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Introduction

@ We want to test Hy : 6 = 6 against H; : 0 # 0y using the
log-likelihood function.

e We denote /(0) the loglikelihood and 6, the consistent root of the
likelihood equation.

@ Intuitively, the farther 5,, is from 6y, the stronger the evidence against
the null hypothesis.

@ How far is “far enough”?
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Wald Test

@ We use the fact that under regularity assumptions we have under Hy
Vi (80— 60) 2 N (0,17 (60))

where 52 p ( ‘ 9)
log f (X

@ This suggests defining the following Wald statistic
Wn = nl (90) (/9\,, — 90)

or W, = y/nl (6) (5,, - 90> where T (6) is a consistent estimate of
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Under Hp, we have
Wy =/l (80) (8, — 60) > N (0,1)
A Wald test is any test that rejects Hy : 6 = 60 in favor of
Hy : 0 # 6y when |W,| > z,,, where z,,, satisfies
P(Z > th/2) = 0(/2.
It follows that by construction Type | error probability is

Py (|Wh| = z4/2) — Pa, (|1Z] = z4y2) = &

and this is an asymptotically size a test.
Now consider 6 # 6, then

~

W, = n7(90)<§n—90>: nT(eo)(ﬁ,,—e)Jr nl (60) (8 — 6o)

2N(0,1) —oo
so
Py (reject Hy) — 1 as n — 0.
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o Note that the (approximate) size & Wald test rejects Hp : 6 = 6 in
favor of Hy : 6 # 0y if and only if 69 ¢ C where

C = Z:x/2 " Z/x/2

\/nl 90 \/nl (0o)

@ Thus testing the hypothesis is equivalent to checking whether the null
value is in the confidence interval.
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@ Similarly we can test Hp : 8 < 0y against H; : 6 > 0.

@ In this case we use W, = n7(90) </9\,, - 90) and reject Hy if
W, > z,.
@ We have if 8 = 0

Po(Wo>2) = P(Z>2z)=u

whereas if 6 < 6y
Pg (Wn 2 Z,x) —0

and if 6 > 69
Py (W, > z,) — 1.
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@ Example: Assume we have X; i'ri<(/j'Bernou||i(p) and we want to test
Ho : p = po against Hy : p # po.
e We have for S, = Y7 x;

f(x|p) = pP*(1—p)'™ = I(p) =Snlogp+ (n—S,)log (1—p)
, S, (n=S) . S,
I'(p) = — =Py = —.

; 1—p n

o |t is easy to check that
- D o3
pn - pO - N Ov ?
where (T% = po (1 — pp). This quantity can be consistently estimated
through 02 = b, (1 — p,) so the Wald test is based on the statistic

(/ﬁn - PO) .
/p\n (1 - /lsn) /n
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Wald test is not limited to MLE estimate, you just need to know the

asymptotic distribution of your test satistic.

Example: Assume we have Xi, ..., X;;, and Yy, ..., Y, be two
independent samples from populations with mean y; and v.

We write 6 = p; — u, and we want to test Hy : § = 0 versus
H1 ) 7é 0.
We build

X-Y

St S
T
where S2 and S2 are the sample variances.

Thanks to the CLT, we have W 2 A7 (0,1) as m, n — oo.

W =
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e Example (Comparing two prediction algorithms): We test a prediction
algorithm on a test set of size m and the second prediction algorithm
on a second test set of size n. Let X be the number of incorrect
predictions for algorithm 1 and Y the number of incorrect prediction
for algorithm 2. Then X ~Binomial(m, p1) and Y ~Binomial(n, p2) .

o To test the null hypothesis Hy : 6 = p1 — po = 0 versus H; : 0 # 0 we
note that § = p; — pPo with estimated standard error

=15 =15
\/Pl( P1)+P2( p2)

m n

e The (approximate) size « test is to reject Hy when

PL— P2
= | = A‘ — Z Zn/2
\/pl(lfm) + p2(1-P2)

m n

(W=

as w2 N (0,1) as m, n — oo thanks to the CLT.
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In practice, we often have mispecified models! That is there does not
exist any 6p such that X; ~ f (x| 60g) but X; ~ g [g being obviously
unknown].

In this case 6 is not the ‘true’ parameter but the parameter
maximizing

f(x|0) dlog f (x|0)
I ) d _—

/°g 200 &™) X:’/ 20
The Wald test becomes incorrect as we do NOT have

Vi (80— 80) 2 N (0,171 (60))

To correct it, let's go back to the derivation of the asymptotic
normality

g(x)dx=0

0=0o

0="/ (@) ~ I (0p) + 1" (6) (§n - 90)

% 1 ()  ~I'(6) n

()  /n 1" (60)

AD () February 2008 11/ 30

Vi (8, 60) ~ Vi



@ We have by the law of large numbers

1 n 2 A 2
/ (9):128 Iogf(zX,|9)£>/a Ing2(X|9).g(x)dx
n n ‘= a0 a0
@ We also have
I'(6) 1 alogf X]Q)

N2

where

a0 L
B </ Bloggéx\ 0) £00) dx>2

9—90>

Var[&logf(XW)} _ /8Iogf(x|9)2.g(x)dx

So by the CLT

2
B>./\/'<O,/a|0ggg(x’9) g (x) dx
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@ By Slutzky’'s lemma

2
f Blogge(xw)‘e g (X) dx
0

& log f(x]0)
(f 2o,

@ The asymptotic variance can be estimated consistently from the data.

ﬁ(@n—eo)—w\/ 0,

£ (x) dx> 2

0

@ We can derive a Wald test based on this asymptotic variance.
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@ This suggests developing a test for misspecification as

o x| 9)2 2log f (x
/a'gge(w) ,f(xye)dx+</W-f(X\9)dX> =0

@ So we can propose the following test statistic

T

Z 00 Z 892

i=1 i=1

_1"al<>grf<mrf)>2‘ +1nw'
n —~ .

n

which under Hy: model specified is asymptotically Gaussian with
zero-mean and variance which can be estimated consistently.
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@ We have under Hy : 8 = 6
1 D

—/ (0 0,1(6
Tl (60) 2 N (0,1 (60))

where /' (6) = alo%e(mx).
@ To prove this, remember that

0="/ (@) ~ ' (80) + 1" (8) (§n - 90)

thus
=1 (o) ~ -2 (8, - 00) = - (5, - 00
where
I (,790) 5 1(60) and v/ (81— 60) > N (0,171 (60)) .

The result follows from Slutzky's lemma.
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@ This suggests defining the following Rao score statistic

I" (6o)

Fo = ol (00)

which converges in distribution to a standard normal under Hp.

@ A major advantage of the score statistics is that it does not require
computing 6,. We could also replace / (6p) by a consistent estimate

T(6y). However using / (5,,) would defeat the purpose of avoiding to
compute 6.

@ A score test -also called Rao score test- is any test that rejects
Ho : 0 = 6 in favor of Hy : 0 # 0y when |R,| > z,5.
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@ Example: Assume we have X; i'ri'\(dj'Bernoulli(p) and we want to test
Ho : p = po against Hy : p # po.
@ We have for S, =Y ; x;

f(x|p) = pP(1=p) "= 1(A)=S,logp+ (n—S5,)log (1—p)
, Se (n—=S) .. S,

I'(p) = ?_ﬁjp”zi'

I"(p) = —ig—i;:jgg

o It follows that

I/()_n(,Bn_P) () 1

- p(l-p)’ “p-p)

and , N
I'"(po) Pr — Po

B v/nl (po) B Vo (L—po)/n

n
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@ In practice, for complex models, one would use
I"(6o)
nT(Bo)

R, =

where
1 & d%logf (x]0)

T(00)=-=-Y P

ni3

2 1(60)
0o

which is consistent thanks to Slutzky.

@ However, once more one has to be careful for misspecified models
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@ Indeed we have

1 00~ =) (0, - 05) = - (6, - )

3

where

1" (o) P / 9% log f (x|0)
n 06°

and

(o] X 2
J LA g (x) dx

92 log f(x|0)
<f 26°

\/E(En—eo) 2N,

‘0:90 '
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@ Thus if you use Rao test for misspecified model, you have to use the
following consistent estimate of the asymptotic variance

1 & dlogf(x|0)° o [ dlogf(x|6)
nl a8, M ,, &)
92 log f(xi|6)

@ If you use the standard estimate — Z ‘ then you will
O

Y

get a wrong result.
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Likelihood Ratio Test

@ The LR test is based on
% supL (6] x)
A, =1 (9) — I (6o) = log (f’i@(%x)) > 0.
o If we perform a Taylor expansion of // (5,,) = 0 around 6y then
/ (50) - (5,,—90) (=1" (80) + 0 (1)) . (1)
@ By performing another Taylor expansion of / (/9\,7) around 0y then

By = (8, —00) /' (60) + % (8, - 90)2 [ (60) +0(1)] . (2)
@ Hence, by substituting (1) in (2), then

Ay =n (8, —00)" {—,17/" (60) + %/“ (60) + o (}7) } |
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@ By Slutsky's theorem, this implies that under Hy
2A, A X

e Noting that the 1 — a quantile of a x? distribution is 25/2, we can
now define the LR test.

@ A LR test is any test that rejects Hy : 6 = 6 in favor of H; : 6 # 6
when 2A, > 25/2 or, equivalently, when \/2A, > z,/5; i.e. we reject
for small values of the LR.
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@ Example: Assume we have X; o (A) and we want to test
Ho : A = A against Hy : A #£ Ag.
@ We have for S, =Y ; x;

X

f(x|A) = exp(—=A) g [(A) = —nA+ Splog A — (Zx,-!)

Sh
rA) = —n+ 210 =

Sn
B
o It follows that Xn = % and

~

A

A,=n (/\0 —X,,) + S, Iog/\—g.
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Test equivalences

@ We can show that (when there is no misspecification)

Ry > W,
w2 E oA,
@ The tests are thus asymptotically equivalent in the sense that under
Hp they reach the same decision with probability 1 as n — oo.

@ For a finite sample size n, they have some relative advantages and
disadvantages with respect to one another.
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It is easy to create one-sided Wald and score tests.

The score test does not require 5,1 whereas the other two tests do.

The Wald test is most easily interpretable and yields immediate
confidence intervals.

The score test and LR test are invariant under reparametrization,
whereas the Wald test is not.
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e Example: Assume X; S f (x| 0) where
f(x]|0) =0exp(—x0)I{x > 0}. Then

1(0) = n(logh—6X,)
which yields

n
92

/' (6) = n <; —x,,) and 1" (6) = — 2.

@ We also obtain

o It follows that
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o Example: Assume X; "< f (x| 0) where
f(x]0) =0cx VI {x >c} (Pareto distribution)

where ¢ is a known constant and 6 is unknown.
e We have for S, = Y7 log (x;)

1(6) = n(logb+06logc)— (6+1)S,,
/ 1 y n
I'@) = n <9—|—Iogc> -5, 1" (0) = e

o Thus we have 6, = «——"——, 1 (§) = 672 and it follows that

n—nlogc

.
Wo = o \5, —nioge %)
R, = f90<< +Iogc)—5n>,
pe = n(1og% (8, — o) oge ) — (8, — ) S,
fo

27 / 30

February 2008



Multivariate Generalizations

e When 6 € R, then the Wald, Rao and LR tests can be
straightforwardly extended

~ T 7y
Wy o =n(8,—60) 1(8) (8 —00) > i3,
1 _
Ry + = VI (60)7 17 (80) V1 (60) > 22,
N 1
A, = /(9n> _/(90) R) EX(%

o Therefore, if c¢ denotes the 1 — a quantile of the x? distribution,
then we reject Hy when W, > cf, R, > cg and 2A, > cg.

@ As in the scalar case, in the Wald test, we can subsitute to / (90) a
consistent estimate.
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e Example: Assume we observe a vector X = (Xi, ..., Xk) where
X; € {0,1}, Yy X; = 1 with

o ()£

where p; > 0 and py :=1— 21" 1 pj < 1. We have
9_(p1v' vpk 1)
e We have for n observations X1, X2,..., X"

k—1 k—1
1(6) = thlogpj thlogpj—l—tklog(l—ZpJ),

j=1
ol (0) E_Lk )
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@ Recall that X; has a Bernoulli distribution with mean p; so

pfl _|_p;1 pl:l pl:l
1 -1 1 :
Py Py "+ Py
1@)=1| . .
Py
I : Pttt

@ It follows that
Wn = n </9\n — 90) /(90) (/9\,7 - 90) ,
1
R, = ;V/(Go)Tl‘l(GO)V/(GO).
After tiedous calculations, it can be shown that
K 2
t; — np;
Wn:Rn227(J pi)
j=1 np;
which is the usual Pearson chi-square test whereas
A, = nzjl-‘zl tjlog %.
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