over the space

1) First Experiment: We have applied the algorithm pre—Of possible structures of the signal. The evaluation of this
sented in Section IV to 100 realizations of the first experimerROSterior distribution and of its features of interest requires nu-

The number of iterations was 50000 which was shown {Berical methods. An efficient computational algorithm based
be sufficient (histograms of the posterior model probabilit n reversible jump MCMC methods was derived to estimate

p(kly) were stabilized; see Fig. 2). .

is posterior distribution. An extensive simulation study is
The algorithm was coded using Matfkand the simulation carried out, and results show that model selection based on
was performed on a Cyrix 200+ Each processing of a

the posterior model probabilitieg%|y) performs better than
realization required on average 130 s. The criterion we us®

§1er classical criteria. This method is of great interest when
was themaximumof jp(k|y). Obtained results are presented’il dressing scenarios for Wh'Ch alow SNR, small sample SIZ€,
in Table IlI. or closely spaced frequencies are encountered. Of course, in

2) Second ExperimentiVe applied the algorithm presentednore favorable cases, computationally cheaper methods are a
ood alternative.

in Section IV for 100 realizations of the second experimerﬁ. . . .
We would like to point out that there are several possible

The number of iterations of the algorithm was 50000. The . . :
detection criterion we used was still tneaximumof p(k[y). extensions to this work. Indeed, the framework we propose is
The obtained results are presented in Table IV flexible enough to allow the inclusion of any additional prior

knowledge. It could be adapted to address the cases of damped
sinusoids [4], non-Gaussian noise, or the more challenging

problem of sinusoids in colored noise [20].
The results obtained using MDL and D-MAP are consistent

with those of [13]. AIC was also implemented but tends to APPENDIX A
systematically overestimate the model order. Compared with NOTATION

results obtained using the posterior model probability|y), _ ) . )
we observe that in allgcaseg, this model ordrt)ar estim(:?tle 3)utper: [A];,; is thesth row, jth column of matrixA.

forms other criteria for all signal-to-noise ratios. Depending on * A1 1S thi determinant of matriA.

the signal-to-noise ratio andvalues, correct detection rates * If 2 = (21, -+, 21, 2, zj41, -+, z)f, then
can be improved by 10 to 30%. z_j 2 (21, "y Zj—1y Zj41s 0y 20)

F. Discussion
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TABLE IV
PERFORMANCE OF DETECTION FOR THE SECOND EXPERIMENT

Crilerion SNR | k<1 k=2 k>3

1 0 69 31

3dB 2 23 66 11
MDL 4 57 29 14

1 0 72 28

10dB 2 0 69 31
4 0 70 30

1 0 97 3

3dB 2 13 86 1

D - MAP 4 93 7 0

1 0 100 0

10dB 2 0 100 0

3 5 91 0

1 0 99 1

3dB 2 0 95 4

argmax  p{k|y) 4 81 19 0

ke{0,..,kmax}

1 0 100 0

10dB 2 0 100 2

4 1 99 0

* 0,x, is the null matrix of dimensiom x p.
e I, is the identity matrix of dimension x n.

* 1g(z) is the indicator function of the séf (1 if z € E,

0 otherwise).

* |z] is the highest integer strictly less than
» 7z ~ p(z): z is distributed according tp(z).

* z|y ~ p(z): the conditional distribution ok giveny is

p(2).

Probability

distribution 7

fF ()

Inverse Gamma Z¢(a, 3)

Gamma Ga(a, B)
Gaussian N(m, T)
Uniform Ua

AT —a-1
T(a) ~

(o)
EXP(_/B/Z)I][O, +<>o)(2')

1“'—8; zo—1 exp(—,ﬁ:)l][m +oo)(z)
27|~ 1/2

exp —% (z —m)!X~1(z — m))

[ [y dz]~" 1a(2)
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APPENDIX B
PROOF OF THEOREM 1

Before proving Theorem 1, we need the two following
Lemmas:

Lemma 1: We denoteP; as the matrix®;, for which §2 —
+o0. This is the projection matrix onto the space orthogonal
to spad[D(wi)|i.n, 537 = 1, ---, 2k}. Let v € IRY then
viP%v = 0 if and only if v belongs to the space spanned by
the columns ofD(wy), wr € .

Then, noting thaty'Pry = 1/(1 + 8)y'y + (62/(1 +
6?))y'Piy, we obtain the following results.

Corollary 2: If the observed daty are really noisy, i.e.,

v ¢ spa[D(w)|1:n, ;35 = 1, -+, 2k} for any (k, wy) €
Q, then there exist& > 0 such that for allk < knax
(bmax = (N = 1)/2]), 6% € RT andwy, € €,

yv'PLy > € > 0.
Lemma 2: For all k& < ks, 62 € RY, andw;, € Q%

(25)

y'Pry <y'y. (26)

Proof of Theorem 1:Let K(ki, ws,; k2, dwy,) denote
the transition kernel of the Markov chain, i.e., for fixed

(k17 wkl)
Pr((ky, wr,) € 1) % Al(k1, i) = /A K (v, whes 4, dw;)

where A € B(Q2;). By construction/C(ky, wy, ; k2, dwy, )
admitsp(k, wy|y) as an invariant probability distribution. We
now prove thep(-|y)-irreducibility of the Markov chain. To
prove this result, we first establish(-)-irreducibility of the
Markov chain, wherep(-) is another probability measure on
Q.
For eachk; = 1, - -, kmax andwy, € €, we have
65“% (dka)
K(ki, i, k2, dwy,) > min{l, rqearn pdp, ————
(27)
for any (ki, wg, ), (k2, wr,) € , wherel/k, is the prob-
ability of choosing one of the sinusoids to suppress it, and
Sw., = {& € Quy-1/3 € {1,---, k1} such thatw’ =

Wi, —ir. Then, from (20) and for alk; = 1, -- -, kpyax We
obtain
— <’YO + ythHy>(N+"°)/2 1
death Yo +y'Pry (1+ 6%k
(N+wvo)/2
Yo+ ¥y 1
<[ ——— — <M 28
—< : ) (5 o0y, <M <+ (28)

where we have used Lemmas 1 and 2 for the existence of
and M.

Thus, a sufficiently high\/ exists such that
dy, 5w, (dwr, 1)
M k1
and there existsr > 0 such that for alll < k; < knax and
Wy, € le

K(klv Wi, 3 kl - 17 dwkl—l)

(8% .
> /{;_1 (550%1 (dwkl_l) with « > 0.

K(kl, Wi, 3 ]%‘1 - 1, dwkl_l) Z (29)

(30)
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Therefore, for allk;, we can reach the empty configuration [9]
with a nonzero probability. Let)(-) be the probability dis- [10]
tribution defined asp(k, dw) 2 oy (k). As p(k, wrly) is
an invariant distribution ofC(-; -), and the Markov chain is [11]
¢-irreducible, then from [19, Prop. 4.2.2] and [25, Th. 1*, pj12)
1758], the Markov chain is(k, ws|y)-irreducible. Aperiodic-

ity is straightforward. Indeed, there is a nonzero probability &t
choosing the update move in the empty configuration leading
to [14]

K(0, wo; 0, dwo) > ug > 0. (31)

(18]

(In this case, i.e.k = 0, we keep for notational convenienceig)
the same notation for the transition kernel everwif does
not exist.) The Markov chain thus admitgk, wi|y) as
equilibrium distribution [25, Th. 1*, p. 1758].

We now prove that the Markov chain is uniformly ergodid!8l
using the fact thaf? is included in a compact set, i.e., we
show thatf? is a small set. From (30) and (31), we deduce fquo]
ki =1, -+, knax that when we iteraté,,,.. times the kernel

[17]

K(;-), then the resulting transition kernel denotm=<) (20]
satisfies
[21]
KW (ky, wiy5 0, duwo)
- / K® (ky, wy; 1, dw)KPmex (1 03 0, dwo) 122
Q
> / KOO (s w1 d)K0m==0(1, w7 0, dag) 123
2o [24]
= K (ky, wiy 5 0, dwoo)KEmx=4)(0, wo; 0, dwo)
> s (0, d) @)
[25]
The last inequality is also valid fok; = 0. It allows us to 261

write for any (ki, wy, ) € ©

K By wyy; ko, dwy,) = np(ka, dwg,)  (33)

wheren 2 mingc o, .. 5.y @Fubm="* Thus, from [19, Th.
5.4] and [25, Prop. 2], there exist% > 0 such that for alk

1P (k, wi) — plk, wily)llry < Co(1 —m)t/Emexd . (34)
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