
Revealing Software Development Work Patterns with
PR-Issue Graph Topologies

CLEIDSON R. B. DE SOUZA, Universidade Federal do Pará, Brazil
EMILIE MA, The University of British Columbia, Canada
JESSE WONG, The University of British Columbia, Canada
DONGWOOK YOON, The University of British Columbia, Canada
IVAN BESCHASTNIKH, The University of British Columbia, Canada

How software developers work and collaborate, and how we can best support them is an important topic for
software engineering research. One issue for developers is a limited understanding of work that has been
done and is ongoing. Modern systems allow developers to create Issues and pull requests (PRs) to track and
structure work. However, developers lack a coherent view that brings together related Issues and PRs.

In this paper, we first report on a study of work practices of developers through Issues, PRs, and the links
that connect them. Specifically, we mine graphs where the Issues and PRs are nodes, and references (links)
between them are the edges. This graph-based approach provides a window into a set of collaborative software
engineering practices that have not been previously described. Based on a qualitative analysis of 56 GitHub
projects, we report on eight types of work practices alongside their respective PR/Issue topologies.

Next, inspired by our findings, we developed a tool called WorkflowsExplorer to help developers visualize
and study workflow types in their own projects. We evaluated WorkflowsExplorer with 6 developers and
report on findings from our interviews.

Overall, our work illustrates the value of embracing a topology-focused perspective to investigate collabo-
rative work practices in software development.

CCS Concepts: • Software and its engineering→ Collaboration in software development; • General
and reference→ Empirical studies.

Additional Key Words and Phrases: work practices, pull-based development, pull requests, issues, graphs

ACM Reference Format:
Cleidson R. B. de Souza, Emilie Ma, Jesse Wong, Dongwook Yoon, and Ivan Beschastnikh. 2024. Revealing
Software Development Work Patterns with PR-Issue Graph Topologies. In Companion Proceedings of the 32nd
ACM Symposium on the Foundations of Software Engineering (FSE ’24), July 15–19, 2024, Porto de Galinhas,
Brazil. ACM, New York, NY, USA, Article 106, 22 pages. https://doi.org/10.1145/3660813

1 INTRODUCTION
Pull-based development is an important paradigm for software development [13], that has been
adopted by sites like GitHub. Developers create Issues, or tickets, and bundle code commits into
Pull Requests (PRs) that can be reviewed and discussed before being merged. However, complex
development work spans multiple issues and PRs. And developers lack the tools to provide them
with a coherent view of related issues and PRs. Such a view would allow them to better understand
their software development processes and, consequently, make informed decisions about how
to change them. In this paper, we consider two questions: first, what are the underlying work

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
FSE 2024, July 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-XXXX-X/18/06.
https://doi.org/10.1145/3660813

1

HTTPS://ORCID.ORG/0000-0003-3240-3122
https://doi.org/10.1145/3660813
https://doi.org/10.1145/3660813

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

practices that involve multiple interlinked issues/PRs? And second, what is the best way to support
developers in investigating their issues/PR work practices?
Previous work considered Issues and PRs in isolation [13, 22]. For instance, by automatically

identifying duplicate Issues [4] and PRs [36]. However, Issues and PRs are coupled in practice:
Issues are frequently resolved with PRs, and PRs are associated with Issues. Researchers have also
studied connections (links)1 between PRs and Issues. In this case, Li and colleagues [18] described
why software developers create links, while Hirao et al. [16] show that linking information can
improve code review tools. However, previous work has a limited view of the PR-Issue ecosystem
because it mainly considers edges between just two nodes, when in reality, an Issue or a PR might
have several links [35]. In aggregate, inter-linked PRs and Issues create a PR-Issue graph. To the
best of our knowledge, we are the first to consider PR-Issue graphs and to design and evaluate a
tool to reveal these graphs to developers.

In this paper, we have two goals. First, we want to understand PR-Issue graphs and the software
development work practices they reveal. Second, we aim to develop a tool to help developers
understand PR-Issue graphs in their projects.
To achieve this, we first characterized PR-Issue graphs and conduct a qualitative study [7] of

PR-Issue graphs from 56 open-source GitHub projects; these projects were based on work by Chopra
et al. [6]. We used a qualitative approach because we needed to understand the reasons why the
edges (links) between two nodes (PRs and Issues) were created, and, more importantly, how larger
sets of nodes were inter-connected. Inspired by our findings, we then built WorkflowsExplorer, a
tool to reveal PR-Issue graphs to developers. We evaluated WorkflowsExplorer in interviews with 6
developers who have used the tool.
Contributions. Our paper makes the following three contributions:

★ We found that most of the links in our dataset are not the GitHub built-in fixes or duplicates
links. Across the links from all projects we studied, only 12.11% of the links are fixes (2.32%
for duplicates) links on average. This shows that most of the user-created links are not the
built-in ones. Based on our analysis of the links from a 64-component sample, we report nine
types of linking relationships (see Table 1), complementing previous work [18] with 3 new
linking types.

★ After analyzing the 64 components (not links), we identify eight workflow types that capture
distinct aspects of collaborative work in software development (see Figure 5). A workflow
type is an abstraction that we contribute to represent the identified software developers’ work
practices.We associate these workflow types with PR-Issue topologies. For each workflow type,
we provide a description, examples, variations (if they exist), and a topological representation.
Our analysis of the workflow types reveals collaborative work practices of articulation
work [34], optimization, complexity management, reuse and waste [31], with the first 3 ones
not being reported in previous studies.

★ We developedWorkflowsExplorer, a tool to help developers visualize and understand workflow
types in their projects or other projects. We interviewed six developers who have used
WorkflowsExplorer. They reported that our tool could help them make more informed
decisions about their development processes, training needs, and other aspects.

Next, we review relevant prior work.

1In the rest of this paper, we use edges and links interchangeably.

2

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

Fig. 1. Overview of our methodology to answer RQs 1-3.

2 RELATEDWORK
2.1 PR and Issue Comments and Links
Li and colleagues [18] describe an empirical study of the links between PRs and Issues in 16,584
GitHub projects. They manually coded a sample of the links and identified six types of linking
relationships. Using regex expressions, they automatically coded the rest of the links and combined
these links with information about the degree of the nodes to analyze the graph of all the projects
studied. Their results suggest that information about the graph topology could be helpful for
developers (e.g., to identify high-priority/core Issues within a project).
More recently, Chopra et al. [6] studied referential behavior in pull-based development by

studying 450 PRs and about 7,000 references in these PRs. They observed that developers often
create references to source code elements but also reference other developers, the version control
platform (branches, PRs, Issues, comments, etc), compilation and execution results (like errors and
warnings), and relevant associated project, client or third-party documentation. They also observed
that merged PRs frequently reference Issues, users, and tests.
The above work studies the relationships between pairs of software artifacts. By contrast, our

work focuses on the graph comprised of PRs and Issues, and the links between them.

2.2 Software Traceability
In the context of software traceability, Rath and colleagues [29] presented an approach that uses
temporal and structural relations to identify missing links between Issues, commits, and source
code. This is important because out of the six large projects they studied, “on average only 60% of
the commits are linked to issues.” This limits the traceability between artifacts in a project. In our
work, we take into account Issues and PRs (not commits or source code) and focus on existing links.

Nicholson et al. [26] is one of the few efforts to explore graph structures. They studied 66 open-
source projects and analyzed two important network properties: (i) the distribution of links showing
that Issues with higher degrees (i.e., hubs) are central to the project’s requirements; and, (ii) the
transitivity property of links to show that it is possible to predict a link type with 72% accuracy.

Nicholson’s work differs from our work in three ways. First, they focus only on Issues. Second,
their studied Issues are connected by a known set of linking relationships, which allows them to
leverage this information in their analysis. In contrast, we explore (i) both Issues and PRs, and (ii)

3

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

without knowing beforehand the types of links between them. We also (iii) use PR-Issue graphs to
infer the collaborative work that takes place in the context of interconnected PRs and Issues.

2.3 Code Reviews
A software engineering area related to our work focuses on the analysis of the comments in modern
code reviews. Some authors [2, 11] have studied these comments in isolation. However, more recent
work [16, 35] considers the links between code reviews. For instance, Hirao et al. [16] analyzed 6
open-source software communities and concluded that links between reviews vary from 3% to 25%
across projects. Furthermore, they found five types of linking relationships. For each of these, they
created a subgraph representing files, comments, patches, codebase and the dependencies between
these items. They then used five different ML techniques to classify the linking relationships
between code reviews. They conclude that these links can be used to improve code review tools,
for instance, by suggesting better reviewers.
Wang et al. [35] studied the correlation between review time and number of links in two large

projects. Their results indicate that the more internal links, the longer the review time, even when
controlling for factors that impact review time like # of added/deleted lines of code, patch size, #
of files changed, # of comments, # of reviewers, etc. They also proposed a taxonomy of linking
relationships.

By contrast, our work is not concerned with code reviews, but focuses on comments in PRs and
Issues that contain links.
Finally, it is important to mention that some previous studies do use source code and version

control information in their analysis, such as work by Hirao et al. [16]. But, we note that empirical
studies that do not include this information are also important to carry out, as indicated by previous
work [6, 18, 26].

3 METHODOLOGY OVERVIEW
We define a PR-Issue graph as a graph in which Issues and PRs are nodes, and the links between
PRs/Issues are directed graph edges. For a GitHub project, a node is created for each PR and each
Issue. Links between PRs/Issues can be created in three ways in GitHub. First, when a developer
writes a comment on a PR or Issue and adds a link to another node. Second, when the link to
another PR or Issue is inserted by the developer through GitHub’s UI. Third, when the developer
uses specific syntax or keywords, GitHub interprets this as a command to create a link between
PRs/Issues2. Whenever a link to another PR or Issue is detected, we create a directed edge in the
PR-Issue graph.
The goal of our study is to (1) explore PR-Issue graphs to find out how they can be used to

improve our understanding of the collaborative work taking place during software development;
and, (2) use our findings to prototype a useful tool for developers that reveals work practices.
Specifically, address the following research questions:
• RQ1: What are the network characteristics of PR-Issue graphs?
• RQ2: What types of linking relationships exist in PR-Issue graphs?
• RQ3: What work practices do the PR-Issue graphs capture?
• RQ4: How do developers perceive PR-Issue graphs and the associated work practices?

Figure 1 overviews our methodology for RQs 1-3. The first part (detailed in Section 4.1), is focused
on identifying and characterizing PR-Issue graphs. In the second part (Section 5.1), we qualitatively
study a sample of PR-Issue components to identify the types of linking relationships in PR-Issue
2Here are the keywords adopted by GitHub: <https://docs.github.com/en/get-started/writing-on-github/working-with-
advanced-formatting/using-keywords-in-issues- and-pull-requests>

4

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

graphs. In the third part (Section 6.1), informed by these linking types, we qualitatively identify
and illustrate collaborative work practices associated with pull-based software development. We
address RQ4 in Section 7.
To answer RQs 1-3, we studied PR-Issue graphs from a sample of GitHub projects. Before

conducting our qualitative analysis, we first mined the repositories of 56 projects to recover node
(PRs and Issues) and edge (links) information to construct our sample of PR-Issue graphs. Answering
RQ4 required a different methodology, which we describe in Section 7.2.
We adopted a qualitative approach to understand the comments containing links between PRs

and Issues, the context in which these comments were created (e.g., other comments, authors, dates),
and more importantly, the other PR and Issues that compose the graph in which the comment
is embedded. Specifically, we adopted a reflexive thematic analysis approach [7]. A quantitative
approach was not suitable to answer these RQs because it was necessary to understand the context
(PRs, Issues, their comments, etc) in which the collaborative work took place to characterize the
different link types. And, as mentioned in the previous section, prior work [16, 18] has automated
the classification of links between two PRs and Issues, but we needed to classify a graph that spans
multiple PRs and Issues, which means these automated approaches would not work for us.
The lead investigator led the qualitative analysis, while other team members periodically re-

viewed the results to establish consensus and resolve disagreements. We held weekly meetings to
discuss preliminary results from the lead author, including quotes, codes, and themes and reach
a negotiated agreement as a group [12]. The other authors thoroughly reviewed and questioned
these intermediate results to identify gaps, misunderstandings, assumptions, and potential biases in
the data analysis. Based on this feedback, the lead author revisited the data and refined the results
accordingly. With this process, we aimed to minimize researcher bias by consistently verifying the
findings. As we will show in Section 5.2, our identified linking relationships closely resemble those
found by Li et al. [18], indicating that we effectively reduced potential biases.
More precisely, we used constant comparison during qualitative analysis [34]. This method

recommends making comparisons during each qualitative analysis stage of whatever unit of data is
being analyzed [5]. For instance, the lead author compared comments in different nodes to identify
link types (RQ2). In another example, he compared instances of sets of nodes and links to make
sure they describe the same workflow type (RQ3). Furthermore, we sampled the “items” used for
comparison to refine the results, that is, we adopted an approach similar to theoretical sampling [34].
Again, the other authors compared the partial results presented by the lead author, for instance,
by comparing whether the workflow types described similar or different work practices. As in any
qualitative study, this was a reflexive and iterative process [9].

4 RQ1: PR-ISSUE GRAPHS CHARACTERISTICS
The goal of this part of the study was to mine and characterize PR-Issue graphs. To do so, we
studied the PR-Issue graphs from 56 GitHub open-source projects (Figure 1). We downloaded and
studied a subset of the GitHub repositories studied by Chopra et al. [6]. These authors studied
references in PR discussions. For this, they selected a representative sample of 75 projects from a
population of 7,000 projects. To create this sample, they used Nagappan et al.’s [24] algorithm that
generates a diverse sample of projects by accounting for dimensions like number of developers,
main programming language, project domain, recent activity, project age, and others3. In fact, these
75 projects had 40.8% of the total variance. From these 75 repositories, we excluded those that have

3More specifically, Nagappan et al.’s [24] introduced the notion of coverage, defined as “the percentage of projects in a
population that are similar to a given sample.” This is done by comparing projects along various dimensions. In addition,
they provided the implementation of a greedy algorithm for computing the concept of coverage.

5

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

Fig. 2. Degree distribution across nodes in all stud-
ied GitHub projects. 𝛼 is the power-law exponent,
and KS is the Kolmogorov-Smirnov statistic.

Fig. 3. Log distribution of nodes versus edges. Each
point is a project; colour indicates the number of
edges in a project.

been deprecated or archived. We also excluded projects with fewer than a sum total of 100 PRs and
Issues. We did this to remove small PR-Issue graphs. This resulted in 56 projects.

4.1 Extracting PR-Issue Graphs
GitHub allows a user to specify two types of links. The first one is the type fixes or closes, as in
this PR fixes a bug specified in a particular Issue. These are implemented in GitHub using a set
of keywords. This relationship is considered prototypical on GitHub, as it is the main type that is
supported by GitHub’s linking feature. The second type of linking is duplicates, which indicates
that an Issue is a duplicate.

We created a crawler to extract these link types and other information from the 56 projects. This
crawler, using GitHub APIs, extracts PRs and Issues and detects and extracts the links found in
the comments of the PRs and Issues. The crawled data is used to construct our PR-Issue graphs,
mapping PRs and Issues to nodes and the links between them to edges.

Our crawler mapped links as being fixes or duplicates, if they were specified as such. Any links
that are not any of those types were classified as other edges. If a particular node did not contain
any edges, this produced an isolated node. The final PR-Issue graph was be the aggregation of all
edges and nodes (isolated or not).
As we will discuss later in Section 5.1, each resulting PR-Issue graph is composed of a set of

connected components [32]. In total, we studied 56 PR-Issue graphs (projects) that contained 64,581
components. These graphs were imported into Neo4J4, a graph database, for later topological
querying with Neo4J’s query language, Cypher. We also imported metadata associated with each
node, including type (pull_request or issue); status, (open, closed, or merged for pull requests);
repository; number (the node identifier, the same as its GitHub ID); and the node’s creation, update,
and close timestamps. As mentioned, for each link, we imported its link_type, based on GitHub’s
explicit links. We also tracked the user who created the node or link.

4.2 Characteristics of PR-Issue Graphs
The 56 projects we studied used different programming languages, have different goals, vary in
size, etc. As part of our analysis, we wanted to find out if the PR-Issue graphs from each project
have similarities. Therefore, following Nicholson’s approach [26], our first investigation focused on

4https://neo4j.com

6

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

Fig. 4. Power law exponent distribution across all components. The boxplot shows the 25/75th percentiles,
with whiskers extending to up to 1.5 IQR.

the degree distribution of the nodes5. Figure 2 shows that this degree distribution in the projects
follows a power-law distribution with an exponent of 2.34. In other words, as the degree of a node
increases, the proportion of nodes with that degree decreases exponentially.
Figure 4 shows the power law exponent across the projects we studied. All projects have an

exponent larger than two, and one outlier project has an exponent of 3.1. This suggests that across
all the projects we consider, a small number of nodes is connected to several other nodes.

A common explanation for power-law degree distributions is the concept of a scale-free network
that is generated by preferential attachment: nodes with higher degrees (more edges) receive even
more edges than those who have smaller degrees [3]. Intuitively, this means that some Issues or
PRs (e.g., those that are more complex, critical, or controversial) will accumulate more links [26].
Therefore, these nodes will be part of components with a larger number of nodes since more nodes
imply more edges, as shown in Figure 3. This figure shows how the projects we studied vary along
two dimensions: the number of nodes and the number of edges. It is interesting to note that the
project with the most nodes and edges (dubbo at top right) uses a bot that creates an Issue with links
to all merged PRs every week. We will discuss the impact of this bot in our results in Section 6.9.

5 RQ2: LINKS IN PR-ISSUE GRAPHS
The links between PRs and Issues are an important artifact which gives rise to PR-Issue graphs. We
study these links qualitatively by considering a sample of 64 components (see Figure 1). We start
by detailing our sampling and qualitative approaches.

5.1 Analysing Links in PR-Issue Graphs
Figures 4 and 3 show that the 56 projects studied vary along several dimensions. So, to properly
answer RQ2, we need a sample of components from these projects with different features: sizes,
topologies, sparseness, and Github activity. For this, we adopted Nagappan et al. [24] sampling
algorithm again. As mentioned in Section 4.1, this prior work provides an algorithm that aims to
compute a sample that best covers a population according to different dimensions. We use this
algorithm not to identify projects since we had already done this (see Section 4.1). Instead, we use
this algorithm to select components from these projects. We took into account: the number of nodes
(PRs and Issues) in the component, the number of GitHub comments from all of the nodes within a
component, the number of GitHub users responsible for creating the nodes within the component,
edge density of a component [32], and the diameter of a component [32].

The result of the algorithm was a final sample containing 64 components. For each component,
we listed all links between each pair of nodes. This resulted in 322 unique links. The lead investigator
qualitatively coded [7] all the links into different types of linking relationships and double-checked

5While the degree of a node describes the number of edges this node has, the degree distribution describes the frequency of
each degree value.

7

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

all fixes and duplicates links. The coding process was conducted by component: all the links from
one component were coded before moving to the next component. To identify the link type, the
lead investigator read the comments associated with the PRs and Issues of that component to
understand the broader context of the links. The types of nodes (PRs or Issues) being connected by
the link were also taken into account during this analysis.

The coding process occurred in several rounds and whenever a new type of linking relationship
was created, all previous links were re-analyzed for this new type. Similarly, old types of linking
relationships were merged to create new ones, and when this happened, all instances of the old type
were double-checked to ensure the new linking type was appropriate. As mentioned in Section 3,
we took several actions to minimize researcher bias. In the end, we identified a set of nine types of
linking relationships described in the next section.

5.2 Types of Links in PR-Issue Graphs
After coding our sample of components from PR-Issue graphs, we identified nine types of links.
Table 1 lists these types and also presents quotes of comments from PRs or Issues to illustrate each
relationship type. As we will discuss in Section 6.1, identifying types of linking relationships helped
us to identify workflow types.

Table 1. List of types of relationships

Relationship
type

Connected
nodes

Description Example comment Prevalence:
N, %

Fixes / Is
fixed by

Issue ⇔
PRs

The PR provides a solution that closes the
Issue, or the Issue is closed by the solution
provided by the PR.

“This PR fixes #194” 115, 35.7%

Is contextu-
alized by

Nodes ⇒
Nodes

The linked node provides information (e.g.,
an example, a limitation, additional infor-
mation, etc) that is useful to understand the
origin node.

“I found this comment from [username] from Nov
18, 2013 ’Make sure that you load the correct files.
Right now, you will need around 48 GB of RAM to
run the server on the planet-wide dataset.’ (#802)”

66, 20.5%

Is a dupli-
cate of

Issues ⇒
Issues

The origin Issue is a duplicate of the target
Issue.

“Same issue is detailed here, also with a gif of de-
sired result #385”

33, 10.2%

Improves /
Is improved
by

PRs ⇔
PRs

The target (origin) PR provides an imple-
mentation that replaces, extends, follows
up or is a better alternative than the origin
(target) PR.

“We added new alembic.ini config files & moved
around existing ones in #1292. This PR updates
wheel build logic to include the moved .ini files
in the wheel - otherwise running mlflow db up-
grade from a wheel built via python setup.py bdist-
wheelfails while trying to find the config file”

32, 9.9%

Is similar Issues ⇒
Issues or
PRs ⇒
PRs

The target Issue (PR) describes a problem
(solution) similar to the one described by
the origin Issue (PR).

“The symptoms appear to be similar to #3711 except
that they are now not caused by base-url.”

22, 6.8%

Is irrele-
vant

Nodes ⇒
Nodes

The content of the origin Node is irrelevant
given the linked Node.

“There is an old issue about this, with MySQL, but
it is closed and supposedly solved: #1397”

17, 5.3%

Impacts Nodes ⇒
Nodes

The linked Node is created or reopened be-
cause of something from the origin Node.

“Hello, I would like reopen issue #3537 because
with summernote 0.8.20 the same problem occurs
again.”

17, 5.3%

Uses Issues ⇒
Issues or
PRs ⇒
PRs

The origin Node tried to adopt or adopted
the same solution described in the linked
Node.

“Fix the Python version to avoid differences in be-
havior for users with conda2/conda3, mirroring
changes we made in #96”

12, 3.8%

Blocks PRs ⇒
PRs

The target PR requires the origin PR to
work.

“As discussed with [username], this change should
help unblock #2367”

8, 2.5%

In our sample, we observed that 35.7% of relationship types were fixes, which is expected since
this is the prototypical relationship in GitHub, indicating that a PR closes an Issue. The second
most common relationship type, Is contextualized by, with 20.5% of the studied links, describes
a scenario where the link points to a linked node that contains useful information to the origin
node. For instance, the link might point to a comment in a different Issue that provides information

8

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

about the configuration of the test environment. Given its broad nature, it is not surprising that
this relationship type was identified so often. In contrast, given the interdependent nature of
software artifacts [10], it is surprising to find such a low occurrence of both Block (2.5%) and Impacts
(5.3%) relationships because these link types capture dependency between software artifacts. The
frequency of Is a duplicate of (10.2%) and Is irrelevant (5.3%) relationships is also notable since these
reflect waste in software development [31]. Finally, the Improves, Is similar, and Uses relationships
together account for 20.5% (9.9+6.8+3.8) of the links, indicating a non-trivial amount of reuse.

The second column in Table 1 illustrates how the link types depend on the node types. Specifically,
the Is a duplicate of relationship was only observed between Issues, Improves and Blocks link types
were only between PRs, and Uses and Is similar relationships were observed either between PRs
or between Issues (but not between PRs and Issues). By contrast, the Fixes relationship was only
observed between different types of nodes. Finally, Is contextualized by, Is irrelevant and Impacts
relationships were observed between all types of nodes. The same second column indicates that
two types of relationships are undirected [32]: Fixes and Improves. In these types the origin or
target of the relationship is irrelevant. In all other link types, the linked node is clearly indicated
in the description; therefore, the direction of the relationship is relevant. For instance, in the Is a
duplicate of relationship, the origin Issue is the one that is the repetition of the target Issue.

Table 2 compares Li’s [18] classification and distribution of link types to our results. It shows that
the relationship types have a nearly identical frequency distribution (Blocks is an exception). We
also identified three additional relationship types: Is irrelevant, Impacts, and Uses, which suggests
that our classification allows us to identify more nuanced types of collaborative work.

Table 2. Comparison of link types and their frequencies between Li’s et al. [18] and our work. Link types are
ordered in decreasing frequency order of our work.

Li’s et al. [18] Frequency Our work Frequency ↓

Fixes 40.4% Fixes 35.7%
Reference 16.6% Is contextualized by 20.5%
Duplicates 14.6% Is a duplicate of 10.2%
Enhances 7% Improves 9.9%
Relevant 5.2% Is similar 6.8%
N/A 0% Is irrelevant 5.3%
N/A 0% Impacts 5.3%
N/A 0% Uses 3.8%

Dependent 6.5% Blocks 2.5%
Other 8.9% N/A 0%

6 RQ3: PR-ISSUE TOPOLOGIES ANDWORKFLOW TYPES
Now that we have considered the linking relationships, we are ready to consider PR-Issue topolo-
gies. We qualitatively analyzed PR-Issue components to understand the underlying collaborative
pull-based work practices (see Figure 1). We call these practices workflow types. A workflow type is
presented with a description, a set of examples that illustrate its variations (e.g., same vs. differ-
ent node authors, order in which nodes are created, etc), and a topological representation. This
topological representation includes the minimal set of PRs and Issues required to model the work
practice. Next, we further explain the methodology we adopted to identify the workflow types.

6.1 Identifying Workflow Types
As mentioned, we qualitatively analyzed all 64 PR-Issue components. We conducted our coding [7]
by considering one component at a time. The coded links, and graphical component topologies,
along with PR and Issue meta-data all informed our coding process. Specifically, the lead investigator

9

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

identified workflow types in rounds, discussed their results with the co-authors and successively
refined the types (see Figure 1). Once a workflow type was identified, the set of previously analyzed
components was inspected to verify the existence of other instances of a new type. Each new
workflow type was also mapped to a prototypical topology. For example, when we identified the
Decomposing Issue workflow type, we captured it using a closed Issue fixed by multiple merged PRs.
Using this topological description, we queried our PR-Issue graph database to find other instances
of this topology to find more potential examples of this workflow type. These instances were
qualitatively checked to find out whether they did or did not match our definition of the associated
workflow type. In summary, we used constant comparison [7] to support, contradict or expand
our definitions of workflow types and their topologies. To help find instances for comparison we
issued queries against the Cypher database.
During this process, when possible, we refined the definition of workflow types by including

either temporal or authorship constraints. These constraints helped us to further refine ourworkflow
type definitions. The final list of eight workflow types is presented in the following sections. For
each type, we give its definition, an example, variation(s) (when they exist), and the topology.
Figure 5 visualizes all the workflow type topologies. Our supplementary materials and source code6
include the definitions and Cypher queries used to identify instances of the topologies.

Fig. 5. Topologies of the workflow types we uncovered.

6.2 Extended PR
Definition: This workflow type describes a common aspect of collaborative work in which someone
extends previous work, for instance, to correct or improve it. In pull-based development, this means
a particular implementation (a merged PR) to a problem or feature (closed Issue) is expanded with
additional work (a new merged PR) while still addressing the initial Issue. This workflow topology
(Figure 5) has two merged PRs fixing the same Issue, and a link between these PRs.

6https://anonymous.4open.science/r/pr-issue-topology-project-D888

10

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

Example: This workflow appears in the jupyterhub project, where we identified PR 842, which
corrects PR 813, (which is the first solution to Issue 812). PR 842 is necessary because PR 813 did not
consider everything necessary to fix Issue 812. Indeed, while PR 813 was titled “Add error message
when generate config path does not exist”, PR 842 is titled “finish error message when generate-config
path does not exist” (our emphasis) and contains the following as its first comment: “finish up #813.
checks directory existence. exit with message on stderr if not found. closes #812”

Variation(s): An extended PR can also appear with nodes created by the same person. In project
mithril.js, the developer created PR 2265 as an improvement to their previous PR 2250, which was
in turn created to fix Issue 1986 (also with the same author). PR 2265 is a documentation update
with title “Remove a section that’s 1. buggy and 2. controversial” and contains the following in its
description: “See discussion in #2250 and #1986 for more details”. This Extended PR workflow instance
suggests that even when the nodes are created by a single author, they are still embedded in a
collaborative process, i.e., our workflow type can still be used to identify a pull-based work practice.

Interpretation of the Work Practice: An Extended PR can represent work that is either detrimental
or beneficial. In the examples, an Extended PR represents a form of waste due to rework, i.e.,
“revising work that should have been done correctly” [31]. However, we also identified Extended
PRs that were beneficial because the second PR improved the implementation in the first PR.

6.3 Consequence
Definition: This workflow type indicates how software artifacts influence each other [10], and by
doing so, capture how software developers coordinate their work [20]. In our context, this can be
translated into a situation where a solution (PR) to an Issue impacts the rest of the project in such a
way that a new Issue is created after the PR (see Consequent Issue in Figure 5).

Example: In project mlflow, a developer made a comment on Issue 4892 about a soon-to-be-
merged PR 4845: “will add the MLServer to the MLflow project, and I think if you’re looking for a fully
formed server for use in K8s, it probably makes sense to use that.” In other words, according to the
developers, PR 4845 can be used to implement the functionality required in Issue 4892. It should
be noted that in this case, this Issue remains open, i.e., the Consequent Issue workflow does not
require the Issue to be closed.
Variation(s): In the Consequence workflow, optionally, an additional merged PR might be nec-

essary to address the newly created Issue, i.e., the Consequent PR-Issue in Figure 5. This can be
observed in project ts-node. As requested by Issue 1229, PR 1232 implements the requirement:
“always throw ERR REQUIRE ESM when attempting to execute ESM as CJS, even when ESM loader
is not loaded.” However, Issue 1342’s author realizes that this PR creates a significant problem for
projects with a particular configuration. This problem is fixed by PR 1371. Interestingly, Issue 1229,
PR 1232, Issue 1342, and PR 1371 were all co-authored by the same developer. However, PR 1232
and Issue 1342 were created about three months apart, i.e., the actual consequence of the PR was
only perceived later.
Interpretation of the Work Practice: The two examples above illustrate another aspect of the

Consequence workflow type. The first example can be interpreted as having a positive impact on
the project, i.e., by fixing Issue 4892, PR 4895 allows new features to be discussed and potentially
implemented in mflow. However, this workflow can also have a negative impact: in the tsnode
example, PR 1232 created a problem that was later documented in Issue 1342.

6.4 Decomposed Issue
Definition: Complex tasks are frequently divided into simpler sub-tasks. In pull-based software
development, this means that the work required to close a single Issue may be distributed across
multiple PRs. This workflow models this work practice and is translated into a topology in which a

11

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

closed Issue is fixed by more than one merged PR (see Figure 5) Based on our observations, these
PRs are not linked to each other. As we will discuss later, this decomposition also facilitates the
process of reviewing PRs.
Example: An illustrative example of this workflow type can be found in project osrm-backend,

which is part of the OpenStreetMap routing engine. In this example, Issue 5067 was opened to
document the need to provide “routing over barrier=kerb which might be tagged e.g. on driveways”.
This Issue is closed by two different PRs that address different transportation modes: PR 5076
implements the routing solution for bicycle users, while PR 5077 focuses on walking users. Upon
inspection of the files changed in each PR, we noticed that they have identical changes but in
different files. These PRs have the same developer as their author.
Another instance of this workflow type is in project kustomize where Issue 2761 is fixed by

two different PRs: 2762 and 2769. PR 2762 includes the comment “Partially fixes #2761” (emphasis
added) suggesting that the work required to close the Issue is not complete. In this instance, the
Issue and the two PRs were created by the same developer over two days.

Interpretation of the Work Practice: This particular workflow type models a good and well-known
software engineering practice in which work is divided into smaller pieces to facilitate its execution,
improve documentation, decouple modules, etc.

6.5 Dependent PRs
Definition: The Dependent PR workflow describes a situation in which pull requests are connected
to other pull requests in a chain. Usually, the chained PRs have the same author, or a limited set of
authors. This workflow facilitates the merging process across different branches. At the high-level,
this workflow type is similar to the Decomposed Issue workflow in that it models a work practice
to break down tasks into smaller, more manageable, parts.

Example: The mlflow project contains an example of Dependent PRs. PR 5092 provided an initial
implementation for a required feature. After a sequence of comments and changes, the author of
this PR added a comment to this PR “Create an example code PR: #5186”, indicating that PR 5186
was created to provide an example to the change implemented in PR 5092. In short, the first PR
implemented a new feature, while the second PR implemented an example that uses this feature.
Variation(s): The work split into two or more PRs might not be decided by the author of the

first PR. For instance, in the tiny-dnn project, one author created PR 979 to implement a new
feature. In the comments on this PR, another developer (reviewer1) suggested that the PR should
be broken into two parts: @author [the changes] “LGTM. [looks good to me] However, you should
split the commit one for padding and the other to update the authors script.” Accordingly, PR 989 was
created as indicated in the subsequent comments: “@reviewer1 The script for updating authors was
removed. The AUTHORS file was reverted to the original version.Please consider merging this PR. (...)
@reviewer1 @reviewer2 Please also review PR #989."

Interpretation of the Work Practice: It is important to note that the Dependent PRs workflow is
also called Stacked, Incremental, or Chained PRs. It is regarded by many practitioners as a good
software development practice: a large change is broken into smaller, easier-to-review PRs that
depend on each other [1, 8]. Interestingly, to the best of our knowledge, no empirical studies have
explored this work practice.

6.6 Competing PRs
Definition: The Decomposed Issues and the Dependent PRs both capture divide-and-conquer
workflows. However, we also identified poor, or sub-optimal, work practices. For instance, when
developers are not aware of each other’s work and end up duplicating work [14]. We call one such
workflow Competing PRs; it describes a situation where there are alternative implementations (PRs)

12

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

for the same Issue. Since these PRs aim to close the same Issue, only one of them is merged. In
addition, these PRs are created by different developers. Its topology is presented in Figure 5.
Example: We observed this workflow type in project discord.py. In this case, Issue 1874 had

two competing PRs: 6453 and 6462, each one created by different developers. Interestingly, the PR
accepted (6462) was created second.
While refining this workflow type, we identified a potential instance of this workflow type in

mlflow where the competing PRs occurred more than a year apart. Upon inspection, we observed
that this was not not an instance of Competing PRs. We therefore decided to constrain the creation
date of the PRs so that they are all created within a week interval. Future work should explore how
to better identify the most appropriate time-frame according to specific project’s information.
Interpretation of the Work Practice: One way to view the Competing PRs workflow is that it

enables open source projects to select the best implementation [30]. However, recent research shows
that there are different reasons influencing whether contributions (PRs) are accepted [23, 28, 33].
We therefore consider Competing PRs as a form of waste in software development, potentially due
to poor communication [31].

6.7 Divergent PR
Definition: This workflow type captures a situation in which a developer merges a PR that closes
multiple Issues at the same time. Similarly to the Extended PR, this workflow type can be seen as
both negative light (when the Issues are unrelated), in or positive light (when the closed Issues are
related).

Example: PR 886 in project grpc-web is an example of the negative aspect of a Divergent PR. The
first comment for this PR contains the following: "Fixes #848: Fixed a bug where we can’t pass the
interceptors into the client constructor because of a type mismatch.

Fixes #868: Added MethodDescriptor to the exported types. Replace the deprecated MethodInfo with
MethodDescriptor.

Fixes #877: Fixed issue where UnaryResponse symbols are being optimized away.
And in general added some missing classes to the exported types as well."
Variation(s): It is important to mention that PR 886 and Issues 848, 868 and 877 were created by

different authors. However, this is not a restriction. In fact, PR 947 in project chai closes Issues 916
and 923 and all these PRs and Issues have the same author.
Interpretation of the Work Practice: This workflow type abstracts a somewhat common practice

in software development in which a single commit bundles multiple changes to the codebase.

6.8 Duplicate Issue Hub
Definition: This workflow type models a situation in which developers are not aware of each other’s
work [14]. This workflow appears when an Issue 𝐼 is connected to several other closed Issues using
the is a duplicate of link, i.e., Issue 𝐼 is a hub. An important temporal constraint is that this hub has
been created before the connected Issues. Since it is unlikely that developers will duplicate Issues
they created, another constrain is that the duplicated Issues are created by different authors.

Example: An instance of the Duplicate Issue Hub appears in project discord.py where Issue 5867
is connected to 11 (eleven) duplicated Issues! These duplicated Issues are 5889, 5942, 5951, 5955,
5971, 5978, 5980, 6030, 6041, 6047, and 6175. It should be noted that the first Issue, and accordingly
all others, were created because of a significant change in the project that was reported in the
project change log. And, all these duplicated Issues were reported even though the Issue hub was
already closed with a reference (link) to the changelog.
Ramifications for Work: We speculate that the Duplicate Issue Hub workflow is more typical in

large open-source projects in which different developers want to contribute and do so by reporting

13

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

Issues [25]. The problem, as we observed in the above example, is that these duplicated Issues end
up wasting work [31].

Interpretation of the Work Practice: This workflow type abstracts a situation where contributors
are not aware of previous work and end up reporting issues that already exist.

6.9 Integrating PR/Issue Hub
Definition: During the inspection of the components to identify workflow types (see Figure 1), a
topology we often observed was a node connected to several merged PRs by at least two different
developers, so that the node is a hub. This node was usually created after all of its connected PRs.
Upon inspection, we observed that this workflow occurred when developers documented, either
as an Issue or a PR, (i) a release, (ii) large changes in the codebase (e.g., a large refactoring), (iii)
reports of tests that failed in important branches or (iv) bots.

Example: One example can be found in project Polly, where PR 373 is titled “Merge development
branch for v5.6.0” and contains links to 10 different merged PRs. In the Apache project dubbo, we
observed a bot that provided a weekly report of the activities for the project. This report included
basic data about “Issues & PRs show the new/closed issues/pull requests count in the passed week.”
as well as a list of all PRs merged in the repository in a given week. One of the examples of the
Integrating PR/Issue hub for this project is Issue 2466, which lists 24 merged pull requests between
2019-5-31 and 2019-6-7. Finally, an example of an Integrating Issue Hub being used to report tests
failing in important branches includes Issue 3734 in project jupyterhub that is titled “Tests are failing
on main branch” and is connected to 7 merged PRs.

Upon querying our dataset for other instances of this workflow type, we even found an instance
of an Integrating with PR/Issue hub connecting 70 PRs in project mithril.js. The hub PR 2766 is
titled “Release v2.1.0”.
Interpretation of the Work Practice: In this workflow type a developer links to other developers’

contributions to help surface these contributions and to coordinate the development process.

6.10 Interactions between Workflow Types
So far, we presented individual workflow types. But, in practice, they occur concurrently. For
instance, Figure 6 shows a PR-Issue graph from project pundit with two different workflow types
that have common nodes.

Fig. 6. Two workflow types in a PR-Issue component.

PR 697, Issue 689, and Issue 666 indicate an
instance of the Divergent PR workflow. Mean-
while, Issue 666, PR 697, and Issue 723 are an
instance of the Consequent Issue workflow. In
this case, Issue 723 is created as a “side-effect” of
PR 694 while also allowing the Issue observed
in PR 697 to be documented and discussed in
Issue 723. In other words, Issue 723 was created
based on the discussion in PR 697.
Workflow types can also interact with each

other. For example, one can speculate whether
the Consequent Issue above happened because
of the Divergent PR, i.e., a PR aimed to close
multiple Issues but had its quality affected,
therefore leading to the creation of a new Issue.
We did not explore how often workflow types co-occur and the interactions between them.

14

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

7 RQ4: PERCEPTION AND UTILITY OF PR-ISSUE GRAPHS ANDWORKFLOW TYPES

Fig. 7. WorkflowsExplorer applied to the App-
vNext/Polly project.

In this section, we answer RQ4 to understand
the value of our approach for software devel-
opers. For this, we recruited and interviewed 6
developers (3 open-source and 3 closed-source)
who used the tool we developed.

7.1 Visualizing Workflow Types
To validate our workflow types and enable de-
velopers to explore these types in their own
projects, we built WorkflowsExplorer, a work-
flow type visualizer tool7. Figure 7 shows a par-
tial screenshot of this tool.
To use WorkflowsExplorer, a user selects a

project to inspect and then chooses an extracted
workflow type instance from a dropdown at
the top. The tool then displays the selected
workflow type instance in the context of its
PR-Issue graph. Edges in the workflow type are
highlighted in blue while nodes in the PR-Issue
graph are color-coded depending on the status of the PR/Issue. The user can investigate the graph
in an interactive spatial preview window. They can click on nodes to navigate to the corresponding
PR/Issue page on GitHub. Some of the graphs shown are "verified" meaning we have manually
checked them, while the "unverified" are the ones automatically identified using the topological
descriptions (see section 6.1) The tool also includes a brief description of the selected workflow
type (not shown in Figure 7)

7.2 Interview Methodology
Open-source developers. First, we used WorkflowsExplorer to create visualizations of the work-
flow types for each of the projects we studied. Then, we identified and emailed the core contributors
for each project a link to their respective WorkflowsExplorer instance, with an invitation to be
interviewed. Next, we selected three contributors to interview. They were compensated CAD $40.
These contributors were associated with projects Discord.py, JupyterHub, and gRPC-Web8. More
details about each project are in the Supplementary Material. In the last stage, we conducted the
interviews which we recorded using Google Meet, and later transcribed.
We prepared an interview guide specific to each selected project/interviewee. This guide was

divided into three parts. In the first part, we collected information about the developers’ development
experience; the second focused on the open-source project’s usage of PRs and Issues; while in the
third one, we used the tool with the interviewees to navigate the workflow types in their projects.
All interviewees reported they had already used WorkflowsExplorer before the interview. During
the interviews, we asked them, for instance, whether they agreed with the instances of the workflow
types in their projects, whether and how the information these types surface would be helpful to
them, and finally, about the limitations of the workflow types. Interviews lasted about 45 minutes.
We focused on four of our eight workflow types: Duplicate Issue Hub, Competing PRs, Extended
PR, and Divergent PR. We focused on these types because they capture inefficiencies in software

7https://anonymous.4open.science/w/pr-issue-topology-project-03EB
8Here are the WorkflowsExplorer links we emailed these participants: discord.py, jupyterhub, and gRPC-web.

15

https://anonymous.4open.science/w/pr-issue-topology-project-03EB
https://anonymous.4open.science/w/pr-issue-topology-project-03EB/repos/Rapptz-discord.py.html?match=competing_prs_1
https://anonymous.4open.science/w/pr-issue-topology-project-03EB/repos/jupyterhub-jupyterhub.html?match=duplicate_issue_hub_1
https://anonymous.4open.science/w/pr-issue-topology-project-03EB/repos/grpc-grpc-web.html?match=divergent_pr_1

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

development processes. As we will discuss later, the other four types reveal collaborative work
practices that are nonetheless important for software engineering practitioners and researchers.
Closed-source developers. We used convenience sampling to reach professional software devel-
opers in our social networks. These professionals should be using PRs and Issues and be willing to
be interviewed for about 45 minutes. We prepared and used an interview guide like the one for
open-source developers but with examples extracted from open-source projects.
We qualitatively analyzed the six transcribed interviews. We conducted our coding [7] one

interview at a time. Specifically, the lead investigator identified initial codes associated with parts
of the interview and successively refined the codes so that themes were identified. As a new code
was identified, the previous transcribed interviews were revisited to identify potential instances of
this code. Below, we discuss the themes that we identified in the interviews.

Both open-source and closed-source developers were experienced in software development. Their
professional experience ranged between 10 and 20 years. We refer to the open-source developers
as Open1, Open2, Open3; and, the closed-source developers as Closed1, Closed2, and Closed3.

7.3 Interview Results
7.3.1 Usefulness of WorkflowsExplorer. All interviewees noted that WorkflowsExplorer is useful
and that PR-Issue graphs and workflow types capture important information about the software
development process. We probed them further about when the information surfaced by Work-
flowsExplorer would be useful: all developers agreed that workflow types would help them make
better decisions about different aspects of the software development process. For instance, Open3
suggested that too many Duplicated Issue Hubs might mean a change in the process is warranted:
“if you . . . see a lot of duplication . . . a percentage of, you know, issues being duplicated, then something
needs to be done process-wise, you know? documentation and those things.”.
Meanwhile, Closed1 mentioned the following: “If someone had a lot of bugs there, [identified

with the Extended PR,] what’s going on? Do they need training to improve? Do they need someone
with them to do pair programming to help them improve?”. In other words, this quote describes a
potential scenario in which additional training might be necessary. Closed1 also mentioned that
the frequency of Extended PRs could be used, e.g. in a retrospective meeting, to understand the
amount of extra work taking place at the end of a sprint. This information could also be used to
find out the extent to which the estimations done at the beginning of the sprint were accurate. This
is something that is not currently done in his organization.

Finally, regarding the actual visualization of the workflow types and graphs, Closed2 and Closed1
argued that this information would be more interesting to those responsible for the business aspects
of development (e.g., a tech lead in their organizations), and not necessarily a “regular” developer.
Closed1 argued that such a visualization would be interesting to surface inter-dependencies between
requirements (user stories, issues, etc): “Non-functional stories, for example, that we create to structure
the project, and they end up generating an inter-dependence on each other. These need to enter; they
need to be developed first, because otherwise, I won’t have the project’s foundation to start . . . then the
interdependence of the PRs begins. This PR is related, this issue is related to another because this one
needs to come before it . . .And that’s precisely the point, GitHub doesn’t give you that.”

7.3.2 Frequency of Workflow Types. All six developers recognized the four workflow types we
presented. But, open-source and closed-source developers had different views on the frequency
of these workflows. Open-source developers indicated that these workflows happen often in their
projects. Closed-source developers had a different view: they agreed about the Divergent PR ("That’s
quite common, but we don’t recommend it, however, it does happen."), but disagreed about the other
workflow types. In closed-source development, Duplicate Issue Hubs do not happen with Issues, but

16

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

instead with other tools used in their projects (e.g., an incident management tool used by Closed1).
Closed2 also mentioned that this duplication happens at a team level. Most importantly, Competing
PRs do not happen because developers are allocated to work on Issues at the beginning of each
sprint by the Project Manager or Project Owner. Finally, Extended PRs might or might not occur,
depending on the business logic relevant to the PR.
Interestingly, the Decomposed Issue workflow type was not presented to Open3, but despite

that, he described it and mentioned that it does occur in his work. According to him, in a recent
sprint: “Besides needing an API here, we needed to build two more APIs to communicate with other
things, so the complexity is high. This happened with us now in project [X], so the complexity was
quite high, and three developers participated to finish everything in two weeks. So, the previous sprint
was quite complex.”

7.3.3 Perception of Workflow Types. All developers discussed whether the workflow types were
appropriate, i.e., whether, in an ideal situation, they should, or should not occur. Their answers had
a range. For instance, the Extended PR was regarded by Open3 as a good software development
practice (“small, incremental PRs . . . as opposed to . . . one giant PR, that emerged and closed an issue”),
while two other workflow types (Competing PRs and Duplicate Issue Hub) represented bad practices
(“it means multiple, multiple people tried fixing the same thing, which is not very ideal”). As mentioned,
Competing PRs do not even occur in closed-source projects. In particular, the Duplicate Issue Hub
was regarded as unavoidable in open-source projects (“they happen because anybody can open
issues. And . . . you know, as much as we try to emphasize ‘please search for your problem’, users are
always going to open issues, that’s unavoidable.”).

The Divergent PR was regarded as good practice if a certain condition was met: the PR must fix
a set of related Issues; otherwise, it is not a good practice. Finally, Decomposed Issue was described
as necessary given the need to deal with time constraints.
Even though we use the terms good and bad practice, Open3 emphasized that these value

judgements might be inappropriate: “I don’t think you can just blindly use the data saying, ‘oh, you
know, you’re not following the practice one way or the other’, right? because, the tool, I mean, the data
doesn’t really know. You know, what is the nature of the issue?”. In other words, a tool that extracts
and interprets workflow types is inherently limited because it lacks the important context in which
the workflow type occurred.

7.3.4 Impact of Bad Practices. As important as indicating that someworkflow types might represent
good or bad development practices was the interviewees’ insight that these bad practices have an
associated cost. For instance, a Duplicate Issue Hub costs project maintainers time: “if there are a
lot of duplicate issues, somehow, the project maintainers sort of act on it. . . . you need to figure out how
to reduce the number of duplications, because it costs everyone time, you know, the users.”[Open3].
This comment was echoed by closed-source developers. Meanwhile, Competing PRs have a cost on
the developer choosing which PR to accept, which includes their review time. According to Open1,
this decision is more subtle because one does not want to lose contributors: “you don’t want to hurt
other people’s feelings”.

As we already discussed, close-source developers indicated that Competing PRs are unlikely to
happen. When asked to explain this, Closed1 answered: “we’re allocating resources that could be
used for another task. We’re wasting time and money, literally looking from a capitalist perspective. So
when we put two people on one task, it’s wasteful. . . . So I think the correct word is this, it’s waste"

8 DISCUSSION
Software development is collaborative. And, as in any collaboration, different types of work are
necessary. For instance, developers need to communicate with each other by asking questions to

17

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

resolve misunderstandings, make decisions about what to (not) build, when and how to do the
work, etc.

Our qualitative analysis of PR-Issue graphs enabled us to identify different workflow types and
their associated collaborative work practices. For instance, the Consequence and the Integrating PR
Hub workflows are examples of work practices required to coordinate developers’ contributions.
However, these coordination practices are different. Consequence reflects the idea that coordination
is about the management of dependencies between tasks or artifacts [10, 20]. The Integrating PR
Hub workflow is about the work conducted by software developers to document a set of related PRs.
CSCW9 researchers often use the concept of articulation work to describe a “supra-type of work” [34],
which includes both the coordination practices required to mesh individual contributions (the
Integrating PR Hub workflow) and the work practices to manage one’s task impact on other people’s
tasks (the Consequence workflow). In other words, the workflow types we presented can be used to
identify instances of articulation work in a pull-based development. As we will discuss in the next
section, this can help explain a project’s evolution as well as allow comparison between projects.

Meanwhile, the Decomposed Issue and the Dependent PR workflows reflect work practices associ-
ated with complexity management, i.e., the work necessary to close an Issue is divided into smaller
parts to facilitate its execution, integration, assessment, etc [1, 8]. In other words, these workflow
types illustrate the work practices by which software developers use modularity [27]. Programming
languages and software development methodologies realize abstractions to help manage software
modularity (e.g., methods, classes, scope, modules, aspects, etc). Previous research has considered
how developers use these abstractions. By contrast, our work sheds light on modularity in the
context of pull-based development processes. It is interesting to notice that during the interview,
Closed3 spontaneously described a situation in which his team adopted a Decomposed Issue to
handle the complexity and time constraints of their work.

The Divergent PR workflow is associated with some kind of optimization of the work since it is a
bundling of work into a single PR to resolve multiple Issues. As we noted in Section 6.7 and later
confirmed in Section 7.3.3, this practice can leverage either positive or negative results depending
on whether the different closed Issues are related, i.e., whether the Divergent PR adheres to the
single responsibility principle [21].
In the Extended PR workflow there are two different PRs with the second extending the first

one. This illustrates two different work practices, depending on whether the extension is beneficial
or detrimental. If the second PR improves the first, then this workflow reveals the work of reuse,
another important software engineering principle [27]. If the second PR changes the work that
should have been done correctly in the first PR, then the Extended PR reveals a form of waste in
software development [14, 19, 31]. This was confirmed by Closed1 (see Section 7.3.1) when they said
that a developer implementing several instances of Extended PRs might need additional guidance.
Finally, our interviewees suggested additional examples of waste including the Competing PRs

and the Duplicate Issue Hub workflow types. In the last quote of the previous section, Closed1
spontaneously used the work waste. According to Sedano et al. [31], SE waste is an activity
that consumes resources without creating customer value. Adopting their classification, we see
Competing PRs and the Duplicate Issue Hub workflows as rework, while the “negative” Extended
PR as an instance of ineffective communication. The graph-based perspective we propose in this
paper is an initial step towards automatically identifying waste in software development, i.e.,
while it is possible to identify rework (duplicate Issues), it is not as easy to identify ineffective
communication [17]. This identification would help improve software development processes, as
suggested by lean approaches and corroborated by our WorkflowsExplorer tool and interviews.

9Computer-Supported Collaborative Work.

18

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

In summary, analyzing links between PRs and Issues (as done in previous studies) can reveal
developers’ practices associated with work that is expected to occur (via the fixes relationship),
reuse (via improves, uses, and is similar), waste (via is a duplicate of), and coordination work (via
blocks and impacts). In contrast, our proposal to analyze PR-Issue graphs can reveal additional col-
laborative work practices among software developers, including practices of articulation, complexity
management, optimization, reuse and waste. More importantly, the first three sets of practices have
not been previously observed in pull-based software development.

9 IMPLICATIONS
Our graph analysis perspective reveals work practices unavailable via link analysis. A topological
explanation of this claim is that link analysis takes into account two nodes and one edge, while graph
analysis spans multiple nodes and edges. When making suggestions to improve code review tools,
Hirao et al. [16] listed several factors to improve the identification of duplicate linking relationships.
Furthermore, they showed that the performance of code review tools could be improved by using
the factors they identified. Similarly, we argue that the topology of the PR-Issue graph can also be
used in this scenario: for instance, an Issue 𝐴 with an edge to another Issue 𝐻 that is part of the
hub in the Duplicate Issue Hub workflow has a higher chance to be a duplicate when compared to
another Issue 𝐵 with a link to a third isolated Issue. In another example, when facing Competing
PRs, a developer can prioritize reviewing a PR that is also linked to other issues, i.e., a PR might
belong to a Competing PR at the same time that it is part of a Divergent PR topology10. Hirao et
al. [16] algo suggests that duplicate Issue detection is important to avoid waste [31] and they used
links to automate this identification. Our results suggest that PR-Isse graph topologies can also be
used to explore duplicate detection and enhance review fairness and efficiency. These examples
illustrate how PR-Issue graph topologies can further improve code review tools.
A similar argument can be made about the automatic identification of Good First Issues (GFIs),

i.e., issues that are adequate for newcomers interested in joining an open-source project [36]. In
this case, it might not be appropriate to indicate an Issue that is the hub of a Duplicate Issue hub
as a GFI because these hubs “are more likely to have critical connections with other issues (e.g.,
blocks, depends upon, incorporates)” [26], i.e., they are less suited for newcomers. In this case, Xiao
et al. [36] proposed an approach to automatically indicate possible GFIs by taking into account the
Issue content (title, description, labels), background (project, developers), and dynamics (change in
Issue states). We believe that extending Xiao’s approach with topological information would yield
better results.
Finally, machine-learning classifiers have been built to automatically identify types of linking

relationships between two nodes [16]. We believe future work should focus on creating topology
classifiers that take into account the entire graph as well as authorship and temporal information to
accurately identify and classify workflow types. These classifiers will enable additional applications
of our approach. For instance, by allowing one to compare different open-source projects regarding
their work practices to determine which projects better leverage reuse, generate less waste, or
require less articulation work. Such a comparative approach would be similar to the one proposed
by Zoller’s and colleagues [37] who used PR submissions and acceptances to create a topology of
open-source projects. This topology allowed them to compare projects along different dimensions,
including collective identity, hierarchy, and popularity. In our case, topology information could be
used to better understand, and potentially compare, the collaborative work practices in different
open-source projects.

10We thank one of our interviewees for this insight.

19

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

10 LIMITATIONS
An important limitation of our work is the lack of validation of all eight workflow types with
practitioners. As we discussed, we presented four of eight workflow types to developers. Further
work should validate the remaining four types.

To avoid researcher bias, our qualitative analysis included the constant comparison method and
an approach similar to theoretical sampling [34]. This way, the lead investigator contrasted the
results with new carefully chosen data, and presented intermediate results regularly for feedback
to the rest of the research team to reach a negotiated agreement [12] (see Section 3). We believe
this process helped us to minimize researcher bias.

Another limitation of our work is that we do not account for branches and commits because pull
requests are “becoming the atomic unit of software change” [15]. This might lead to misidentifying
workflow types. For instance, in the apache dubbo project, we identified a potential Decomposition
involving Issue 1641, and PRs 2621 and 2631. However, on inspection, we observed that these PRs
are identical except for their branches: while PR 2621 was committed into branch apache:2.6.x,
PR 2631 was committed into branch apache:master. In short, this set of nodes does not represent
decomposition. Since we do not analyze commits, our work practices do not distinguish between
contributors [14] and integrators [15]. One should notice that we do not claim that our topological
descriptions are completely accurate; they were used to facilitate our qualitative investigation of
the workflow types. Future work could use machine-learning classifiers to infer the best topology
descriptions.

During our analysis of the workflow types, we decided to focus on merged PRs and closed Issues
because they represent units of work that have been finalized. We made this decision to avoid
analyzing work that has not been concluded, because, new links could still be added to the graphs.
This means that ongoing work (open PRs and Issues) is not captured by our workflow types.

11 CONCLUSION
We first conducted a qualitative study of the graphs created by PRs, Issues, and the links between
them. We analyzed a sample of 56 GitHub projects and found that the links were used by developers
to express nine different types of relationships. We then used these graphs to identify eight different
workflow types, which capture work practices that have not been previously observed in pull-based
software development.

Then, we built a tool called WorkflowsExplorer to visualize PR-Issue graphs. We carried out an
interview study with six open-source and closed-source developers who used WorkflowsExplorer.
They noted that the tool helps to explain and improve work practices. They also envisioned scenarios
in which surfacing workflow types could be used to improve their software development processes.

The topology perspective of our work reveals new insights into how developers use Issues, PRs, and
the links between them to organize their work. This means that the workflow types we uncovered
can help with understanding collaborative work practices surrounding interconnected PRs and
Issues.

12 DATA AVAILABILITY
The raw data is available on OSF. The source code and queries used to identify workflow types are
available here. The WorkflowsExplorer tool is hosted here.

ACKNOWLEDGMENTS
This work was partially supported by the Huawei-UBC Joint Software Engineering Research
Program, NSERC Discovery Grant, and Designing for People CREATE program.

20

https://osf.io/29aev/?view_only=c6075e719659453db27a15fffd8e2046
https://anonymous.4open.science/r/pr-issue-topology-project-D888
https://anonymous.4open.science/w/pr-issue-topology-project-03EB

Work Patterns in PR-Issue Graphs FSE 2024, July 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Timothy Andrew. 2021. A Better Model for Stacked (GitHub) Pull Requests. https://timothya.com/blog/git-stack/
[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Challenges of Modern Code Review. In

Proceedings of the 2013 International Conference on Software Engineering (San Francisco, CA, USA) (ICSE ’13). IEEE
Press, 712–721.

[3] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random Networks. Science 286, 5439 (1999), 509–
512. https://doi.org/10.1126/science.286.5439.509 arXiv:https://www.science.org/doi/pdf/10.1126/science.286.5439.509

[4] Vincent Boisselle and Bram Adams. 2015. The impact of cross-distribution bug duplicates, empirical study on Debian
and Ubuntu. In 2015 IEEE 15th International Working Conference on Source Code Analysis and Manipulation (SCAM).
131–140. https://doi.org/10.1109/SCAM.2015.7335409

[5] Kathy Charmaz. 2014. Constructing grounded theory. sage.
[6] Ashish Chopra, Morgan Mo, Samuel Dodson, Ivan Beschastnikh, Sidney S. Fels, and Dongwook Yoon. 2021. "@alex,

This Fixes #9": Analysis of Referencing Patterns in Pull Request Discussions. Proc. ACM Hum.-Comput. Interact. 5,
CSCW2, Article 385 (oct 2021), 25 pages. https://doi.org/10.1145/3479529

[7] Victoria Clarke and Virginia Braun. 2013. Successful Qualitative Research: A Practical Guide for Beginners. Sage, London.
[8] Benjamin Congdon. 2022. In praise of stacked PRS. https://benjamincongdon.me/blog/2022/07/17/In-Praise-of-

Stacked-PRs/
[9] John Creswell. 2009. Research Design: Qualitative, Quantitative, and Mixed-Method Approaches.
[10] Bill Curtis, Herb Krasner, and Neil Iscoe. 1988. A Field Study of the Software Design Process for Large Systems.

Commun. ACM 31, 11 (nov 1988), 1268–1287. https://doi.org/10.1145/50087.50089
[11] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2018. Communicative Intention in Code

Review Questions. In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME). 519–523.
https://doi.org/10.1109/ICSME.2018.00061

[12] D.R. Garrison, M. Cleveland-Innes, Marguerite Koole, and James Kappelman. 2006. Revisiting methodological issues
in transcript analysis: Negotiated coding and reliability. The Internet and Higher Education 9, 1 (2006), 1–8. https:
//doi.org/10.1016/j.iheduc.2005.11.001

[13] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory Study of the Pull-Based Software
DevelopmentModel. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 345–355. https://doi.org/10.1145/2568225.2568260

[14] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work Practices and Challenges in Pull-Based
Development: The Contributor’s Perspective. In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). 285–296. https://doi.org/10.1145/2884781.2884826

[15] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen. 2015. Work Practices and Challenges
in Pull-Based Development: The Integrator’s Perspective. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 358–368. https://doi.org/10.1109/ICSE.2015.55

[16] Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. 2019. The Review Linkage Graph for Code
Review Analytics: A Recovery Approach and Empirical Study. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA, 578–589. https://doi.org/10.1145/3338906.
3338949

[17] Mikko Korkala and Frank Maurer. 2014. Waste identification as the means for improving communication in globally
distributed agile software development. Journal of Systems and Software 95 (2014), 122–140. https://doi.org/10.1016/j.
jss.2014.03.080

[18] Lisha Li, Zhilei Ren, Xiaochen Li, Weiqin Zou, and He Jiang. 2018. How Are Issue Units Linked? Empirical Study
on the Linking Behavior in GitHub. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). 386–395.
https://doi.org/10.1109/APSEC.2018.00053

[19] Zhi-Xing Li, Yue Yu, Tao Wang, Gang Yin, Xin-Jun Mao, and Huai-Min Wang. 2021. Detecting Duplicate Contributions
in Pull-Based Model Combining Textual and Change Similarities. Journal of Computer Science and Technology 36, 1 (01
Jan 2021), 191–206. https://doi.org/10.1007/s11390-020-9935-1

[20] Thomas W. Malone and Kevin Crowston. 1994. The Interdisciplinary Study of Coordination. ACM Comput. Surv. 26, 1
(mar 1994), 87–119. https://doi.org/10.1145/174666.174668

[21] Robert C. Martin. 2003. Agile software development: principles, patterns, and practices. Prentice Hall PTR. http:
//dl.acm.org/citation.cfm?id=515230

[22] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian KaUstner. 2022. "Did You Miss My
Comment or What?": Understanding Toxicity in Open Source Discussions. In Proceedings of the 44th International
Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 710–722. https://doi.org/10.1145/3510003.3510111

21

https://timothya.com/blog/git-stack/
https://doi.org/10.1126/science.286.5439.509
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.286.5439.509
https://doi.org/10.1109/SCAM.2015.7335409
https://doi.org/10.1145/3479529
https://benjamincongdon.me/blog/2022/07/17/In-Praise-of-Stacked-PRs/
https://benjamincongdon.me/blog/2022/07/17/In-Praise-of-Stacked-PRs/
https://doi.org/10.1145/50087.50089
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1016/j.iheduc.2005.11.001
https://doi.org/10.1016/j.iheduc.2005.11.001
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1145/3338906.3338949
https://doi.org/10.1145/3338906.3338949
https://doi.org/10.1016/j.jss.2014.03.080
https://doi.org/10.1016/j.jss.2014.03.080
https://doi.org/10.1109/APSEC.2018.00053
https://doi.org/10.1007/s11390-020-9935-1
https://doi.org/10.1145/174666.174668
http://dl.acm.org/citation.cfm?id=515230
http://dl.acm.org/citation.cfm?id=515230
https://doi.org/10.1145/3510003.3510111

FSE 2024, July 2024, Porto de Galinhas, Brazil R. B. de Souza, Ma, Wong, Yoon, Beschastnikh

[23] Reza Nadri, Gema Rodriguez-Perez, and Meiyappan Nagappan. 2021. Insights Into Nonmerged Pull Requests in GitHub:
Is There Evidence of Bias Based on Perceptible Race? IEEE Software 38, 2 (2021), 51–57. https://doi.org/10.1109/MS.
2020.3036758

[24] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity in Software Engineering Research.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE
2013). Association for Computing Machinery, New York, NY, USA, 466–476. https://doi.org/10.1145/2491411.2491415

[25] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and Yunwen Ye. 2002. Evolution Patterns
of Open-Source Software Systems and Communities. In Proceedings of the International Workshop on Principles of
Software Evolution (Orlando, Florida) (IWPSE ’02). Association for Computing Machinery, New York, NY, USA, 76–85.
https://doi.org/10.1145/512035.512055

[26] Alexander Nicholson, Deeksha M. Arya, and Jin L. C. Guo. 2020. Traceability Network Analysis: A Case Study of Links
in Issue Tracking Systems. In 7th IEEE International Workshop on Artificial Intelligence for Requirements Engineering,
AIRE@RE 2020, Zurich, Switzerland, September 1, 2020. IEEE, 39–47. https://doi.org/10.1109/AIRE51212.2020.00013

[27] R.S. Pressman and D. Bruce R. Maxim. 2014. Software Engineering: A Practitioner’s Approach. McGraw-Hill Education.
https://books.google.ca/books?id=i8NmnAEACAAJ

[28] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and André van der Hoek. 2018. Relationship between
Geographical Location and Evaluation of Developer Contributions in Github. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (Oulu, Finland) (ESEM ’18). Association
for Computing Machinery, New York, NY, USA, Article 22, 8 pages. https://doi.org/10.1145/3239235.3240504

[29] Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and Patrick Mäder. 2018. Traceability in the Wild:
Automatically Augmenting Incomplete Trace Links. In Proceedings of the 40th International Conference on Software
Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA, 834–845.
https://doi.org/10.1145/3180155.3180207

[30] Eric S. Raymond and Tim O’Reilly. 1999. The Cathedral and the Bazaar (1st ed.). O’Reilly Associates, Inc., USA.
[31] Todd Sedano, Paul Ralph, and Cécile Péraire. 2017. Software Development Waste. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). 130–140. https://doi.org/10.1109/ICSE.2017.20
[32] Robert Sedgewick and Kevin Wayne. 2011. Algorithms, 4th Edition. Addison-Wesley. I–XII, 1–955 pages.
[33] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa. 2018. Almost There: A Study on

Quasi-Contributors in Open Source Software Projects. In Proceedings of the 40th International Conference on Software
Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA, 256–266.
https://doi.org/10.1145/3180155.3180208

[34] Anselm Strauss. 1985. WORK AND THE DIVISION OF LABOR. The Sociological Quarterly 26, 1 (1985), 1–
19. https://doi.org/10.1111/j.1533-8525.1985.tb00212.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1533-
8525.1985.tb00212.x

[35] DongWang, Tao Xiao, Patanamon Thongtanunam, Raula Gaikovina Kula, and Kenichi Matsumoto. 2021. Understanding
shared links and their intentions to meet information needs in modern code review:. Empirical Software Engineering
26, 5 (08 Jul 2021), 96. https://doi.org/10.1007/s10664-021-09997-x

[36] Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou. 2022. Recommending Good First
Issues in GitHub OSS Projects. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 1830–1842. https://doi.org/10.
1145/3510003.3510196

[37] Nikolas Zöller, Jonathan H. Morgan, and Tobias Schröder. 2020. A topology of groups: What GitHub can tell us about
online collaboration. Technological Forecasting and Social Change 161 (2020), 120291. https://doi.org/10.1016/j.techfore.
2020.120291

Received 2023-09-28; accepted 2024-04-16; revised 28 September 2023; revised 23 January 2024; accepted 15
April 2024

22

https://doi.org/10.1109/MS.2020.3036758
https://doi.org/10.1109/MS.2020.3036758
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/512035.512055
https://doi.org/10.1109/AIRE51212.2020.00013
https://books.google.ca/books?id=i8NmnAEACAAJ
https://doi.org/10.1145/3239235.3240504
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1109/ICSE.2017.20
https://doi.org/10.1145/3180155.3180208
https://doi.org/10.1111/j.1533-8525.1985.tb00212.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1533-8525.1985.tb00212.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1533-8525.1985.tb00212.x
https://doi.org/10.1007/s10664-021-09997-x
https://doi.org/10.1145/3510003.3510196
https://doi.org/10.1145/3510003.3510196
https://doi.org/10.1016/j.techfore.2020.120291
https://doi.org/10.1016/j.techfore.2020.120291

	Abstract
	1 Introduction
	2 Related Work
	2.1 PR and Issue Comments and Links
	2.2 Software Traceability
	2.3 Code Reviews

	3 Methodology Overview
	4 RQ1: PR-Issue graphs Characteristics
	4.1 Extracting PR-Issue Graphs
	4.2 Characteristics of PR-Issue Graphs

	5 RQ2: Links in PR-Issue graphs
	5.1 Analysing Links in PR-Issue Graphs
	5.2 Types of Links in PR-Issue Graphs

	6 RQ3: PR-Issue Topologies and Workflow Types
	6.1 Identifying Workflow Types
	6.2 Extended PR
	6.3 Consequence
	6.4 Decomposed Issue
	6.5 Dependent PRs
	6.6 Competing PRs
	6.7 Divergent PR
	6.8 Duplicate Issue Hub
	6.9 Integrating PR/Issue Hub
	6.10 Interactions between Workflow Types

	7 RQ4: Perception and utility of PR-Issue Graphs and Workflow Types
	7.1 Visualizing Workflow Types
	7.2 Interview Methodology
	7.3 Interview Results

	8 Discussion
	9 Implications
	10 Limitations
	11 Conclusion
	12 Data Availability
	References

