
FedFetch: Faster Federated Learning with Adaptive
Downstream Prefetching

Qifan Yan∗, Andrew Liu∗, Shiqi He†, Mathias Lécuyer∗ and Ivan Beschastnikh∗
∗Department of Computer Science, University of British Columbia, Canada

Email: ericy676@student.ubc.ca, yul02@student.ubc.ca, mathias.lecuyer@ubc.ca, bestchai@cs.ubc.ca
†Computer Science and Engineering, University of Michigan, USA

Email: shiqihe@umich.edu

Abstract—Federated learning (FL) is a machine learning
paradigm that facilitates massively distributed model training
with end-user data on edge devices directed by a central
server. However, the large number of heterogeneous clients in
FL deployments leads to a communication bottleneck between
the server and the clients. This bottleneck is made worse by
straggling clients, any one of which will further slow down
training. To tackle these challenges, researchers have proposed
techniques like client sampling and update compression. These
techniques work well in isolation but combine poorly in the
downstream, server-to-client direction. This is because unselected
clients have outdated local model states and need to synchronize
these states with the server first.

We introduce FedFetch, a strategy to mitigate the download
time overhead caused by combining client sampling and compres-
sion techniques. FedFetch achieves this with an efficient prefetch
schedule for clients to prefetch model states multiple rounds
before a stated training round. We empirically show that adding
FedFetch to communication efficient FL techniques reduces end-
to-end training time by 1.26× and download time by 4.49×
across compression techniques with heterogeneous client settings.

I. INTRODUCTION

In Federated learning (FL) a set of distributed clients
collaboratively train an ML model with the help of a central
parameter server [1], [2]. The clients train with their local data
which they never share publicly; instead, clients send their
local models or the corresponding gradients to the server for
aggregation. This feature enables FL to source data from edge
clients without needing to pool data into a single location.

Our work focuses on the cross-device FL setting in which a
large number of heterogeneous edge clients train a model (e.g.,
mobile phones, laptops, IoT devices) [2]. Following previous
works, we categorize heterogeneity into system and statistical
heterogeneity [3], [4]. System heterogeneity refers to the
different network bandwidth capacity, compute capacity, and
device availability of clients. Statistical heterogeneity focuses
on the dissimilarity of training data characteristics, like the
number of samples, presence of labels, quality of examples,
etc. In general, the client training data is not independently
and identically distributed (non-iid).

Due to a large number of heterogeneous clients in cross-
device FL, the transfer of updates between the server and
clients consumes a significant amount of time and bandwidth,
especially in the downstream, server-to-client, direction. For
example, Google’s production FL system with over 600 clients

selected for training every round, with peak server traffic
of around 600 MB/s for downstream and 200 MB/s for
upstream updates [5]. Furthermore, straggling clients with low
bandwidth or compute capacity inflate the training process. We
consider two types of approaches to reduce communication
costs in terms of both time and bandwidth: client sampling [1],
[3], [4], [6]–[11] and update compression. The latter can
be further categorized into masking/sparsification [6], [12]–
[15], quantization [16]–[22], low-rank decomposition [23],
and sketching [24].

To save bandwidth and training time, cross-device FL
deployments rely on a combination of client sampling and
compression. However, recent work highlighted that the time
and bandwidth improvements that client sampling and com-
pression bring diminish significantly when they are combined
in the downstream direction [6], [19]. For instance, He et
al. [6] found that a naive combination of client sampling
with masking is ineffective in the downstream direction.
This is because of client model staleness, which is when a
client model is not up to date with the server’s model due
to clients not participating in every training round. Model
staleness also comes up with non-masking techniques like
quantization and low-rank decomposition. Most work on
quantizing downstream model updates either assumes full
participation to circumvent client model staleness [20] or full
model synchronization before every FL round [16], [18], [23].
Consequently, the need to synchronize models slows down
FL deployments. Client heterogeneity further exacerbates this
issue, as clients with weaker connectivity will inflate the time
to download large downstream updates.

We present FedFetch, a general FL method to address the
time delay related to synchronizing stale client models caused
by client sampling and compression. A standard FL system
has a single Train phase in every round, which includes client
synchronizing a server model, performing local training, and
sending results for server aggregation. FedFetch introduces
two new phases that come before the Train phase: Prepare
and Prefetch.

During the Prepare phase, the server presamples the clients
that will run R rounds in the future. For each sampled client,
the server will create a customized download schedule for the
client, depending on knowledge about the client’s bandwidth
profile. In the Prefetch phase, the clients download the latest

global model updates according to their schedules.

In summary, FedFetch shifts client downstream band-
width usage from the Train phase to the Prefetch phase.
This reduces end-to-end training time.

Overall, we make the following contributions:
• We characterize the deficiencies of naively combining

client selection and compression in downstream commu-
nication under heterogeneous cross-device FL conditions.
We observe that clients need to synchronize a larger
update for each round missed due to not being selected.

• We introduce FedFetch, a general prefetching framework
for cross-device FL. FedFetch reduces client local model
staleness during client sampling to shorten end-to-end
and download time in cross-device FL by 1.26× and
4.49× with an 12% extra bandwidth cost.

• We evaluate FedFetch’s compatibility and ease of inte-
gration with representative client sampling [1], [6] and
compression techniques [6], [12], [16], [18]–[20], [23] in
environments with system and statistical heterogeneity.
We find that FedFetch consistently decreases the down-
stream state synchronization time for every method.

II. BACKGROUND AND MOTIVATION

A. Cross-device FL Characteristics

Cross-device FL is characterized by a high level of system
heterogeneity. The differences between clients arise from
various sources, such as the type of device, service provider,
geographical location etc. In standard FL designs, an FL
communication round concludes only when the stragglers (i.e.,
slowest clients) finish. These stragglers harm performance
since client bandwidths vary by orders of magnitude.

To illustrate the effect of system heterogeneity, we plotted
the download and upload speeds of edge clients, such as
mobile phones and personal computers, in Figure 1a. The
figure uses data from Measurement Lab’s NDT speed test
dataset for N.America in Jan 2024 [25]. Note that roughly 5%
of clients have download speeds of less than 4 Mbps, which is
about 25 times slower than the median speed of 81.29 Mbps.

Figure 1b shows results from an experiment with the
distribution in Figure 1a. It records the breakdown of an FL
round in terms of every round’s average download, upload, and
compute times. We ran these experiments with the FEMNIST
dataset using the setup in Section IV-A. This figure shows
that communication can become a major bottleneck in cross-
device FL settings with FedAvg [1], consuming nearly 80% of
the total time in a round. Moreover, upstream communication
is the most time-consuming because client upload speeds are
typically slower than download speeds (Figure 1a). This com-
munication overhead motivates the need for communication
reduction techniques such as masking with STC [12] or quan-
tization with LFL [20]. However, Figure 1b also shows that
while these optimizations reduces upstream communication
time, they fail to reduce downstream communication. We
explore why this is the case in Section II-C.

100 101 102 103
Speed (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

D
is

tr
ib

ut
io

n Upload
Download

(a) CDF of edge device down-
load and upload bandwidth distri-
bution for North America in Jan
2024 [25].

0 20 40 60 80 100
Avg Percent of Round Time

Fe
dA

vg
LF
L

ST
CFL

 T
ec

hn
iq

ue

Down
26%

Up
54%

Compute
20%

Down
36%

Up
25%

Compute
39%

Down
35%

Up
24%

Compute
41%

(b) Percentage breakdown of an
FL round in terms of Download
(Down), Upload (Up), and Com-
pute time.

Fig. 1: Cross-device FL Characteristics.

Availability of clients is another key issue in cross-device
FL. Clients may spontaneously go offline for various reasons,
such as the device running out of power or losing connectivity.
In production systems, around 10% of clients may drop out
during each round [5], [26]. These device failures slow down
model convergence, extend training time, and waste hardware
resources. Practical cross-device federated learning systems
use an over-commitment (OC) mechanism [5], [6], [27],
which selects extra clients to participate in each round to
mitigate unavailable and slow clients.

B. Client Sampling

A closely studied approach to reduce communication cost
is client sampling, which, in its basic form, uniformly samples
a fraction of the total number of clients to participate in
each round of FL [1], [6]. Various sampling techniques have
been proposed to further improve time/bandwidth-to-accuracy
performance [28], ranging from choosing clients with better
bandwidth/computation capacity [10] or those more likely to
improve convergence [8], [9], [11] or a combination of the
two [3], [7]. Sampling reduces downstream (server to client)
and upstream (client to server) bandwidth because of fewer
participating clients per round.

Unfortunately, client sampling leads to client-side model
staleness. Specifically, clients may now have to wait many
rounds before being sampled or resampled. For instance, in
simple random sampling with uniform probabilities, a client
is expected to be resampled every N/K rounds [6]. In effect,
client sampling causes the client’s local model to become stale
relative to the latest server model.

C. Compression

In this paper, we focus on combining client sampling
with three representative compression techniques: masking,
quantization, and low-rank decomposition.

Masking techniques such as sparsification [6], [12]–[14] and
parameter freezing [15] are commonly used for compressing
model updates. Specifically, masks are locations of parameters
in a model that are transferred along with the parameter value.
Usually, the chosen locations correspond to the most useful
values in an update. For example, in TopK sparsification,

0 20 40 60 80 100
Communication Rounds

0

300

600

900
Ba

nd
w

id
th

 (
M

B)

STC Downstream
LFL Downstream
STC Upstream
LFL Upstream

(a) Download and upload amount
per round.

0 5 10 15 2020
Communication Rounds

0

5

10

15

20
22

Ba
nd

w
id

th
 (

M
B)

STC Downstream
LFL Downstream

(b) Average download sizes for
clients who are resampled after a
number of rounds.

Fig. 2: Effect of combining client sampling and compression.

the top K% parameters, ordered by their absolute value, are
transmitted along with their position information [13].

Quantization is another family of techniques to reduce
communication costs in FL [16]–[22]. Quantization reduces
the encoding precision of the model update to reduce commu-
nication, by casting a higher-bit representation of the update
into a smaller lower-bit representation.

Low-rank decomposition techniques [23] is the third cat-
egory of compression techniques we consider in FedFetch.
Low-rank methods rely on factorizing an input matrix M ∈
Ra,b into two low-rank matrices P ∈ Ra×r and Q ∈ Rr×b

where r ≪ min(a, b). The resulting matrices are significantly
smaller than the input matrix.

These compression techniques are straightforward to apply
in the upstream direction. Yet, the downstream direction is
troublesome with client sampling. The reason is that clients
selected for training should have the most up-to-date model
parameters. In the case of masking, due to the changing server-
side mask, an increasing proportion of parameters will have
changed with every round passed since the last time a client
participated. For clients equipped with a stale local model,
synchronization often leads to downloading the entire model
at the start of their Train phase, instead of a smaller masked
update. This nullifies speed and bandwidth improvements in
the downstream update synchronization. Downstream com-
pression with quantization, and low-rank decomposition are
also difficult when a client’s model is out-of-date.

D. Quantifying Staleness

To better understand the staleness problem, we conduct
an experiment using simple random client sampling with
STC [12], a masking method; and, LFL [20], a quantization
technique using default settings from Section IV-A3.

Figure 2a plots communication volume in downstream and
upstream directions for FL using STC with a sparsification
ratio of 0.2 and LFL with 4 bits. Figure 2a shows that despite
the large and consistent savings in the upstream direction,
there is little downstream savings past the first 20 rounds.
Most clients sampled every round have not participated in
training recently. Consequently, these clients must download
large updates (possibly the entire model) to catch up.

TABLE I: Summary of notations.

Symbol Definition

t, T index and total number of rounds
i, N,N index, total number, set of clients
K,Kt number and set of clients sampled at t
wt, ŵi

t server and client model at the start of t
νi aggregation weight of client i

∆̂i
t,∆ client i’s and aggregated server update at t
R max number of rounds available for prefetch
P i
t prefetch schedule for round t

Cdl, Cul downlink and uplink compressor
δt1,t2 accumulated server updates from t1 to t2
dt, Dt true and estimated round duration at t
BW i

dl downlink bandwidth for i
OC over-commitment

In Figure 2b, we plot how much content a resampled client
needs to download after not being selected for a variable num-
ber of rounds, for the two methods. The key observation is that
with growing local model staleness, a client needs to download
an increasingly large update. This update approaches the full
model size after 15 rounds for STC and 8 rounds for LFL.

E. Prefetching in FL

Prior research has considered the importance of clients
synchronizing the most recent model state [6], [12], [20] or a
relatively recent state [19] before receiving compressed down-
stream updates. With the exception of [19], these methods use
simple designs with state synchronization at the start of their
training round (R = 0) or one prior round (R = 1).

DoCoFL [19] assigns clients to start their Train phase with
a fixed and predetermined time window. For dealing with
heterogeneous client bandwidths, they proposed but did not
seem to evaluate, two separate time windows: one for strongly-
connected clients and another for weakly-connected clients.
This approach is unrealistic for cross-device FL environments
where round durations vary [5], [27].

In the simple forms of state synchronization above, all
clients scheduled for the same round of future training will
prefetch a fixed update. However, as we demonstrate in
Section II-D, clients with knowledge of the more recent global
models can download smaller updates. Simple strategies fail
to take advantage of this opportunity.

III. FEDFETCH DESIGN

We introduce prefetching as a new dimension for time-to-
accuracy optimization in cross-device FL which we realize in
FedFetch. We now explain its design.

Figure 3 shows how FedFetch introduces two new phases
to FL: Prepare and Prefetch. The server-side Prepare phase
pre-determines which clients will be selected and when they
will start prefetching. The client-side Prefetch phase features
clients prefetching model states before their scheduled training
round. Both phases are controlled by the hyperparameter R,
the number of rounds a client will be presampled in advance
and the maximum number of rounds available for a client to

Prefetch PhasePrepare Phase Train Phase

Server Creates Prefetch
Schedule

...

Prefetch

Prefetch Fetch

Fetch

Compute

Compute

Fetch Compute Upload

Upload

UploadIdle

Idle

Idle

Idle

Server Presamples
Client Set

Client

Client

Client

...

...Round:

Fig. 3: FedFetch Design. The goal of FedFetch is to minimize the amount of time clients spend on model download during
their Train phase (“Fetch” in orange in the diagram). FedFetch introduces two new phases: Prepare and Prefetch. During
Prepare, clients are presampled by the server and provided with a prefetch schedule. During Prefetch, each client prefetches
model state (“Prefetch” in green in the diagram) from the server before their Train phase starts.

prefetch. If R = 0, then FedFetch is equivalent to the standard
synchronous FL algorithm. In FedFetch, we are interested in
cases where R ≥ 1.

A. Prepare phase

The Prepare phase has two objectives. First, the server
creates a maximum prefetch time budget for clients to prefetch
the latest global model before the start of their training round
with presampling. Second, the server adjusts the prefetch
budget for each client to reduce total downlink update sizes
while minimizing download time with prefetch scheduling.

1) Presampling: In presampling, the server samples clients
who will participate in a future training round. In general, at
round t, the server will generate Kt∗ , where t∗ = t+R, the set
of K clients scheduled to commence training in round t∗. For
simplicity, Algorithm 2 only shows clients that are presampled
on round t = 1 or later who will start their Train phase on
round R+ 1 or later. FedFetch conducts no presampling and
prefetching for clients with Train phase in rounds 1, . . . , R.

Critically, presampling is compatible with most client sam-
pling strategies. We need to consider what changes across FL
training rounds to understand why this is the case. Typically,
the system profile, such as bandwidth and compute capacities,
are stable during an FL round, which takes only a few minutes.
This means sampling clients a few rounds beforehand based
on the client’s system profile [10] is sufficient. But, a client’s
statistical utility is determined through profiling its local data
or local model against information on the server [28]. This
profiling typically happens when the client last participated in
training. The latter approach incurs additional communication
overhead associated with synchronizing recent models just for
profiling purposes [3]. As clients will take many rounds to
be resampled anyway, we argue that predetermining selected
clients only a few rounds in advance has little impact on
determining a client’s statistical utility.

2) Prefetch Scheduling: After the server selects all the
clients Kt∗ to start their Train phase in a future round t∗,
it will need to construct a prefetch schedule for every client.

To see why FedFetch needs a prefetch scheduler and cannot
simply assign a fixed prefetch round for every client, we can
consider the following scenario: The system presamples two
clients c1 and c2. The first client, c1, is a straggler with low
downstream bandwidth and need multiple rounds to finish
prefetching all necessary updates. c2 is a non-straggler with
high downstream bandwidth. To optimize the download time
in the Fetch phase, the server would prefer the client to
prefetch as much as possible with a larger time budget in the
Prefetch phase. Hence, more rounds (up to the maximum of
R round) should be allocated to c1. However, as we increase
the prefetch window, we also inevitably increase the overall
size of the downstream update (see Section III-A3). This is
inefficient for faster clients like c2 who do not need that
much time for prefetching. Therefore, the design goal for
the prefetch scheduler is to assign the latest possible prefetch
schedule for every client while not negatively impacting the
time savings associated with a choice of R.

Algorithm 1 describes FedFetch’s prefetch scheduling algo-
rithm. The scheduler follows an iterative process of determin-
ing whether for the current prefetch start round t, a client ci
can acquire its Prefetch and Train phase downstream updates
before a time limit Tlimit. If possible, FedFetch updates the
client’s prefetch schedule to t. Otherwise, the client keeps
its original schedule. In the scenario where all clients can
complete within the time limit Tlimit, the scheduler will
advance tP , the minimum number of rounds required for every
client to finish prefetching within the time limit. There are two
under-specified elements in this design:

• What should the time limit Tlimit be?
• How can we determine the time it takes for a client to

finish downloading its Prefetch and Train phase down-
stream updates in some future round?

To answer the first question, we define the time limit Tlimit

as the time required for the slowest client to finish acquiring
all its downstream updates at the start of the Fetch phase. If
over-commitment OC > 1, then Tlimit becomes the 1/OC

Algorithm 1 FedFetch Prefetch Scheduler

1: procedure SCHEDULEPREFETCH(Presampled clients set
Kt∗ , current round tS , Train phase round t∗)

2: tP ← tS

3: Tlimit ←∞
4: for t← tS , . . . , t∗ do
5: Tt ← {T i

t = ESTFETCHTIME(i) | i ∈ Kt∗}
6: ▷ Find clients with Train phase fetch time ≤ Tlimit

7: Fr ← {i | i ∈ Kt∗ and T i
t ≤ Tlimit}

8: if |Fr| = |Kt+R| then
9: tP ← t

10: Tlimit ← 1/OC percentile of SORTASC(Tt)
11: end if
12: ∀i ∈ Fr, P

i ← t
13: end for
14: return Pt∗ = {P i | i ∈ Kt∗}
15: end procedure
16:
17: procedure ESTFETCHTIME(Client i, prefetch schedule

round t, base model round tP)
18: Davg ← EXPWEIGHTEDAVGROUNDDURATION()
19: U ← wt ▷ Accumulated updates to download
20: B ← 0 ▷ Client’s prefetch time budget
21: l← t ▷ Client’s model is in sync with server model

wl once it finishes downloading everything in U
22: for j ← t, . . . , t∗ − 1 do
23: B ← max(0, B +Davg − U/BW i

dl)
24: if B > 0 then
25: U ← max(0, δl,j−1 −B ·BW i

dl)
26: l← j
27: else
28: U ← U −Davg ·BW i

dl

29: end if
30: end for
31: return (U + δl,t∗−1)/BW i

dl

32: end procedure

percentile of fetch times to account for the fact that only the
K(1/OC) client updates are aggregated every round1.

To answer the second question, we introduce the EST-
FETCHTIME function in Algorithm 1 line 17. This function
takes in a client ci’s bandwidth profile BW i

dl and some
prefetch round t. Similar to [10], the client will immediately
provide their bandwidth profile BW i

dl upon being presampled.
The function then estimates, for the given client, the amount
of time it will take to download all the required downstream
updates (see Section III-A3). It does this by simulating
FedFetch’s Prefetch phase (see Section III-B). We choose
to estimate the fetch time instead of the total Train phase
time because, unlike bandwidth, compute speed is harder to
profile and would add uncertainty. Moreover, we highlight

1We considered adding a factor β, where 1 + β < OC so that Tlimit is
the (1 + β)/OC percentile fetch time. We evaluated different values of β
and found no difference in results as long as 1 + β is not close to OC.

two differences between time calculations in estimations for
prefetch scheduling and in practice during the Prefetch phase.

First, we do not know the duration of future rounds during
prefetch scheduling. To address this challenge, we estimate
the round duration Dt with an exponential weighted moving
average of prior round durations with α = 0.125. This is the
standard approach for estimating round trip times in protocols
like TCP [29]. Specifically, the estimated round duration for
the current round Dt equals the weighted sum of the true
round duration for the previous round dt−1 and the past
estimated duration Dt−1.

Dt = α · dt + (1− α) ·Dt−1 (1)

This better captures trends in round duration throughout the
day [5], [27]. In our evaluation we found that the choice of
α had little effect on our results, possibly due to the over-
commitment mechanism removing extreme stragglers which
decreases the variance of round durations.

Second, we do not know the size of various compressed
updates exactly for masking techniques because the mask
changes unpredictably across rounds. However, the absolute
size of the accumulated update after a certain number of
rounds is relatively stable (see Section II-D). With this in
mind, the server can dynamically profile the size of different
rounds of accumulated updates by recording and averaging the
sizes of updates sent during the Prefetch and Train phases.

These differences between the prefetch scheduling and the
actual Prefetch phase mean that the scheduler can only approx-
imate the optimal prefetch schedule. Nevertheless, we will
show that this approximation leads to significant bandwidth
savings in Section IV-B3.

3) Downstream Updates: We now detail the downstream
updates prefetched and fetched by clients during the Prefetch
and Train phases. Consider some round tS where the server
presamples clients to start their Prefetch phase in round
tP and their Train phase in round t∗. It is important to
note that individual clients start prefetching at some round
P i ∈ {tP , . . . , t∗}. The values for P i and tP are dynam-
ically decided in Section III-B1. FedFetch requires clients
to synchronize a base model wtP and all the server updates
∆tP , . . . ,∆t∗−1 before the start of t∗. With downstream com-
pression, these server updates will be further compressed with
the downstream compressor Cdl. For brevity, we represent the
sum of these compressed updates from round t1 to t2 with
t1 ≤ t2 with Equation (2). If t1 > t2, then δt1,t2 = 0.

δt1,t2 =

t2∑
j=t1

Cdl(∆j) (2)

We proceed to summarize the full downstream update below.

wt∗ = wtP + δtP ,t∗−1 (3)

In terms of the sizes of each term in Equation (3), wtP has
the same size as a full model. Each server update Cdl(∆j) has
the minimum possible update size. However, transferring the
sum of updates could lead to a smaller size than transferring

Prefetch Phase

Idle

Idle

Idle

Idle

IdleTypical

Straggler

Extreme

Typical

Missed

Fast

Train PhaseClient Types

...

Fig. 4: An example of a prefetch process for six clients and
R = 3. The blocks represent what each client is currently
prefetching (in green) or fetching (in orange) from the server.

each update separately (see Section II-D). For example, δ1,2 =
Cdl(∆1)+Cdl(∆2) could be smaller than transferring δ1,1 =
Cdl(∆1) and δ2,2 = Cdl(∆2) separately if the downstream
compressor Cdl is a masking method.

Similarly, we can also combine the base model with all
the updates until the client-specific prefetch schedule P i in
a single wP i instead of transmitting wtP and the updates
δtp,P i−1 . These size reductions resulting from combining
updates are what make the prefetch stage efficient. As a result,
the prefetched and fetched update for a client is the following.

wt∗ = wP i + δP i,t∗−1 (4)

Although written as a single term, the second term in Equa-
tion (4) may be separated into multiple updates in both the
prefetch scheduling and actual prefetch process to take full
advantage of the prefetch budget.

The first term, wP i , is unavoidable. So, the additional
δP i,t∗−1 term is the main culprit for bandwidth overhead.
Moreover, since the client model at the start of the Train
phase using FedFetch is equivalent to the client model with-
out prefetch, the convergence behavior of FedFetch should
be similar to the non-prefetch case. Therefore, the benefits
brought by FedFetch will increase with stronger downstream
compressors Cdl.

B. Prefetch Phase

Once client i from the presampled client set Kt∗ acquires
its prefetch schedule P i from the Prepare phase, the client
can start its Prefetch phase. Client ci will attempt to prefetch
starting at round P i until the Train phase at round t∗.

1) Prefetch Process: FedFetch employs a greedy prefetch
process where the presampled client c always tries to down-
load the most recently available update starting on their
scheduled prefetch start round P c. To minimize the Train
phase fetch size and time, FedFetch transmits the largest
downstream updates at the start and the smallest updates (δ
of a single round) at the end of the Prefetch phase.

Figure 4 illustrates an example FedFetch run with 6 clients
of different categories and R = 3. On round 0, FedFetch
presamples all 6 clients who will start training on round 3.
FedFetch also provides a prefetch schedule for each client
which is indicated by the round a client ci starts prefetching.

Algorithm 2 FedFetch

1: procedure SERVER
2: for t← 1, . . . , T do
3: ▷ Server: Prepare phase
4: Presample Kt+R from N
5: Pt+R ← SCHEDULEPREFETCH()
6: ▷ Clients in Kt+R start Prefetch phase
7: ▷ Clients in Kt start Train phase
8: ▷ Server: Aggregation
9: ∆t ←

∑
i∈Kt

νi∆̂
i
t

10: wt+1 ← wt + Cdl(∆t)
11: end for
12: end procedure
13:
14: procedure CLIENT i
15: ▷ Server notification happens on scheduled round P i.

Clients receive the current round t and train round t∗

16: NOTIFIEDBYSERVER()
17: ▷ Client: Prefetch phase (t < t∗)
18: ▷ Sync base model
19: ŵi

ℓi
← DOWNLOAD(wP i)

20: ℓi ← P i − 1
21: ▷ Sync server updates
22: while t← QUERYSERVERROUND(), t < t∗ do
23: ŵi

t ← ŵi
ℓi
+ DOWNLOAD(δℓi,t−1)

24: ℓi ← t− 1
25: end while
26: ▷ Client: Train phase (t = t∗)
27: ŵi

t ← ŵi
ℓi
+ DOWNLOAD(δℓi,t−1)

28: ∆̂i
t ← Cdl(LOCALTRAINING(ŵi

t)− ŵi
t)

29: UPLOAD(∆̂i
t)

30: end procedure

A typical client like c1 will start prefetching on round 2
and completes before the Train phase in round 3. TRhe update
acquired by the client in its Train phase is the smallest possible
update δ2,2. In contrast, another client, c2, needs two rounds
to prefetch all its updates. Therefore, c2 prefetches in round
1 and continues to prefetch δ1,1 as its local model is from the
start of round 1 and the new update δ1,1 is now available.

For a client with substantial bandwidth, c3, the server
assigns it to start prefetching on round 3 because c3 can finish
downloading the full model w3 in its Train phase. However,
clients like c4 may not prefetch all their Prefetch phase updates
before round 3. This forces client c4 to acquire both pending
prefetch and Train phase updates, increasing fetch time.

Stragglers like c5 require the maximum prefetch budget of
R = 3 rounds to prefetch its updates starting from round 0.
Clients with low bandwidth, like c6, may still fail to finish
prefetching within 3 rounds. But, prefetching benefits such
clients by reducing the volume they download during the Train
phase compared to cases with no prefetching.

2) Impact of Client Unavailability: In real deployments
of cross-device FL, clients are online at different times.
Therefore, client sampling process only samples from the set

of clients that are currently online. So, a method that selects
clients earlier than normal may suffer performance drops
due to clients going offline. FedFetch addresses this problem
with a simple replacement strategy. These replacement clients
will immediately start prefetching if there is still a prefetch
budget. We observe empirically that this mostly negates the
performance issues caused by unavailability (Section IV-B6).

IV. EXPERIMENTAL EVALUATION

We evaluate FedFetch along several dimensions and answer
the following four questions:
Q1: How well does FedFetch integrate with existing tech-

niques such as client sampling, masking, quantization,
and low-rank decomposition?

Q2: What impact does FedFetch have on training time,
bandwidth usage, and model accuracy?

Q3: How does FedFetch’s hyperparameter impact its perfor-
mance?

Q4: How does FedFetch handle settings involving overcom-
mitment and client unavailability?

A. Experimental Setup

1) Environment and Datasets: We run all experiments
on the FedScale [27] platform. We use client bandwidth
data points from the Measurement Lab’s NDT data set [25]
(Figure 1a). We rely on FedScale to organize client device
hardware data from AI Benchmark [30] and online/offline
behaviour traces from FLASH [31] (Section IV-B6).

We use benchmarking datasets provided by FedScale: FEM-
NIST [32], Google Speech [33], and OpenImage [34]. The
FEMNIST and OpenImage datasets are used to train image
classification models. The former consists of 640K colored
images and 2,800 clients and the latter consists of 1.3M
colored images and 10,625 clients. The Google Speech dataset
is used to train a speech recognition model and consists of
105K speech samples and 2,066 clients. We train different
models — FEMNIST uses ShuffleNet [35], Google Speech
uses ResNet-34 [36], and OpenImage uses MobileNet [37].
Similar to recent work [27], we set the target accuracy to
be the highest achievable accuracy by tested methods. The
number of client results collected per round is K = 30 for
FEMNIST and Google Speech, and K = 100 for OpenImage.
We set over-commitment OC = 1.3 [5]; the actual number of
clients sampled per round will increase by 1.3×.

2) Compression strategies: FedFetch works with most ex-
isting compression methods applied to FedAvg with simple
random client sampling [1]. To answer Q1, we compare the
method with FedAvg versus using FedFetch and the method
together. We use STC2 [12], GlueFL3 [6] as the represen-
tatives for masking, QSGD [16], LFL [20], EDEN [18] for
quantization, and PowerSGD [23] for matrix decomposition.
We also evaluate FedFetch’s compatibility with DoCoFL [19],
a full model quantization method by replacing DoCoFL’s

2STC is a hybrid method featuring both masking and quantization which
are orthogonal techniques, we exclusively evaluate STC’s masking strategy

3We replace simple random sampling with the sticky client sampling

transmission of models from the top of a compressed model
queue with FedFetch’s prefetch method, which sends more
recent compressed server models.

3) Parameters: We use parameter values from previous
works which reliably reach the target test accuracy. Clients
perform 10 local updates per round with PyTorch’s SGD
optimizer with a momentum factor of 0.9 on batches of size
20. The initial learning rate is set to 0.01 and decreases
by 0.98 every 10 rounds. For STC and GlueFL, we set a
compression ratio of q = 20% for ShuffleNet, q = 35% for
MobileNet, and q = 30% for ResNet-34. For quantization,
we use a bit budget of 4 bits for QSGD, LFL, and EDEN.
For PowerSGD, we set the rank to 16 for ShuffleNet and 24
for MobileNet and ResNet-34. Finally, we set DoCoFL’s bit-
budget, anchor deployment rate, and anchor queue size to 2,
10 and 3 respectively.

4) Metrics: For Q2 and Q3, we measure the end-to-end
time, download-specific training time, and bandwidth usage.
Since the straggler client will determine the total time duration
of an FL round, we use the sum of the stragglers’ download
times to represent the total fetch time (FT) and similarly for
compute and upload time. This way, the total FL training
time (TT) is equal to the sum of the fetch (FT), compute,
and upload times. For bandwidth usage, the total transmission
volume (TV) represents the transmission volume used by ev-
ery client, including overcommitted clients. The fetch volume
(FV) represents the downstream bandwidth associated with the
fetch operation for all clients participating in the Train phase.
For Q4, we report the time and bandwidth when the average
of the previous 5 testing rounds reaches the target accuracy
listed in Table II. This is similar to prior work [3], [6].

B. Results

1) Main Performance Results (Q1–Q2): Using settings
from the previous section, we experiment with each com-
pression method with and without FedFetch. Therefore, Fed-
Fetch’s baselines are the compression methods without Fed-
Fetch. After reaching the target accuracy in Table II, we record
the time-to-accuracy and bandwidth-to-accuracy performance.

Table II shows that FedFetch consistently saves fetch
(download) and end-to-end training time at little extra band-
width overhead for all tested compression algorithms and
across different models and datasets. On average, we see a
4.49× reduction in fetch time. This translates into a mean
end-to-end training time speedup of 1.26×.

The time savings are significant for masking techniques
like STC, where FedFetch speeds up training time by 1.49×.
FedFetch is less effective at improving GlueFL (1.09× end-to-
end speedup on average). However, this is expected because
GlueFL already employs sticky sampling, a client sampling
technique that favors clients who recently participated in
training. For quantization methods like QSGD, LFL, and
EDEN, FedFetch achieves an average end-to-end time speedup
of 1.29×. We further show that FedFetch reduces PowerSGD’s
end-to-end time by 1.28×. The total time savings (1.07×
speedup) are less noticeable for full model quantization

TABLE II: Main performance results for three model-dataset pairs. Metrics FT and TT represent Fetch Time and Total Training
Time, in hours. FV and TV represent Fetch Volume and Total Transmission Volume, in ×102 GB. Results are recorded when
the target accuracy (Trg) is reacheda. We run each setting at least 3 times and report the mean.
a PowerSGD achieves a maximum test accuracy of 61% on the OpenImage dataset, we underline these results

FEMNIST Trg 75% Google Speech Trg 61% OpenImage Trg 68%
FT TT FV TV FT TT FV TV FT TT FV TV

Baseline FedAvg 0.64 2.56 1.56 2.76 5.54 21.7 12.2 21.6 1.14 5.4 10.8 19.1

Masking

STC 0.85 2.46 2.58 3.07 9.96 25.0 13.7 18.0 0.97 4.47 11.5 15.0
FedFetch + STC 0.21 1.67 1.31 3.14 2.71 13.4 10.4 21.6 0.44 4.00 8.85 18.1

GlueFL 0.30 2.11 2.58 3.32 2.28 16.7 12.9 18.9 0.38 2.55 14.0 20.7
FedFetch + GlueFL 0.18 1.84 1.49 4.01 1.26 14.3 11.2 25.0 0.23 2.36 8.84 24.6

Quantization

QSGD 0.46 1.35 1.56 1.73 3.41 8.62 10.49 11.6 0.72 3.68 10.8 12.0
FedFetch + QSGD 0.06 0.90 0.58 1.83 0.84 6.26 4.87 14.3 0.13 3.07 4.45 13.7

LFL 0.43 1.27 1.45 1.60 3.03 10.9 10.78 11.9 0.67 3.55 10.4 11.6
FedFetch + LFL 0.06 0.90 0.58 1.83 0.58 8.88 4.7 14.7 0.12 3.09 4.34 13.7

EDEN 0.42 1.26 1.43 1.60 4.02 12.7 11.7 13.7 0.74 3.54 10.2 11.7
FedFetch + EDEN 0.06 0.89 0.60 1.75 1.12 10.1 6.92 16.5 0.16 3.12 5.48 14.1

Low-rank POWERSGD 1.49 4.23 5.25 5.62 6.87 26.7 28.1 29.8 0.58 2.81 8.01 9.24
FedFetch + POWERSGD 0.14 3.02 1.47 6.54 0.67 21.0 6.89 35.5 0.11 2.43 4.28 11.0

Quantization DoCoFL 0.04 0.96 0.13 0.72 0.48 8.79 1.45 6.97 0.12 3.26 1.15 5.52
(Full model) FedFetch + DoCoFL 0.04 0.93 0.28 0.56 0.50 8.47 2.95 6.02 0.12 2.87 2.50 5.38

Fig. 5: Bandwidth usage of select FL techniques with and
without FedFetch. Techniques ending with “+FF” apply Fed-
Fetch. Each bar is divided into Fetch, Up(load), and Prefetch.

methods like DoCoFL. This is expected because DoCoFL
already leverages a simple form of prefetching which we
optimize further with FedFetch. Specifically, through prefetch
scheduling, FedFetch allows DoCoFL to safely use more
recently compressed base models without impacting round
duration whereas DoCoFL uses a more stale model from the
top of its compressed model queue.

Crucially, FedFetch achieves the above speedups with a
13% average increase in bandwidth. FedFetch fulfills its pri-
mary goal of speeding up downstream compression commu-
nication in cross-device FL for a broad range of compression
techniques in a bandwidth-efficient manner.

2) Bandwidth Breakdown (Q2): We examine the effect of
FedFetch on bandwidth usage in Figure 5, which plots the
total volume breakdown between prefetch, fetch, and upstream
for STC, GlueFL, LFL, QSGD methods with and without
FedFetch after they reach the target accuracy for FEMNIST.
We see a shift in the distribution from fetch to prefetch when

0.3 0.6 0.9 1.2 1.5 1.8 2.12.1 2.4
Time Elapsed(hr)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

baseline(STC)
naive_1R
naive_3R
prefetch_3R

(a) Comparison with naive
prefetching on time-to-accuracy
performance for STC.

50 100 150 200 250 300 350
Transmission Volume(GB)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

baseline(STC)
naive_1R
naive_3R
prefetch_3R

(b) Comparison with naive
prefetching on bandwidth-to-
accuracy performance for STC.

0.1 0.3 0.5 0.7 0.9 1.11.1
Time Elapsed(hr)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

baseline(LFL)
naive_1R
naive_3R
prefetch_3R

(c) Comparison with naive
prefetching on time-to-accuracy
performance for LFL.

20 70 120 170 220
Transmission Volume(GB)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

baseline(LFL)
naive_1R
naive_3R
prefetch_3R

(d) Comparison with naive
prefetching on bandwidth-to-
accuracy performance for LFL.

Fig. 6: Comparison with naive forms of prefetching for
masking with STC and quantization with LFL.

FedFetch is used. With FedFetch, the fetch bandwidth is, on
average, 59% lower. This suggests that FedFetch achieves the
goal of shifting downstream bandwidth from fetch to prefetch.

3) Comparison with Naive Forms of Prefetching (Q2):
We compare FedFetch with two simple prefetching methods
on FEMNIST. In the first, every presampled client shares a
fixed prefetch schedule of 1 round, while the second method
uses 3 rounds. We plot the time and total bandwidth versus

0.3 0.6 0.9 1.2 1.5 1.8 2.12.1 2.4
Time Elapsed(hr)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

STC_1R
STC_3R
STC_5R
STC_10R
STC_baseline

(a) Effect of R on time-to-
accuracy performance for STC.

50 100 150 200 250 300 350
Transmission Volume(GB)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

STC_1R
STC_3R
STC_5R
STC_10R
STC_baseline

(b) Effect of R on bandwidth-to-
accuracy performance for STC.

0.1 0.3 0.5 0.7 0.9 1.11.1
Time Elapsed(hr)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

LFL_1R
LFL_3R
LFL_5R
LFL_10R
LFL_baseline

(c) Effect of R on time-to-
accuracy performance for LFL.

20 70 120 170 220
Transmission Volume(GB)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

LFL_1R
LFL_3R
LFL_5R
LFL_10R
LFL_baseline

(d) Effect of R on bandwidth-to-
accuracy performance for LFL.

Fig. 7: Sensitivity analysis for the max number of prefetch
rounds R for masking with STC and quantization with LFL.

accuracy performance for the base compression method (STC
or LFL), FedFetch with R = 3, and the two simple prefetching
methods in Figure 6. These plots show that FedFetch brings as
much time-to-accuracy performance as using a fixed 3-round
prefetch schedule. But, FedFetch uses the same or less amount
of extra bandwidth as the fixed 1-round prefetching, despite a
prefetch budget of 3 rounds. FedFetch achieves the maximum
speedup for a given R without extra bandwidth usage.

4) Sensitivity Analysis of R (Q3): We evaluate the impact
of the max number of prefetch rounds, R, on performance. We
apply FedFetch to STC and LFL on FEMNIST. We vary R,
choosing values of 1, 3, 5, and 10. For any choice of R, adding
FedFetch to a compression method shifts the corresponding
time-to-accuracy curve to the left, as seen in Figure 7a. This
indicates that adding FedFetch can consistently reduce training
time. Among these, the curve associated with R = 1 has the
worst time-to-accuracy performance. This is expected because
the slowest selected clients may require more than 1 round to
complete prefetching. For R > 1, the difference in time-to-
accuracy and bandwidth-to-accuracy performance is smaller
because stragglers needing multiple rounds of prefetching
participate less frequently in training. Nevertheless, Figure 7b
and Figure 7d show that the bandwidth consumption of
FedFetch only increases slightly for larger values of R. This
indicates that FedFetch can minimize the extra bandwidth
overhead associated with prefetching.

5) Impact of Over-commitment (Q4): In Table III, as over-
commitment OC increases, more clients with weaker connec-
tivity are removed. This leads to faster training time at the
cost of higher data transmission volume, with this effect the
most significant for lower values of OC. FedFetch consistently
decreases FT, TT, and FV across OC values. Note that the

TABLE III: Impact of overcommitment OC on the FEMNIST
dataset (Trg 75%). See Table II for column definitions.

STC STC + FedFetch
OC FT TT FV TV FT TT FV TV
1.0 10.97 51.33 1.97 2.45 5.5 48.39 1.90 2.63
1.1 3.03 8.12 1.77 2.37 1.16 7.34 1.50 2.68
1.2 1.54 3.5 2.09 2.53 0.59 2.75 1.44 3.09
1.3 0.85 2.46 2.58 3.07 0.21 1.67 1.31 3.14
1.4 0.57 2.04 2.78 3.28 0.11 1.37 1.23 3.22

0.3 0.6 0.9 1.2 1.5 1.8 2.12.1 2.4
Time Elapsed(hr)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

baseline(STC)
full_availability
no_replace
replace

(a) Impact of client availability on
time-to-accuracy performance.

50 100 150 200 250 300 350
Transmission Volume(GB)

40
45
50
55
60
65
70
75
80

Te
st

in
g

Ac
cu

ra
cy

baseline(STC)
full_availability
no_replace
replace

(b) Impact of client availability
on bandwidth-to-accuracy perfor-
mance.

Fig. 8: Impact of Client Availability for FedFetch + STC.

fetch volume decreases with OC values for STC+FedFetch
instead of increasing as in STC. This is because clients
with average bandwidth are more numerous and are likely
to become stragglers under higher OC settings. FedFetch’s
adaptively encourages prefetch schedules with more prefetch
rounds for these clients. This shifts bandwidth consumption
from fetch to prefetch.

6) Impact of Client Availability (Q4): Figure 8 compares
two versions of FedFetch applied to STC. One version is
without modifications (no replace), and the second performs
client replacement (replace) by including a random client
from the set of all clients currently online. We also plot
the baseline STC technique under the same availability and
FedFetch STC when clients have perfect availability. With
clients going offline, the time-to-accuracy performance of
FedFetch diminishes as compared to full availability. However,
adding the simple replacement mechanism allows FedFetch to
mitigate most of the effect of offline clients. This is indicated
by the replace line being further to the left than the no replace
line in Figure 8a.

V. CONCLUSION

We introduced FedFetch, a strategy to address the com-
munication bottleneck in federated learning (FL) caused by
the combination of client sampling and update compres-
sion techniques. FedFetch efficiently schedules model state
prefetching for clients, significantly reducing download and
overall training times. Our evaluation demonstrates that incor-
porating FedFetch into communication-efficient FL methods
can decrease end-to-end training time by 1.26× and download
time by 4.49× across a variety of compression techniques.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Effi-
cient federated learning via guided participant selection,” in USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2021.

[4] B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, “Tackling system
and statistical heterogeneity for federated learning with adaptive client
sampling,” in IEEE INFOCOM 2022-IEEE conference on computer
communications. IEEE, 2022, pp. 1739–1748.

[5] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings of
machine learning and systems, vol. 1, pp. 374–388, 2019.

[6] S. He, Q. Yan, F. Wu, L. Wang, M. Lécuyer, and I. Beschastnikh,
“Gluefl: Reconciling client sampling and model masking for bandwidth
efficient federated learning,” Proceedings of Machine Learning and
Systems, vol. 5, pp. 695–707, 2023.

[7] C. Li, X. Zeng, M. Zhang, and Z. Cao, “Pyramidfl: a fine-grained client
selection framework for efficient federated learning,” in Proceedings of
the 28th Annual International Conference on Mobile Computing And
Networking, ser. MobiCom ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 158–171.

[8] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proceedings of the Na-
tional Academy of Sciences, vol. 118, no. 17, p. e2024789118, 2021.

[9] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” Transactions on Machine Learning Research, 2022.

[10] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
international conference on communications (ICC). IEEE, 2019, pp.
1–7.

[11] F. Wu, S. Guo, Z. Qu, S. He, Z. Liu, and J. Gao, “Anchor sampling
for federated learning with partial client participation,” in International
Conference on Machine Learning. PMLR, 2023, pp. 37 379–37 416.

[12] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

[13] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with
memory,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

[14] F. Wu, X. Wang, Y. Wang, T. Liu, L. Su, and J. Gao, “Fiarse: Model-
heterogeneous federated learning via importance-aware submodel ex-
traction,” Advances in Neural Information Processing Systems, 2024.

[15] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G. Zhang,
“Communication-efficient federated learning with adaptive parameter
freezing,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2021, pp. 1–11.

[16] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in neural information processing systems, vol. 30, 2017.

[17] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic
gradient descent and its application to data-parallel distributed training
of speech dnns,” in Fifteenth annual conference of the international
speech communication association, 2014.

[18] S. Vargaftik, R. B. Basat, A. Portnoy, G. Mendelson, Y. B. Itzhak,
and M. Mitzenmacher, “EDEN: Communication-efficient and robust
distributed mean estimation for federated learning,” in Proceedings of
the 39th International Conference on Machine Learning, ser. Proceed-
ings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162. PMLR, 17–23
Jul 2022, pp. 21 984–22 014.

[19] R. Dorfman, S. Vargaftik, Y. Ben-Itzhak, and K. Y. Levy, “DoCoFL:
Downlink compression for cross-device federated learning,” in Proceed-
ings of the 40th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, A. Krause, E. Brunskill,
K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR,
23–29 Jul 2023, pp. 8356–8388.

[20] M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor, “Federated
learning with quantized global model updates,” 2020.

[21] S. Zheng, C. Shen, and X. Chen, “Design and analysis of uplink and
downlink communications for federated learning,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 7, pp. 2150–2167, 2020.

[22] F. Wu, S. He, S. Guo, Z. Qu, H. Wang, W. Zhuang, and J. Zhang,
“Sign bit is enough: A learning synchronization framework for multi-
hop all-reduce with ultimate compression,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 193–198.

[23] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Powersgd: Practical low-
rank gradient compression for distributed optimization,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[24] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient feder-
ated learning with sketching,” in International Conference on Machine
Learning. PMLR, 2020, pp. 8253–8265.

[25] Measurement Lab, “The M-Lab NDT data set,” (2024-01-01 – 2024-
01-31).

[26] C. Yang, M. Xu, Q. Wang, Z. Chen, K. Huang, Y. Ma, K. Bian,
G. Huang, Y. Liu, X. Jin, and X. Liu, “Flash: Heterogeneity-aware
federated learning at scale,” IEEE Transactions on Mobile Computing,
vol. 23, no. 1, pp. 483–500, 2024.

[27] F. Lai, Y. Dai, S. S. Singapuram, J. Liu, X. Zhu, H. V. Madhyastha,
and M. Chowdhury, “FedScale: Benchmarking model and system per-
formance of federated learning at scale,” in International Conference
on Machine Learning (ICML), 2022.

[28] L. Fu, H. Zhang, G. Gao, M. Zhang, and X. Liu, “Client selection
in federated learning: Principles, challenges, and opportunities,” IEEE
Internet of Things Journal, 2023.

[29] M. Sargent, J. Chu, D. V. Paxson, and M. Allman, “Computing TCP’s
Retransmission Timer,” RFC 6298, Jun. 2011.

[30] A. Ignatov, “Ai benchmark performance ranking,” https://ai-
benchmark.com/ranking.html, 2023.

[31] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,
“Characterizing impacts of heterogeneity in federated learning upon
large-scale smartphone data,” in Proceedings of the Web Conference
2021, 2021, pp. 935–946.

[32] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
2019.

[33] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” arXiv preprint arXiv:1804.03209, 2018.

[34] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-
Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and
V. Ferrari, “The Open Images Dataset V4: Unified Image Classification,
Object Detection, and Visual Relationship Detection at Scale,” IJCV,
2020.

[35] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[37] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

