September 9, 2014

Chapter 4: Linear Algebra Background

Uri M. Ascher and Chen Greif Department of Computer Science The University of British Columbia {ascher,greif}@cs.ubc.ca

Slides for the book **A First Course in Numerical Methods** (published by SIAM, 2011) http://bookstore.siam.org/cs07/

Goals of this chapter

- To provide common background (no numerical algorithms) in linear algebra, necessary for developing numerical algorithms elsewhere;
- to collect several concepts and definitions for easy referencing;
- to ensure that those who have the necessary background can easily skip this chapter.

Outline

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

Basic concepts: linear system of equations

• Find
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 which satisfies
 $a_{11}x_1 + a_{12}x_2 = b_1,$
 $a_{21}x_1 + a_{22}x_2 = b_2,$
or $A\mathbf{x} = \mathbf{b}$ with $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

- Unique solution iff lines are not parallel.
- In general, for a square $n \times n$ system there is a unique solution if one of the following equivalent statements hold:
 - A is nonsingular;
 - $det(A) \neq 0$;
 - A has linearly independent columns or rows;
 - there exists an inverse A^{-1} satisfying $AA^{-1} = I = A^{-1}A$;
 - range $(A) = \mathbb{R}^n$;
 - $\operatorname{null}(A) = \{0\}.$

Basic concepts: eigenvalue problems

• A scalar λ and a vector **x** are an eigenvalue-eigenvector pair (or eigenpair) if

 $A\mathbf{x} = \lambda \mathbf{x}.$

- For a diagonalizable $n \times n$ real matrix A there are n (generally complex-valued) eigenpairs $(\lambda_j, \mathbf{x}_j)$, with $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ nonsingular, and $X^{-1}AX$ is a diagonal matrix with the eigenvalues on the main diagonal.
- Similarity transformation: Given a nonsingular matrix S, the matrix $S^{-1}AS$ has the same eigenvalues as A. (Exercise: what about the eigenvectors?)

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

Vector norms

A vector norm is a function " $\|\cdot\|$ " from \mathbb{R}^n to \mathbb{R} that satisfies:

This generalizes absolute value or magnitude of a scalar.

Famous vector norms

• ℓ_2 -norm

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

• ℓ_{∞} -norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

• ℓ_1 -norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

Uri Ascher & Chen Greif (UBC Computer Science)

Example

• Problem: Find the distance between

$$\mathbf{x} = \begin{pmatrix} 11\\12\\13 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 12\\14\\16 \end{pmatrix}.$$

Solution: let

$$\mathbf{z} = \mathbf{y} - \mathbf{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix},$$

and find $\|\mathbf{z}\|$.

Calculate

$$\begin{aligned} \|\mathbf{z}\|_1 &= 1+2+3 = 6, \\ \|\mathbf{z}\|_2 &= \sqrt{1+4+9} \approx 3.7417, \\ \|\mathbf{z}\|_{\infty} &= 3. \end{aligned}$$

Matrix norms

Induced matrix norm of $m \times n$ matrix A for a given vector norm:

$$||A|| = \max_{\mathbf{x}\neq\mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||.$$

Then consistency properties hold,

 $||AB|| \le ||A|| ||B||, ||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||,$

in addition to the previously stated three norm properties.

Famous matrix norms

• ℓ_2 -norm

$$||A||_2 = \sqrt{\rho(A^T A)},$$

where ρ is spectral radius

 $\rho(B) = \max\{|\lambda|; \ \lambda \text{ is an eigenvalue of } B\}.$

ℓ_∞-norm

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

• ℓ_1 -norm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

Symmetric positive definite matrices

Extend notion of positive scalar to matrices:

 $A = A^T$, $\mathbf{x}^T A \mathbf{x} > 0$, all $\mathbf{x} \neq \mathbf{0}$.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive:

 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0.$

Orthogonal matrices

Orthogonal vectors

Two vectors ${\bf u}$ and ${\bf v}$ of the same length are orthogonal if

 $\mathbf{u}^T \mathbf{v} = 0.$

Orthonormal vectors: if also $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$.

Square matrix Q is orthogonal if its columns are pairwise orthonormal, i.e.,

$$Q^T Q = I$$
. Hence also $Q^{-1} = Q^T$.

Important property: for any orthogonal matrix Q and vector \mathbf{x}

 $\|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2.$

Hence

$$||Q||_2 = ||Q^{-1}||_2 = 1.$$

Outline

- Basic concepts: linear systems and eigenvalue problems
- Vector and matrix norms
- Symmetric positive definite and orthogonal matrices
- Singular value decomposition

Singular value decomposition

Let A be real $m \times n$ (rectangular in general). Then there are orthogonal matrices U, V such that

 $A = U\Sigma V^T,$

where

$$\Sigma = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}, \quad S = \operatorname{diag}\{\sigma_1, \dots, \sigma_r\},$$

with the singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$, $\sigma_{r+1} = \cdots = \sigma_n = 0$.

Connection to eigenvalues: $\sigma_i = \sqrt{\lambda_i}$, where λ_i are eigenvalues of $A^T A$.

Example: principal component analysis (PCA)

Given a data matrix A each column corresponds to a different experiment of the same type in dimension m. Assume A has zero empirical mean.

PCA is an SVD transformation, rotating coordinates to align the transformed axes with the directions of maximum variance.

So $B = U^T A = \Sigma V^T$ is better than A. Covariance matrix

 $C = AA^T = U\Sigma\Sigma^T U^T.$

Instance of use: dimensionality reduction. Let U_r consist of the first r columns of U, r < n. Represent the data by the smaller matrix $B_r = U_r^T A$. Then $B_r = \Sigma_r V_r^T$.

Instance: point cloud

Instance: RBF interpolation

FIGURE : RBF interpolation of an upsampling of a consolidated point cloud.

Linear Algebra Background Exar

Examples in applications

Normals to cloud points

- For a fixed **p** in the cloud, define a neighborhood \mathcal{N}_p of nearby points.
- Calculate the mean of neighbors to find the centroid $\bar{\mathbf{p}}$.
- Then the $3 \times n_p$ data matrix A has $\mathbf{p}_{i_p} \bar{\mathbf{p}}$ for its *i*th column.
- Find the three singular vectors of *A* (i.e. the eigenvectors of the covariance matrix *C*).
- The first two principal vectors span the **tangent plane** at **p**. The third is the unsigned **normal direction**.

Point cloud with normals

Example: data fitting

Given measurements, or observations

$$(t_1, b_1), (t_2, b_2), \dots, (t_m, b_m) = \{(t_i, b_i)\}_{i=1}^m,$$

want to fit a function

$$v(t) = \sum_{j=1}^{n} x_j \phi_j(t),$$

- $\phi_1(t), \phi_2(t), \dots, \phi_n(t)$ are known linearly independent basis functions
- x_1, \ldots, x_n are **coefficients** to be determined s.t.

 $v(t_i) = b_i, \quad i = 1, 2, \dots, m.$

Data fitting cont.

Define $a_{ij} = \phi_j(t_i)$. Want $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Assume that A has full column rank n.

- If m = n get interpolation problem.
- **2** If m > n want, e.g., $\min_{\mathbf{x}} \|\mathbf{b} A\mathbf{x}\|_2$. Get least squares data fitting.

Example: differential equation

Given g(t), $0 \le t \le 1$, recover v(t) satisfying -v'' = g. Require two boundary conditions

- v(0) = v(1) = 0, or
- 2 v(0) = 0, v'(1) = 0.

Discretize on mesh $t_i = ih$, $i = 0, 1, \ldots, N$:

$$-\frac{v_{i+1}-2v_i+v_{i-1}}{h^2} = g(t_i), \quad i = 1, 2, \dots, N-1.$$

With BC v(0) = v(1) = 0, require $v_0 = v_N = 0$.

Linear system for differential equation

Need to solve $A\mathbf{v} = \mathbf{g}$, where

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{N-2} \\ v_{N-1} \end{pmatrix}, \ \mathbf{g} = \begin{pmatrix} g(t_1) \\ g(t_2) \\ \vdots \\ g(t_{N-2}) \\ g(t_{N-1}) \end{pmatrix}, \ A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

Thus, A is tridiagonal.