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Abstract—Modern formal methods rely heavily on Satisfiability
Modulo Theory (SMT) solvers like Z3. Unfortunately, these solvers
are complex, have unpredictable runtime behavior, and are highly
sensitive to the structure of the input query. As a result, when a
Z3 query runs for tens of minutes and/or times out inconclusively,
there is little that an end-user can do to figure out what went wrong.
They can attempt to inspect the gigabytes of logged information
that these tools produce every minute. But, no existing tool
provides a broad understanding of Z3 behavior.

We propose Z3Hydrant, a scalable approach that converts Z3
logs into sound. By relying on the innate abilities of the human
ear to pick out patterns, Z3Hydrant encodes raw Z3 logs into an
audio stream. The result is accessible to anyone who can hear
and helps to provide a general flavor of what occurred during a
particular run. We describe our approach and include several
example audio files that capture complex Z3 runs.

I. INTRODUCTION

Satisfiability Modulo Theory (SMT) solving is generally
undecidable, with difficult to predict behavior that varies based
on how a solver is configured. The solver may or may not
terminate, whether or not a proof exists of a given statement.
Running an SMT solver may therefore output SAT, UNSAT,
or UNKNOWN, after running for an arbitrary period of time
and perhaps timing out. During this time, the user waits for
a response to their query, with little indication of progress or
other feedback.

Prior to submitting an SMT query, the user cannot easily
predict the outcome. This is because SMT solvers perform
heuristic-guided search using multiple communicating theorem
solvers, and their behavior is highly sensitive to changes in the
input query. To illustrate this complexity, the widely used Z3 [1]
verifier is implemented in 378,853 lines of C++1. Beyond the
size of Z3’s codebase, consider that Dafny [2], a verification-
aware programming language that uses Z3 internally, loads
1,985 lines of contextual axioms before it checks any user
code. Other related systems [3], [4], [5] have similarly large
standard libraries of facts.

Given this inherent solver complexity, unpredictability of
output, and sensitivity to input, significant prior work has gone
into helping developers understand and debug SMT workloads.
These efforts focus on understanding the behavior of triggers,
a common implementation technique for logical quantifiers,
which are the primary cause of undecidability in SMT. These
tools are most useful to those who have deep knowledge of
a tool’s implementation. For instance, fine-grained dynamic

1Looking at the src/ directory using the cloc tool, excluding whitespace and
comments.

analyses [6] and static guarantees [7] might help the Dafny
developers debug and improve their 1,985 lines of axiom
definitions. The Axiom Profiler [8] is the most general-purpose
dynamic analysis tool available, whose development is the
reason that modern versions of Z3 support logging of all
steps taken by the solver (quantifier instantiations, theorem
invocations, etc). The Axiom Profiler processes these logs,
and identifies suspicious quantifier instantiation patterns that
might cause poor performance or non-termination, allowing
developers to refine their axiom definitions. The problem is that
the output from any of these tools is only meaningful if the user
already has detailed knowledge of a majority of the axioms
and definitions in play. There is currently no way to represent
the totality of an SMT solver’s behavior to an end-user looking
to understand what is happening. One simple reason for this
is that Z3 logs on average 1.9 GB of information for every
minute of runtime, generating enormous logs for long-running
queries.

To help end-users interpret Z3 executions, we propose
Z3Hydrant, a tool which converts the Z3 log into sound. We
represent log event sequences as audio rate signals (44.1 kHz
in our preliminary experiments). Z3Hydrant leverages the high-
speed pattern recognition capabilities of the human ear to let
developers pick out patterns and variations in SMT solver
behavior, without requiring any a priori knowledge of how
the underlying tool works. Our technique allows any point of
interest or pattern in the sound to be precisely mapped back
to log entries for further analysis. Given hybrid tooling that
combines sonic exploration with existing fine-grained analysis
techniques, we believe that log stream sonification has the
potential to make debugging SMT constraints more accessible
to end-users, and less the exclusive domain of SMT experts.

II. BACKGROUND AND MOTIVATION

Our representation of SMT logs is inspired by tools like
Geiger counters, which represent the complex invisible reality
of ionizing radiation as clicking sounds of variable density. We
find that this is a low-overhead way to convert a large quantity
of data into something that can be understood by humans.
Consider a digital audio stream with a common sample rate of
44.1 kHz: at an extreme, if we match every line in a log to one
sample of the audio waveform (as we do in our experiments),
we are able to present 44,100 log entries to a human per
second. Because humans are able to summarize patterns within
vibrations perceived by our eardrums, we are able to intuitively
experience the structure of time-series data at a high rate.

https://github.com/AlDanial/cloc


[mk-app] #655 = #652 #523
[instance] 0 #655
[attach-enode] #655 0
[end-of-instance]
[mk-app] #655 = #652 #523
[mk-proof] #656 rewrite #655
[mk-app] #657 = #485 #523
[mk-proof] #658 trans #654 #656 #657
[mk-app] #659 => #523 #523
[mk-app] #660 = #486 #659
[mk-proof] #661 monotonicity #658 #660
[inst-discovered] theory-solving 0 ...

Fig. 1. Log fragment showing example Z3 behavior.

Note that, in terms of human perception, a 44.1 kHz
samplerate can encode frequencies just beyond the accepted
upper frequency limit for human hearing, 20 kHz [9]. We chose
it to explore the maximum possible sonification bandwidth.
It can be progressively lowered to accommodate people with
limited hearing range, or to address concerns that inaudible
frequencies are present.

Compare this to our sense of sight, where we need to
summarize large volumes of data to present a clear picture.
General-purpose log processing techniques [10], [11], [12] rely
on visual summaries. The Axiom Profiler does as well; its uses
matching loop identification to summarize points of interest in
the log. The visual representation used by Axiom Profiler is a
graph view, representing causal relationships between quantifier
instantiations made by Z3. The tool can process large logs,
but when displaying its summary it shows graphs with only a
few hundred nodes. Larger graphs are difficult to understand
via direct inspection. There are techniques that can directly
display larger graphs [13], but they work on graphs of at most
tens of thousands of nodes (less than 0.1s of Z3 execution)
and produce very dense images.

In summary, there is no visualization tool that can show the
entire log of a non-trivial Z3 execution. If we add sonification
to our toolkit, however, Z3Hydrant can represent a log of 1
million SMT events (≈ 1s of Z3 runtime) as 23 seconds of
audio. Since sonification requires dedicated listening time that
scales with larger volumes of data, we propose that Z3Hydrant
is most useful for logs that can be listened to within a few
minutes, representing tens of seconds of Z3 execution. Within
this sweet spot, the user can directly explore the log data
by listening, identifying patterns and landmarks for further
analysis.

Our goal with Z3Hydrant is to leverage the large bandwidth
of the human ear, and provide a sonic replacement for the
missing “view all” button, at least for logs up to 100× as long
as what is currently practical to visualize.

III. SONIFICATION DESIGN OF Z3HYDRANT

We now describe our approach to sonifying Z3’s behavior.
Our input file looks like Figure 1. It consists of a sequence of

algorithmic events that represent each step of Z3’s underlying
algorithm. Each log line has a label, shown as [mk-app]

Fig. 2. Audio waveform matching the log entries in Figure 1.

or [instance], which we call the “action”. The remaining
information on that same line contains operational details, like
term rewriting, theory applications, and so forth. This data is
normally given as input to the Axiom Profiler, in which case
it can be analyzed for patterns in quantifier instantiation that
signify matching loops.

Our motivation for using this format is (1) it is easy to
access, since Z3 produces it natively; (2) it is representative
of Z3’s entire decision process as it responds to a query; and
(3) if we find an interesting audible pattern in the log, that
pattern could be passed to the Axiom Profiler or other tools
that consume the same format.

A. Chosen Representation

To keep the signal simple, since our representation should
be used for quick exploration of large volumes of data, we
consider the action and nothing else. Although this is a lossy
encoding, it still contains the kinds of algorithmic steps Z3
has performed, if not their details. Listening to the algorithmic
steps Z3 performs in a sequence allows the listener to hear the
structure of the underlying computation. Looking at other log
features or performing a more detailed analysis is out of scope
for this encoding – we discuss some alternatives in Section V.

Z3Hydrant converts each action with a precomputed perfect
hashing function into an equally spaced set of floating point
numbers between -1 and 1. Figure 2 shows the resulting audio
waveform when this process is applied to the log fragment
in Figure 1. For example, the 3 bars marked 0.27 at indices
5, 7, and 10 correspond to [mk-proof] events. The shorter
lines marked 0.9 in between them are [mk-app] events. We
identified 23 different actions, which can be uniquely mapped
onto the range of floating point values available. With this
encoding, any distinct sequence of log actions corresponds to
a distinct audio waveform.

These audio waveforms will sound differently based on
emergent properties of the log. Based on our experience, we
observed that this encoding has the following features:

Constant pitches are how our ears perceive repeating
sequences of tens to hundreds of actions. The length of the
sequence is the wavelength of the perceived oscillation, so at an
audio samplerate of 44.1 kHz, wavelengths between 3 actions
(14.7 kHz, high whistle) and around 735 actions (60 Hz, low
bass note) can be easily identified as pitches. Sequences that



are not perfect repetitions but primarily follow a simple pattern
will still sound like an identifiable pitch, but noisier. While not
directly related to Z3’s semantics, these pitches are intuitive
identifiers for specific sequences of actions in a log. If the
same sequence of actions re-appears, we can recognize that a
log pattern occurred multiple times.

Complex tones emerge depending on the waveform implied
by a sequence of actions. The closer a waveform is to a simple
shape, like a square or triangle, the more it will sound like an
identifiable pitch. Sequences with more complex shapes will
sound metallic or bell-like, like wavetable [14] or frequency
modulation synthesis [15]. They allow us to recognize the same
things as constant pitches.

Slower variations, across thousands or tens of thousands
of log entries, will appear as sequences of different pitches,
changes in timbre over time, or rhythmic clicking sounds.
Hearing this kind of sound multiple times helps us intuitively
identify larger trends in Z3’s behavior.

Frequency glides seem to occur when Z3 is looping over
increasing/decreasing numbers of possibilities in some domain.
The same pattern repeats, but one or more parts change length
while preserving the overall shape. This causes a shift in the
wavelength of the resulting waveform, and causes the audible
frequency to glide up or down.

Pseudo-random sequences will sound similar to white noise.
Perhaps because SMT solvers follow an inherent algorithmic
sequence, this feature is often present but rarely dominates the
listening experience. Hearing this means Z3 is doing something
that is not regular enough to hear as a pitch.

Complete silence is a thousands-long sequence of the same
action repeated, which is converted to a static waveform. It is
not common, but we found [mk-app] sometimes formed
such sequences in our evaluation. [mk-app] means that
Z3 has instantiated an uninterpreted function of the form
f(a, b, c, ...), so these long silences imply Z3 was
constructing thousands of terms.

Inaudibly quiet sounds are unlikely, given our chosen
encoding. The quietest possible sound is caused by long
sequences of actions that are encoded as numerically adjacent.
Given a maximum amplitude of −1 to 1, splitting this across
our 23 possible actions, we get a minimum amplitude of
2/23 ≈ 0.09. While human loudness perception varies, we
have found a magnitude of 0.09 to be audible.

IV. PRELIMINARY EVALUATION

Our goal in evaluating Z3Hydrant is three-fold. We want
(1) a representative sample of the tool’s output on realistic Z3
executions; (2) a measure of how much data is logged by Z3
over time; and (3) to know how feasible it is to listen to Z3
in real-time by streaming its log to audio.

We have evaluated Z3Hydrant on a random sample of 254
problems supported by Z32 from the SMT-LIB 2024 non-
incremental benchmark [16]. Used in yearly SMT competitions,

2We discarded inputs where Z3’s response included the string “unsupported”,
which means that an unsupported theory was requested.

Fig. 3. Relationship between Z3 runtime (configured with a short 5s timeout)
and audio runtime, annotated with the reported Z3 outcome for each run.

this benchmark is representative of a variety of realistic user-
submitted SMT problems. Unlike something like the Z3 test
suite, we also expect that SMT-LIB is not biased toward any
particular SMT solver. This means Z3 may do well on some
problems and poorly on others, producing a range of behaviors
for us to listen to.

Our artifact [17] contains our experimental results (including
the audio files) and all the code to reproduce them. We used
Z3 4.8.12, and all experiments were done on a machine with
a 13th Gen Intel Core i9-13900HX CPU and 64 GB of RAM.

A. Examining the Output

Figure 3 summarizes the outcomes of running Z3 on all 254
input files. Overall, Z3 responded to 83 inputs with SAT, 110
inputs with UNSAT, and 57 inputs with UNKNOWN. In 4 cases,
Z3 ran normally but did not output a conclusion.

Note that the cluster of results at 5s is because we gave
Z3 a 5s timeout to keep a manageable overall runtime. The
cluster is cases where Z3 would have taken longer, but timed
out and exited on time while returning UNKNOWN. Longer
times are due to Z3 missing its timeout and exiting late. In
our experience, longer-running Z3 queries will run for a very
long time if unchecked.

We listened to all the generated audio files while making
notes summarizing what we heard. Here are highlights of these
notes, alongside representative examples from our artifact in
the wavsDir/ folder.

A large majority of the audio was highly structured. Many
sequences of events translated into repetitive cycles. Textural
changes along these cycles allowed us to identify repeated
behaviors. See bench_11793.wav, where starting around
8-9s in, there is a repeating chirping sound. It represents Z3
repeatedly discovering facts via theory solving. None of these
facts are necessarily related, but we can detect a correlation in
the type of work that goes into instantiating them. We think
that variation in the pitch content of the chirps identifies facts
that take more operations to instantiate. 156_gcc.wav and
nlzbe256.wav exhibit similar features.

We were able to identify behaviors with similar filenames
(under the same SMT-LIB group) because they sounded
similar. See collections like toIntegral-has-*, ball_
count_*, and From_AProve_2014__*. Exploring these



logs directly and via textual diffing, we notice that they are
not identical, but they share similar structural features. There
are similar groups of operations in the same places, and each
log contains many “rewrite” and “monotonicity” steps.

Some outputs are monotonous. They consist of long held
tones, long silences, or long homogeneous-sounding blasts of
noise. This is a true indication that Z3 is doing similar things for
a long time. In rem-has-no-other-solution-13376.
wav, the silence we are hearing reflects that the entire log is
exclusively mk-app operations (Z3 is constructing terms). The
noisy gensys_icl584.wav, on the other hand, represents
Z3 constantly oscillating between relatively long sequences,
including 100s of [assign] and tens of [mk-proof]
actions. This creates a noisy low rumble due to a dominant
pattern in the log having an unusually long wavelength. The
first minute of vlsat3_b81.wav consists of a continuous
high-pitched whine, which represents a uniform cycle of 12
repeating actions.

B. Log File Volume

The logs we collected for each Z3 run were 63 MB on
average. The smallest was 4 KB, and the largest was 624
MB. Dividing by the runtime of the associated Z3 execution,
the average rate at which Z3 logged data was 32 MB/s (or
1.9 GB/min), with a standard deviation of 31 MB/s. There is
significant variation in how much data Z3 logs, depending on
what it is doing. It could be due to variations in log line length,
how long different actions take to perform, or both.

C. Relationship with Real Time: Live Listening not Possible

To evaluate how close to real-time we could sonify a log,
we computed the ratios between Z3 runtime and audio runtime.
On average, the audio would play for 20× as long as it took
to generate the log, with a standard deviation of 18×. Since
we used the highest humanly perceptible data rate, this shows
that Z3Hydrant cannot do real-time sonification while Z3 runs.
Buffering and skipping of data would be necessary.

D. Discussion

We have found that sampling the action labels from Z3’s
operational logs directly into the audio amplitude domain is
effective in providing a high-level overview of the solver’s
behavior. This overview allows us to notice similarities and
differences between log segments thousands of events long.
For example, we can confirm via inspection that the repeated
chirping in bench_11793.wav indicates structurally similar
cases where Z3 infers facts. Even for sonifications like
bench_5085.wav that are less repetitive, clicks, impacts,
and pitch changes identify transition points. These could mean
that Z3 has finished instantiating a set of axioms, that it has
exhausted a certain search space, or something else. This result
is encouraging, in that these landmarks could help developers
qualitatively guide and scope further analysis.

That said, we need further study to better understand the
relationship between Z3Hydrant’s sounds, Z3’s semantics, and
other tools like the Axiom Profiler.

V. FUTURE PLANS

This paper introduces the concept of log sonification for SMT
solvers, but it leaves open multiple avenues for development.

Alternative encodings. Our simplified log label-based
encoding seems effective in bringing out the high-level structure
of what a solver is doing, but it is limited. As is, Z3Hydrant
is unable to distinguish between the same action applied to
different parameters. We plan to investigate encodings that take
parameters into account. One alternative could be to hash more
of the log lines together while keeping the rest of Z3Hydrant
the same. Another approach could be to investigate frequency-
domain synthesis using Fast Fourier Transforms [18].

Integration into analysis tools. Listening to a log is an
initial step that allows us to identify points of interest for
further analysis. Actually performing that analysis requires
switching to more detail-oriented tools, such as the Axiom
Profiler. Following successful examples from prior work [19],
we plan to bring sonification and visualization together by
integrating Z3Hydrant with tools like Axiom Profiler, and
evaluate the result on realistic SMT debugging tasks.

VI. RELATED WORK

There is a broad range of sonification techniques [20], [21].
Z3Hydrant maps a sequence of events into the amplitude
domain at audio rate. Historically, this has happened coinciden-
tally at the hardware level. Consider the dial-up modem hand-
shake [22], or AM radio interference from mainframes [23].

Work that we are aware of focuses on fine-grained sonifi-
cation. Notable examples are sonifying program slices [24],
enabling accessible AST-based programming [25], sonification
of runtime information [26], [23], debug-time sonification [27],
[28], and sonification of version control histories [29]. This
prior work sonifies hundreds or thousands of data points at a
time, not the millions we aim for.

Z3Hydrant uses the same data as Axiom Profiler [8]. The
two techniques are complementary: Z3Hydrant targets open-
ended exploration, while the profiler isolates potential matching
loops and can only represent small portions of a Z3 log at
once. Other work to assist developers in working with SMT
solvers is similarly orthogonal and complementary [7], [6].

More broadly, there are a variety of techniques for processing
logs [10], [11], [12]. These approaches target systems whose
logs contain distinct anomalies or failures. For SMT solvers,
all user-visible failures occur during normal operation. As such,
existing log analysis techniques are less applicable to SMT
solver logs.

VII. CONCLUSION

SMT executions can take a long time, are difficult to interpret,
and can produce massive amounts of log data. We propose a
scalable approach that converts logs from the Z3 SMT solver
into sound. Our sonification strategy relies on the ability of the
human ear to pick out patterns. We sketched out the design
of our proposed tool, Z3Hydrant, which complements existing
tools and shows promise as a comprehension tool.
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