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Goals of this chapter

e To provide common background (no numerical algorithms) in linear algebra,
necessary for developing numerical algorithms elsewhere;

e to collect several concepts and definitions for easy referencing;

e to ensure that those who have the necessary background can easily skip this
chapter.
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e Basic concepts: linear systems and eigenvalue problems

Vector and matrix norms

Symmetric positive definite and orthogonal matrices

Singular value decomposition
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Linear Algebra Background Basic Concepts

Basic concepts: linear system of equations

e Find x — <T‘> which satisfies

€2
a1121 + apr2 = by,
a21%1 + agex2 = by,
. aip Qi
or Ax = b with A = 2).
a21  a22

e Unique solution iff lines are not parallel.

e In general, for a square n X n system there is a unique solution if one of the
following equivalent statements hold:

A is nonsingular;

det(A) £ 0;

A has linearly independent columns or rows;

there exists an inverse A~ ' satisfying AA™' =T = A"'A4;

range(A4) = R™;

null(A) = {0}.
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Linear Algebra Background Basic Concepts

Basic concepts: eigenvalue problems

e A scalar A and a vector x are an eigenvalue-eigenvector pair (or eigenpair) if

Ax = Ax.

e For a diagonalizable n x n real matrix A there are n (generally
complex-valued) eigenpairs (\;,x;), with X = [xl, . ,x,,} nonsingular, and
X 1AX is a diagonal matrix with the eigenvalues on the main diagonal.

e Similarity transformation: Given a nonsingular matrix S, the matrix S~ AS
has the same eigenvalues as A. (Exercise: what about the eigenvectors?)
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Linear Algebra Background Norms

Vector norms

A vector norm is a function || - ||” from R™ to R that satisfies:
© x| >0; x| =0iff x=0,
@ Jlax| = [af|x]| V¥ a € R,
O [x+yll <I[x[+]yll. VxyeR"

This generalizes absolute value or magnitude of a scalar.
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Linear Algebra Background Norms

Famous vector norms

e (5-norm

n 1/2

Ixll2 = VxTx = | ) a?

i=1

o {-norm

Il = s [z
e {1-norm
n
xlls = Jail.
i=1
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Linear Algebra Background Norms

Example

e Problem: Find the distance between

11 12
x=|(12] and y= |14
13 16

e Solution: let

1
z=y—-x=|(2],
3
and find ||z]|.
e Calculate
lzlp = 14+2+3=6,
lzllo = V1+4+9=~3.7417,
|zl = 3.
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Linear Algebra Background Norms

Matrix norms

Induced matrix norm of m x n matrix A for a given vector norm:

P L E——y—)
x7#0 ||x]| Ixll=1

Then consistency properties hold,
IABI| < [|A[[l[BIl, [l Ax[| < [IA[l[lx]],

in addition to the previously stated three norm properties.
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Linear Algebra Background Norms

Famous matrix norms

e /o-norm
[All2 = 1/ p(AT A),
where p is spectral radius

p(B) = max{|A|; A is an eigenvalue of B}.

e /. -norm

4]l = max Zm“\

e {1-norm

m
[Al[1 = max Z|aij|~
=1

1<j<n
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Linear Algebra Background Special Matrix Classes

Symmetric positive definite matrices

Extend notion of positive scalar to matrices:

A=AT, xTAx>0, alx#0.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive:

A1 > A2 > 20, > 0.
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[ROCETQAELLIE N IO  Special Matrix Classes

Orthogonal matrices

Orthogonal vectors
Two vectors u and v of the same length are orthogonal if

u ' v=0.

Orthonormal vectors: if also [[uls = ||v|=2 = 1.

Square matrix () is orthogonal if its columns are pairwise orthonormal, i.e.,
QTQ =1. Hence also Q7' = Q7.

Important property: for any orthogonal matrix () and vector x

1@x|2 = [Ix[|2-
Hence
1Qllz = Q|2 =1
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(ROTET@APEENEIIGING N Singular Value Decomposition (SVD)
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(ROTET@APEENEIIGING N Singular Value Decomposition (SVD)

Singular value decomposition

Let A be real m x n (rectangular in general). Then there are orthogonal matrices
U, V such that

A=UxVT,

where

S 0 .
Z:(O O)" S = diag{oy,...,0.},

with the singular values 01y > 05> --- >0, >0,0,41 = =0, =0.

Connection to eigenvalues: o; = +/\;, where )\; are eigenvalues of AT A,
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Linear Algebra Background Examples in applications

Example: principal component analysis (PCA)

Given a data matrix A each column corresponds to a different experiment of the
same type in dimension m. Assume A has zero empirical mean.

PCA is an SVD transformation, rotating coordinates to align the transformed axes
with the directions of maximum variance.

So B=UTA=3XV" is better than A. Covariance matrix

C=AAT = UuxxTUT.

Instance of use: dimensionality reduction. Let U, consist of the first r columns
of U, r < n.
Represent the data by the smaller matrix B, = Ul A. Then B, = ©,.V,1.
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Linear Algebra Background Examples in applications

Instance: point cloud
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Linear Algebra Background Examples in applications

Instance: RBF interpolation

(a) consolidated point cloud (b) RBF surface

F1GURE : RBF interpolation of an upsampling of a consolidated point cloud.
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Normals to cloud points

e For a fixed p in the cloud, define a neighborhood NV, of nearby points.
e Calculate the mean of neighbors to find the centroid p.
e Then the 3 x n, data matrix A has p;, — p for its ith column.

e Find the three singular vectors of A (i.e. the eigenvectors of the covariance
matrix C).

e The first two principal vectors span the tangent plane at p. The third is the
unsigned normal direction.
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ear Algebra Background Examples in applications

Point cloud with normals
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i S =0
Example: data fitting

Given measurements, or observations

(th [)1)7 <t27 bQ)a ceey (t’mv b’m) = {(fh bl):”zh

want to fit a function

o(t) = Z z;0;(1),

o (), da(t),..., b, (L) are known linearly independent basis functions
e 11,...,x, are coefficients to be determined s.t.
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Linear Algebra Background Examples in applications

Data fitting cont.

Define a;; = ¢;(t;). Want Ax = b, where

ai1 ai2 - Qln T

a1 a2t (2q T2
A= )

am1 Am?2 Amn T

Assume that A has full column rank n.

Q If m = n get interpolation problem.

Q If m > n want, e.g., miny [|b — Ax|[2. Get least squares data fitting.
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Linear Algebra Background Examples in applications

Example: differential equation

Given g(t), 0 <t <1, recover v(t) satisfying —v" = g.
Require two boundary conditions

Q v(0)=v(l)=0,o0r
Q@ v(0)=0,9'(1) =0.
Discretize on mesh t; = ih, i =0,1,..., N:

_ Vig1 — 20 + Ui
72

With BC v(0) = v(1) = 0, require vg = vy = 0.

=g(t;), i=1,2,...,N—1.
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Linear Algebra Background Examples in applications

Linear system for differential equation

Need to solve Av = g, where

1 g(ty) 2 -1
V2 (](ILQ) -1 2 —1
1
V= : , 8= : ) A = ﬁ . . .
UN -2 g(tN,Q) —1 2
UN_1 g(tn—1) -1

Thus, A is tridiagonal.
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