September 9, 2014

Chapter 4: Linear Algebra Background

Uri M. Ascher and Chen Greif Department of Computer Science The University of British Columbia *{*ascher,greif*}*@cs.ubc.ca

Slides for the book **A First Course in Numerical Methods** (published by SIAM, 2011) http://bookstore.siam.org/cs07/

Goals of this chapter

- *•* To provide common background (no numerical algorithms) in linear algebra, necessary for developing numerical algorithms elsewhere;
- *•* to collect several concepts and definitions for easy referencing;
- *•* to ensure that those who have the necessary background can easily skip this chapter.

Linear Algebra Background Outline

Outline

- *•* Basic concepts: linear systems and eigenvalue problems
- *•* Vector and matrix norms
- *•* Symmetric positive definite and orthogonal matrices
- *•* Singular value decomposition

Linear Algebra Background Basic Concepts

Basic concepts: linear system of equations

• Find $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ *x*2) which satisfies $a_{11}x_1 + a_{12}x_2 = b_1$ $a_{21}x_1 + a_{22}x_2 = b_2$ or A **x** = **b** with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

- *•* Unique solution **iff** lines are not parallel.
- *•* In general, for a square *n × n* system there is a unique solution if one of the following equivalent statements hold:
	- *• A* is nonsingular;
	- det $(A) \neq 0$;
	- *A* has linearly independent columns or rows;
	- there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
	- $\text{range}(A) = \mathbb{R}^n$;
	- $null(A) = \{0\}$.

Linear Algebra Background Basic Concepts

• A scalar *λ* and a vector **x** are an eigenvalue-eigenvector pair (or eigenpair) if

 A **x** = $λ$ **x***.*

- *•* For a *diagonalizable n × n* real matrix *A* there are *n* (generally $\textsf{complex-valued}\textsf{)}$ eigenpairs $(\lambda_j, \mathbf{x}_j)$, with $X = \begin{bmatrix} \mathbf{x}_1, \dots, \mathbf{x}_n \end{bmatrix}$ nonsingular, and *X−*¹*AX* is a diagonal matrix with the eigenvalues on the main diagonal.
- *•* **Similarity transformation:** Given a nonsingular matrix *S*, the matrix *S [−]*¹*AS* has the same eigenvalues as *A*. (Exercise: what about the eigenvectors?)

Outline

- *•* Basic concepts: linear systems and eigenvalue problems
- *•* Vector and matrix norms
- *•* Symmetric positive definite and orthogonal matrices
- *•* Singular value decomposition

Vector norms

A <mark>vector norm</mark> is a function "∥ · ∥" from \mathbb{R}^n to \mathbb{R} that satisfies:

¹. *∥***x***∥ ≥* 0; *∥***x***∥* = 0 iff **x** = **0**,

2. $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}|| \quad \forall \alpha \in \mathbb{R},$

3 $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$

This generalizes absolute value or magnitude of a scalar.

Famous vector norms

*• ℓ*2*-norm*

$$
\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.
$$

• ℓ∞-norm

$$
\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|.
$$

*• ℓ*1*-norm*

$$
\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.
$$

Example

• Problem: Find the distance between

$$
\mathbf{x} = \begin{pmatrix} 11 \\ 12 \\ 13 \end{pmatrix} \text{ and } \mathbf{y} = \begin{pmatrix} 12 \\ 14 \\ 16 \end{pmatrix}.
$$

• Solution: let

$$
\mathbf{z} = \mathbf{y} - \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},
$$

and find *∥***z***∥*.

• Calculate

*∥***z***∥*¹ = 1 + 2 + 3 = 6*, ∥***z***∥*² = *√* $1 + 4 + 9 \approx 3.7417$, *∥***z***∥[∞]* = 3*.*

Matrix norms

Induced matrix norm of $m \times n$ matrix \vec{A} for a given vector norm:

$$
||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||.
$$

Then consistency properties hold,

$$
||AB|| \le ||A|| ||B||, \quad ||Ax|| \le ||A|| ||\mathbf{x}||,
$$

in addition to the previously stated three norm properties.

Famous matrix norms

*• ℓ*2*-norm*

$$
||A||_2 = \sqrt{\rho(A^T A)},
$$

where *ρ* is **spectral radius**

$$
\rho(B) = \max\{|\lambda|; \lambda \text{ is an eigenvalue of } B\}.
$$

• ℓ∞-norm

$$
||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.
$$

*• ℓ*1*-norm*

$$
||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.
$$

Linear Algebra Background Special Matrix Classes

Outline

- *•* Basic concepts: linear systems and eigenvalue problems
- *•* Vector and matrix norms
- *•* Symmetric positive definite and orthogonal matrices
- *•* Singular value decomposition

Linear Algebra Background Special Matrix Classes

Symmetric positive definite matrices

Extend notion of positive scalar to matrices:

 $A = A^T$, $\mathbf{x}^T A \mathbf{x} > 0$, all $\mathbf{x} \neq \mathbf{0}$.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive:

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0.$

Linear Algebra Background Special Matrix Classes

Orthogonal matrices

Orthogonal vectors

Two vectors **u** and **v** of the same length are orthogonal if

 $\mathbf{u}^T \mathbf{v} = 0.$

Orthonormal vectors: if *also* $||\mathbf{u}||_2 = ||\mathbf{v}||_2 = 1$.

Square matrix *Q* is **orthogonal** if its columns are pairwise orthonormal, i.e.,

 $Q^T Q = I$. Hence also $Q^{-1} = Q^T$.

Important property: for any orthogonal matrix *Q* and vector **x**

 $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2.$

Hence

 $||Q||_2 = ||Q^{-1}||_2 = 1.$

Linear Algebra Background Singular Value Decomposition (SVD)

Outline

- *•* Basic concepts: linear systems and eigenvalue problems
- *•* Vector and matrix norms
- *•* Symmetric positive definite and orthogonal matrices
- *•* Singular value decomposition

Linear Algebra Background Singular Value Decomposition (SVD)

Let *A* be real $m \times n$ (rectangular in general). Then there are orthogonal matrices *U, V* such that

$$
A = U\Sigma V^T,
$$

where

$$
\Sigma = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}, \quad S = \text{diag}\{\sigma_1, \ldots, \sigma_r\},\
$$

with the **singular values** $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$, $\sigma_{r+1} = \cdots = \sigma_n = 0$.

Connection to eigenvalues: $\sigma_i = \sqrt{\lambda_i}$, where λ_i are eigenvalues of A^TA .

Example: principal component analysis (PCA)

Given a data matrix *A* each column corresponds to a different experiment of the same type in dimension *m*. Assume *A* has zero empirical mean. PCA is an SVD transformation, rotating coordinates to align the transformed axes with the directions of maximum variance.

So $B = U^T A = \Sigma V^T$ is better than A . Covariance matrix

 $C = AA^T = U\Sigma\Sigma^T U^T$.

Instance of use: **dimensionality reduction**. Let U_r consist of the first r columns of $U, r < n$.

Represent the data by the smaller matrix $B_r = U_r^T A$. Then $B_r = \Sigma_r V_r^T$.

Linear Algebra Background Examples in applications Instance: point cloud

Instance: RBF interpolation

FIGURE : RBF interpolation of an upsampling of a consolidated point cloud.

Normals to cloud points

- *•* For a fixed **p** in the cloud, define a neighborhood *N^p* of nearby points.
- Calculate the mean of neighbors to find the centroid \bar{p} .
- Then the $3 \times n_p$ data matrix *A* has $\mathbf{p}_{i_p} \bar{\mathbf{p}}$ for its *i*th column.
- *•* Find the three singular vectors of *A* (i.e. the eigenvectors of the covariance matrix *C*).
- *•* The first two principal vectors span the **tangent plane** at **p**. The third is the unsigned **normal direction**.

Point cloud with normals

Linear Algebra Background Examples in applications Example: data fitting

Given measurements, or observations

$$
(t_1,b_1), (t_2,b_2), \ldots, (t_m,b_m) = \{(t_i,b_i)\}_{i=1}^m,
$$

want to fit a function

$$
v(t) = \sum_{j=1}^{n} x_j \phi_j(t),
$$

- **•** $\phi_1(t), \phi_2(t), \ldots, \phi_n(t)$ are known linearly independent **basis functions**
- x_1, \ldots, x_n are **coefficients** to be determined s.t.

$$
v(t_i) = b_i, \quad i = 1, 2, \ldots, m.
$$

Linear Algebra Background Examples in applications Data fitting cont.

Define $a_{ij} = \phi_j(t_i)$. Want $A\mathbf{x} = \mathbf{b}$, where

$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.
$$

Assume that *A* has full column rank *n*.

- **1** If $m = n$ get **interpolation problem**.
- **2**. If *m > n* want, e.g., min**^x** *∥***b** *− A***x***∥*2. Get **least squares data fitting**.

Example: differential equation

Given $g(t)$, $0 \le t \le 1$, recover $v(t)$ satisfying $-v'' = g$. Require two boundary conditions

$$
v(0) = v(1) = 0, \text{ or}
$$

2. $v(0) = 0$, $v'(1) = 0$.

Discretize on mesh $t_i = ih, i = 0, 1, ..., N$:

$$
-\frac{v_{i+1}-2v_i+v_{i-1}}{h^2}=g(t_i), \quad i=1,2,\ldots,N-1.
$$

With BC $v(0) = v(1) = 0$, require $v_0 = v_N = 0$.

Linear system for differential equation

Need to solve A **v** = **g**, where

$$
\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{N-2} \\ v_{N-1} \end{pmatrix}, \ \mathbf{g} = \begin{pmatrix} g(t_1) \\ g(t_2) \\ \vdots \\ g(t_{N-2}) \\ g(t_{N-1}) \end{pmatrix}, \ A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.
$$

Thus, *A* is **tridiagonal**.