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Introduction

We want to test H0 : θ = θ0 against H1 : θ 6= θ0 using the
log-likelihood function.

We denote l (θ) the loglikelihood and bθn the consistent root of the
likelihood equation.

Intuitively, the farther bθn is from θ0, the stronger the evidence against
the null hypothesis.

How far is �far enough�?
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Wald Test

We use the fact that under regularity assumptions we have under H0

p
n
�bθn � θ0

�
D! N

�
0, I�1 (θ0)

�
where

I (θ0) = Eθ0

�
∂2 log f (X j θ)

∂θ2

�
.

This suggests de�ning the following Wald statistic

Wn =
q
nI (θ0)

�bθn � θ0
�

or Wn =
q
nbI (θ0) �bθn � θ0

�
where bI (θ0) is a consistent estimate of

I (θ0), e.g. I
�bθn�.
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Under H0, we have

Wn =
q
nbI (θ0) �bθn � θ0

�
D! N (0, 1)

A Wald test is any test that rejects H0 : θ = θ0 in favor of
H1 : θ 6= θ0 when jWn j � zα/2 where zα/2 satis�es
P (Z � zα/2) = α/2.
It follows that by construction Type I error probability is

Pθ0 (jWn j � zα/2)! Pθ0 (jZ j � zα/2) = α

and this is an asymptotically size α test.
Now consider θ 6= θ0 then

Wn =
q
nbI (θ0) �bθn � θ0

�
=
q
nbI (θ0) �bθn � θ

�
| {z }

D!N (0,1)

+
q
nbI (θ0) (θ � θ0)| {z }

P!�∞

so
Pθ (reject H0)! 1 as n! ∞.
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Note that the (approximate) size α Wald test rejects H0 : θ = θ0 in
favor of H1 : θ 6= θ0 if and only if θ0 /2 C where

C =

0@bθn � zα/2q
nbI (θ0) ,bθn +

zα/2q
nbI (θ0)

1A .
Thus testing the hypothesis is equivalent to checking whether the null
value is in the con�dence interval.
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Similarly we can test H0 : θ � θ0 against H1 : θ > θ0.

In this case we use Wn =
q
nbI (θ0) �bθn � θ0

�
and reject H0 if

Wn � zα.

We have if θ = θ0

Pθ (Wn � zα)! P (Z � zα) = α

whereas if θ < θ0
Pθ (Wn � zα)! 0

and if θ > θ0
Pθ (Wn � zα)! 1.
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Example: Assume we have Xi
i.i.d.� Bernoulli(p) and we want to test

H0 : p = p0 against H1 : p 6= p0.
We have for Sn = ∑n

i=1 xi

f (x j p) = px (1� p)1�x ) l (p) = Sn log p + (n� Sn) log (1� p)

l 0 (p) =
Sn
p
� (n� Sn)

1� p ) bpn = Sn
n
.

It is easy to check that

bpn � p0 D! N
�
0,

σ20
n

�
where σ20 = p0 (1� p0). This quantity can be consistently estimated
through cσ2n = bpn (1� bpn) so the Wald test is based on the statistic

Wn =
(bpn � p0)pbpn (1� bpn) /n

.
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Wald test is not limited to MLE estimate, you just need to know the
asymptotic distribution of your test satistic.

Example: Assume we have X1, ...,Xm and Y1, ...,Yn be two
independent samples from populations with mean µ1 and v .

We write δ = µ1 � µ2 and we want to test H0 : δ = 0 versus
H1 : δ 6= 0.
We build

W =
X � Yq
S 21
m +

S 22
m

where S21 and S
2
2 are the sample variances.

Thanks to the CLT, we have W
D! N (0, 1) as m, n! ∞.
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Example (Comparing two prediction algorithms): We test a prediction
algorithm on a test set of size m and the second prediction algorithm
on a second test set of size n. Let X be the number of incorrect
predictions for algorithm 1 and Y the number of incorrect prediction
for algorithm 2. Then X �Binomial(m, p1) and Y �Binomial(n, p2) .
To test the null hypothesis H0 : δ = p1 � p2 = 0 versus H1 : δ 6= 0 we
note that bδ = bp1 � bp2 with estimated standard errorrbp1 (1� bp1)

m
+
bp2 (1� bp2)

n
.

The (approximate) size α test is to reject H0 when

jW j = jbp1 � bp2jq bp1(1�bp1)
m + bp2(1�bp2)

n

� zα/2

as W
D! N (0, 1) as m, n! ∞ thanks to the CLT.
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In practice, we often have mispeci�ed models! That is there does not
exist any θ0 such that Xi � f (x j θ0) but Xi � g [g being obviously
unknown].
In this case θ0 is not the �true�parameter but the parameter
maximizingZ

log
f (x j θ)
g (x)

.g (x) dx )
Z

∂ log f (x j θ)
∂θ

����
θ=θ0

.g (x) dx = 0

The Wald test becomes incorrect as we do NOT have
p
n
�bθn � θ0

�
D! N

�
0, I�1 (θ0)

�
To correct it, let�s go back to the derivation of the asymptotic
normality

0 = l 0
�bθn� � l 0 (θ0) + l 00 (θ0) �bθn � θ0

�
so

p
n
�bθn � θ0

�
�
p
n
�l 0 (θ0)
l 00 (θ0)

=
�l 0 (θ0)p

n
n

l 00 (θ0)
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We have by the law of large numbers

l 00 (θ)
n

=
1
n

n

∑
i=1

∂2 log f (Xi j θ)
∂θ2

P!
Z

∂2 log f (x j θ)
∂θ2

.g (x) dx

We also have
l 0 (θ)p
n
=

1p
n

n

∑
i=1

∂ log f (Xi j θ)
∂θ

where

var
�

∂ log f (X j θ)
∂θ

�
=

Z
∂ log f (x j θ)

∂θ

2

.g (x) dx

�
�Z

∂ log f (x j θ)
∂θ

.g (x) dx
�2

So by the CLT

l 0 (θ0)p
n

D! N
 
0,
Z

∂ log f (x j θ)
∂θ

2

.g (x) dx

�����
θ=θ0

!
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By Slutzky�s lemma

p
n
�bθn � θ0

�
! N

0BBB@0,
R ∂ log f ( x jθ)

∂θ

���2
θ0
.g (x) dx�R ∂2 log f ( x jθ)

∂θ2

���
θ0
.g (x) dx

�2
1CCCA .

The asymptotic variance can be estimated consistently from the data.

We can derive a Wald test based on this asymptotic variance.
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This suggests developing a test for misspeci�cation as

Z
∂ log f (x j θ)

∂θ

2

.f (x j θ) dx +
�Z

∂2 log f (x j θ)
∂θ2

.f (x j θ) dx
�
= 0

So we can propose the following test statistic

T =
1
n

n

∑
i=1

∂ log f (xi j θ)
∂θ

2
�����bθn +

1
n

n

∑
i=1

∂2 log f (xi j θ)
∂θ2

����bθn
which under H0: model speci�ed is asymptotically Gaussian with
zero-mean and variance which can be estimated consistently.
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Rao Test

We have under H0 : θ = θ0

1p
n
l 0 (θ0)

D! N (0, I (θ0))

where l 0 (θ) = ∂ log L( θjx)
∂θ .

To prove this, remember that

0 = l 0
�bθn� � l 0 (θ0) + l 00 (θ0) �bθn � θ0

�
thus

1p
n
l 0 (θ0) � �

l 00 (θ0)p
n

�bθn � θ0
�
= � l

00 (θ0)

n

p
n
�bθn � θ0

�
where

� l
00 (θ0)

n
P! I (θ0) and

p
n
�bθn � θ0

�
D! N

�
0, I�1 (θ0)

�
.

The result follows from Slutzky�s lemma.
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This suggests de�ning the following Rao score statistic

Rn =
l 0 (θ0)p
nI (θ0)

which converges in distribution to a standard normal under H0.

A major advantage of the score statistics is that it does not require
computing bθn. We could also replace I (θ0) by a consistent estimatebI (θ0). However using I �bθn� would defeat the purpose of avoiding to
compute bθn.
A score test -also called Rao score test- is any test that rejects
H0 : θ = θ0 in favor of H1 : θ 6= θ0 when jRn j � zα/2.
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Example: Assume we have Xi
i.i.d.� Bernoulli(p) and we want to test

H0 : p = p0 against H1 : p 6= p0.
We have for Sn = ∑n

i=1 xi

f (x j p) = px (1� p)1�x ) l (λ) = Sn log p + (n� Sn) log (1� p)

l 0 (p) =
Sn
p
� (n� Sn)

1� p ) bpn = Sn
n
.

l 00 (p) = �Sn
p2
� (n� Sn)
(1� p)2

It follows that

l 0 (p) =
n (bpn � p)
p (1� p) , I (p) =

1
p (1� p)

and

Rn =
l 0 (p0)p
nI (p0)

=
bpn � p0p

p0 (1� p0) /n
.
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In practice, for complex models, one would use

Rn =
l 0 (θ0)q
nbI (θ0)

where bI (θ0) = �1n n

∑
i=1

∂2 log f (xi j θ)
∂θ2

����
θ0

P! I (θ0)

which is consistent thanks to Slutzky.

However, once more one has to be careful for misspeci�ed models
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Indeed we have

1p
n
l 0 (θ0) � �

l 00 (θ0)p
n

�bθn � θ0
�
= � l

00 (θ0)

n

p
n
�bθn � θ0

�
where

� l
00 (θ0)

n
P!
Z

∂2 log f (x j θ)
∂θ2

����
θ=θ0

.g (x) dx

and

p
n
�bθn � θ0

�
D! N

0BBB@0,
R ∂ log f ( x jθ)

∂θ

2
.g (x) dx

����
θ=θ0�R ∂2 log f ( x jθ)

∂θ2

���
θ=θ0

.g (x) dx
�2
1CCCA

so
1p
n
l 0 (θ0)

D! N
 
0,
Z

∂ log f (x j θ)
∂θ

����2
θ0

.g (x) dx

!

AD () February 2008 19 / 30



Thus if you use Rao test for misspeci�ed model, you have to use the
following consistent estimate of the asymptotic variance

1
n

n

∑
i=1

∂ log f (xi j θ)
∂θ

����2
θ0

D!
Z

∂ log f (x j θ)
∂θ

����2
θ0

.g (x) dx

If you use the standard estimate � 1
n

n

∑
i=1

∂2 log f ( xi jθ)
∂θ2

���
θ0
, then you will

get a wrong result.
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Likelihood Ratio Test

The LR test is based on

∆n = l
�bθn�� l (θ0) = log

0@ supθ2Θ
L ( θj x)

L ( θ0j x)

1A � 0.

If we perform a Taylor expansion of l 0
�bθn� = 0 around θ0 then

l 0
�bθ0� = �bθn � θ0

� �
�l 00 (θ0) + o (1)

�
. (1)

By performing another Taylor expansion of l
�bθn� around θ0 then

∆n =
�bθn � θ0

�
l 0 (θ0) +

1
2

�bθn � θ0
�2 �

l 00 (θ0) + o (1)
�
. (2)

Hence, by substituting (1) in (2), then

∆n = n
�bθn � θ0

�2 �
�1
n
l 00 (θ0) +

1
2n
l 00 (θ0) + o

�
1
n

��
.
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By Slutsky�s theorem, this implies that under H0

2∆n
D! χ21.

Noting that the 1� α quantile of a χ21 distribution is z
2
α/2, we can

now de�ne the LR test.

A LR test is any test that rejects H0 : θ = θ0 in favor of H1 : θ 6= θ0
when 2∆n � z2α/2 or, equivalently, when

p
2∆n � zα/2; i.e. we reject

for small values of the LR.

AD () February 2008 22 / 30



Example: Assume we have Xi
i.i.d.� P (λ) and we want to test

H0 : λ = λ0 against H1 : λ 6= λ0.

We have for Sn = ∑n
i=1 xi

f (x j λ) = exp (�λ)
λx

x !
) l (λ) = �nλ+ Sn log λ�

 
n

∑
i=1
xi !

!

l 0 (λ) = �n+ Sn
λ
, l 00 (λ) = �Sn

λ2
.

It follows that bλn = Sn
n and

∆n = n
�

λ0 � bλn�+ Sn log bλn
λ0
.
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Test equivalences

We can show that (when there is no misspeci�cation)

Rn
P! Wn,

W 2
n

P! 2∆n.

The tests are thus asymptotically equivalent in the sense that under
H0 they reach the same decision with probability 1 as n! ∞.
For a �nite sample size n, they have some relative advantages and
disadvantages with respect to one another.
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It is easy to create one-sided Wald and score tests.

The score test does not require bθn whereas the other two tests do.
The Wald test is most easily interpretable and yields immediate
con�dence intervals.

The score test and LR test are invariant under reparametrization,
whereas the Wald test is not.
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Example: Assume Xi
i.i.d.� f (x j θ) where

f (x j θ) = θ exp (�xθ) I fx > 0g . Then
l (θ) = n

�
log θ � θX n

�
which yields

l 0 (θ) = n
�
1
θ
� X n

�
and l 00 (θ) = � n

θ2
.

We also obtain bθn = 1

X n
, I (θ) = θ�2.

It follows that

Wn =

p
n

θ0

�
1

X n
� θ0

�
,

Rn = θ0
p
n
�
1
θ0
� X n

�
=

Wn

θ0X n
,

∆n = n
�
X n
�
X n � θ0

�
� log

�
θ0X n

�	
.
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Example: Assume Xi
i.i.d.� f (x j θ) where

f (x j θ) = θcθx�(θ+1)I fx > cg (Pareto distribution)

where c is a known constant and θ is unknown.
We have for Sn = ∑n

i=1 log (xi )

l (θ) = n (log θ + θ log c)� (θ + 1) Sn,

l 0 (θ) = n
�
1
θ
+ log c

�
� Sn, l 00 (θ) = �

n

θ2
.

Thus we have bθn = n
Sn�n log c , I (θ) = θ�2 and it follows that

Wn =

p
n

θ0

�
n

Sn � n log c
� θ0

�
,

Rn =
p
nθ0

��
1
θ0
+ log c

�
� Sn

�
,

∆n = n

 
log
bθn
θ0
+
�bθn � θ0

�
log c

!
�
�bθn � θ0

�
Sn.
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Multivariate Generalizations

When θ 2 Rd , then the Wald, Rao and LR tests can be
straightforwardly extended

Wn : = n
�bθn � θ0

�T
I (θ0)

�bθn � θ0
�

D! χ2d ,

Rn : =
1
n
rl (θ0)T I�1 (θ0)rl (θ0) D! χ2d ,

∆n : = l
�bθn�� l (θ0) D! 1

2
χ2d

Therefore, if cdα denotes the 1� α quantile of the χ2d distribution,
then we reject H0 when Wn � cdα , Rn � cdα and 2∆n � cdα .
As in the scalar case, in the Wald test, we can subsitute to I (θ0) a
consistent estimate.
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Example: Assume we observe a vector X = (X1, ...,Xk ) where
Xj 2 f0, 1g , ∑k

j=1 Xj = 1 with

f (x j p1, ..., pk�1) =
 
k�1
∏
j=1

pxjj

! 
1�

k�1
∑
j=1

pj

!xk
where pj > 0 and pk := 1�∑k�1

j=1 pj < 1. We have
θ = (p1, ..., pk�1).
We have for n observations X 1,X 2, ...,X n

l (θ) =
k

∑
j=1
tj log pj =

k�1
∑
j=1

tj log pj + tk log

 
1�

k�1
∑
j=1

pj

!
,

∂l (θ)
∂pj

=
tj
pj
� tk
pk
,

∂2l (θ)
∂p2j

= � tj
p2j
� tk
p2k
,

∂2l (θ)
∂pj∂pl

= � tk
p2k
, j 6= l < k.

where tj = ∑n
i=1 x

i
j .
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Recall that Xj has a Bernoulli distribution with mean pj so

I (θ) =

2666664
p�11 + p�1k p�1k p�1k
p�1k p�12 + p�1k

...
... p�1k

...
...

... p�1k�1 + p
�1
k

3777775
It follows that

Wn = n
�bθn � θ0

�
I (θ0)

�bθn � θ0
�
,

Rn =
1
n
rl (θ0)T I�1 (θ0)rl (θ0) .

After tiedous calculations, it can be shown that

Wn = Rn =
k

∑
j=1

(tj � npi )2

npi

which is the usual Pearson chi-square test whereas
∆n = n∑k

j=1 tj log
bpj
pj
.
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