
September 9, 2014

Chapter 4: Linear Algebra Background

Uri M. Ascher and Chen Greif
Department of Computer Science
The University of British Columbia

{ascher,greif}@cs.ubc.ca

Slides for the book
A First Course in Numerical Methods (published by SIAM, 2011)

http://bookstore.siam.org/cs07/



Linear Algebra Background Goals

Goals of this chapter

• To provide common background (no numerical algorithms) in linear algebra,
necessary for developing numerical algorithms elsewhere;

• to collect several concepts and definitions for easy referencing;

• to ensure that those who have the necessary background can easily skip this
chapter.
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Linear Algebra Background Outline

Outline

• Basic concepts: linear systems and eigenvalue problems

• Vector and matrix norms

• Symmetric positive definite and orthogonal matrices

• Singular value decomposition
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Linear Algebra Background Basic Concepts

Basic concepts: linear system of equations

• Find x =

(
x1

x2

)
which satisfies

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2,

or Ax = b with A =

(
a11 a12
a21 a22

)
.

• Unique solution iff lines are not parallel.

• In general, for a square n× n system there is a unique solution if one of the
following equivalent statements hold:

• A is nonsingular;
• det(A) ̸= 0;
• A has linearly independent columns or rows;
• there exists an inverse A−1 satisfying AA−1 = I = A−1A;
• range(A) = Rn;
• null(A) = {0}.
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Linear Algebra Background Basic Concepts

Basic concepts: eigenvalue problems

• A scalar λ and a vector x are an eigenvalue-eigenvector pair (or eigenpair) if

Ax = λx.

• For a diagonalizable n× n real matrix A there are n (generally
complex-valued) eigenpairs (λj ,xj), with X =

[
x1, . . . ,xn

]
nonsingular, and

X−1AX is a diagonal matrix with the eigenvalues on the main diagonal.

• Similarity transformation: Given a nonsingular matrix S, the matrix S−1AS
has the same eigenvalues as A. (Exercise: what about the eigenvectors?)
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Linear Algebra Background Norms

Outline

• Basic concepts: linear systems and eigenvalue problems

• Vector and matrix norms

• Symmetric positive definite and orthogonal matrices

• Singular value decomposition
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Linear Algebra Background Norms

Vector norms

A vector norm is a function “∥ · ∥” from Rn to R that satisfies:
...1 ∥x∥ ≥ 0; ∥x∥ = 0 iff x = 0,
...2 ∥αx∥ = |α|∥x∥ ∀ α ∈ R,
...3 ∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀ x,y ∈ Rn.

This generalizes absolute value or magnitude of a scalar.
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Linear Algebra Background Norms

Famous vector norms

• ℓ2-norm

∥x∥2 =
√
xTx =

(
n∑

i=1

x2
i

)1/2

.

• ℓ∞-norm

∥x∥∞ = max
1≤i≤n

|xi|.

• ℓ1-norm

∥x∥1 =
n∑

i=1

|xi|.
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Linear Algebra Background Norms

Example

• Problem: Find the distance between

x =

11
12
13

 and y =

12
14
16

 .

• Solution: let

z = y − x =

1
2
3

 ,

and find ∥z∥.
• Calculate

∥z∥1 = 1 + 2 + 3 = 6,

∥z∥2 =
√
1 + 4 + 9 ≈ 3.7417,

∥z∥∞ = 3.
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Linear Algebra Background Norms

Matrix norms

Induced matrix norm of m× n matrix A for a given vector norm:

∥A∥ = max
x̸=0

∥Ax∥
∥x∥

= max
∥x∥=1

∥Ax∥.

Then consistency properties hold,

∥AB∥ ≤ ∥A∥∥B∥, ∥Ax∥ ≤ ∥A∥∥x∥,

in addition to the previously stated three norm properties.

Uri Ascher & Chen Greif (UBC Computer Science) A First Course in Numerical Methods September 9, 2014 9 / 24



Linear Algebra Background Norms

Famous matrix norms

• ℓ2-norm

∥A∥2 =
√
ρ(ATA),

where ρ is spectral radius

ρ(B) = max{|λ|; λ is an eigenvalue of B}.

• ℓ∞-norm

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |.

• ℓ1-norm

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij |.
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Linear Algebra Background Special Matrix Classes

Outline

• Basic concepts: linear systems and eigenvalue problems

• Vector and matrix norms

• Symmetric positive definite and orthogonal matrices

• Singular value decomposition
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Linear Algebra Background Special Matrix Classes

Symmetric positive definite matrices

Extend notion of positive scalar to matrices:

A = AT , xTAx > 0, all x ̸= 0.

A symmetric matrix is positive definite if and only if all its eigenvalues are positive:

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.
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Linear Algebra Background Special Matrix Classes

Orthogonal matrices

Orthogonal vectors
Two vectors u and v of the same length are orthogonal if

uTv = 0.

Orthonormal vectors: if also ∥u∥2 = ∥v∥2 = 1.

Square matrix Q is orthogonal if its columns are pairwise orthonormal, i.e.,

QTQ = I. Hence also Q−1 = QT .

Important property: for any orthogonal matrix Q and vector x

∥Qx∥2 = ∥x∥2.

Hence

∥Q∥2 = ∥Q−1∥2 = 1.
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Linear Algebra Background Singular Value Decomposition (SVD)

Outline

• Basic concepts: linear systems and eigenvalue problems

• Vector and matrix norms

• Symmetric positive definite and orthogonal matrices

• Singular value decomposition
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Linear Algebra Background Singular Value Decomposition (SVD)

Singular value decomposition

Let A be real m× n (rectangular in general). Then there are orthogonal matrices
U, V such that

A = UΣV T ,

where

Σ =

(
S 0
0 0

)
, S = diag{σ1, . . . , σr},

with the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σr+1 = · · · = σn = 0.

Connection to eigenvalues: σi =
√
λi, where λi are eigenvalues of ATA.
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Linear Algebra Background Examples in applications

Example: principal component analysis (PCA)

Given a data matrix A each column corresponds to a different experiment of the
same type in dimension m. Assume A has zero empirical mean.
PCA is an SVD transformation, rotating coordinates to align the transformed axes
with the directions of maximum variance.
So B = UTA = ΣV T is better than A. Covariance matrix

C = AAT = UΣΣTUT .

Instance of use: dimensionality reduction. Let Ur consist of the first r columns
of U , r < n.
Represent the data by the smaller matrix Br = UT

r A. Then Br = ΣrV
T
r .
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Linear Algebra Background Examples in applications

Instance: point cloud
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Linear Algebra Background Examples in applications

Instance: RBF interpolation

(a) consolidated point cloud (b) RBF surface

Figure : RBF interpolation of an upsampling of a consolidated point cloud.
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Linear Algebra Background Examples in applications

Normals to cloud points

• For a fixed p in the cloud, define a neighborhood Np of nearby points.

• Calculate the mean of neighbors to find the centroid p̄.

• Then the 3× np data matrix A has pip − p̄ for its ith column.

• Find the three singular vectors of A (i.e. the eigenvectors of the covariance
matrix C).

• The first two principal vectors span the tangent plane at p. The third is the
unsigned normal direction.
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Linear Algebra Background Examples in applications

Point cloud with normals
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Linear Algebra Background Examples in applications

Example: data fitting

Given measurements, or observations

(t1, b1), (t2, b2), . . . , (tm, bm) = {(ti, bi)}mi=1,

want to fit a function

v(t) =
n∑

j=1

xjϕj(t),

• ϕ1(t), ϕ2(t), . . . , ϕn(t) are known linearly independent basis functions

• x1, . . . , xn are coefficients to be determined s.t.

v(ti) = bi, i = 1, 2, . . . ,m.
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Linear Algebra Background Examples in applications

Data fitting cont.

Define aij = ϕj(ti). Want Ax = b, where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , x =


x1

x2

...
xn

 , b =


b1
b2
...
bm

 .

Assume that A has full column rank n.
...1 If m = n get interpolation problem.
...2 If m > n want, e.g., minx ∥b−Ax∥2. Get least squares data fitting.
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Linear Algebra Background Examples in applications

Example: differential equation

Given g(t), 0 ≤ t ≤ 1, recover v(t) satisfying −v′′ = g.
Require two boundary conditions

...1 v(0) = v(1) = 0, or

...2 v(0) = 0, v′(1) = 0.

Discretize on mesh ti = ih, i = 0, 1, . . . , N :

−vi+1 − 2vi + vi−1

h2
= g(ti), i = 1, 2, . . . , N − 1.

With BC v(0) = v(1) = 0, require v0 = vN = 0.
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Linear Algebra Background Examples in applications

Linear system for differential equation

Need to solve Av = g, where

v =


v1
v2
...

vN−2

vN−1

 , g =


g(t1)
g(t2)
...

g(tN−2)
g(tN−1)

 , A =
1

h2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

Thus, A is tridiagonal.
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