
Neural Networks 184 (2025) 107067 

A
0
n

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Review

Promises and perils of using Transformer-based models for SE research
Yan Xiao a ,∗,1, Xinyue Zuo b ,1, Xiaoyue Lu a, Jin Song Dong b, Xiaochun Cao a,
Ivan Beschastnikh c

a Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
b National University of Singapore, Computing 1, 13 Computing Drive, 117417, Singapore
c University of British Columbia, ICICS/CS Building 201-2366 Main Mall, Vancouver, BC, Canada

A R T I C L E I N F O

Keywords:
Transformer-based pre-trained models
CodeBERT
CodeGPT
CodeT5

A B S T R A C T

Many Transformer-based pre-trained models for code have been developed and applied to code-related tasks.
In this paper, we analyze 519 papers published on this topic during 2017–2023, examine the suitability of
model architectures for different tasks, summarize their resource consumption, and look at the generalization
ability of models on different datasets.

We examine three representative pre-trained models for code: CodeBERT, CodeGPT, and CodeT5, and
conduct experiments on the four topmost targeted software engineering tasks from the literature: Bug Fixing,
Bug Detection, Code Summarization, and Code Search.

We make four important empirical contributions to the field. First, we demonstrate that encoder-only
models (CodeBERT) can outperform encoder–decoder models for general-purpose coding tasks, and showcase
the capability of decoder-only models (CodeGPT) for certain generation tasks. Second, we study the most
frequently used model-task combinations in the literature and find that less popular models can provide
higher performance. Third, we find that CodeBERT is efficient in understanding tasks while CodeT5’s efficiency
is unreliable on generation tasks due to its high resource consumption. Fourth, we report on poor model
generalization for the most popular benchmarks and datasets on Bug Fixing and Code Summarization tasks.

We frame our contributions in terms of promises and perils, and document the numerous practical issues
in advancing future research on transformer-based models for code-related tasks.

Contents

1. Introduction ...................................................................................................................................................................................................... 2
2. Background ....................................................................................................................................................................................................... 2

2.1. Overview of research in transformer-based methods .................................................................................................................................. 3
2.2. Transformer-based pre-trained models in this study................................................................................................................................... 3

3. Methodology .................................................................................................................................................................................................... 5
3.1. Literature review.................................................................................................................................................................................... 5
3.2. Research questions ................................................................................................................................................................................. 6

4. Experimental setup ............................................................................................................................................................................................ 6
4.1. Pre-trained models ................................................................................................................................................................................. 6
4.2. Datasets................................................................................................................................................................................................. 6
4.3. Evaluation metrics.................................................................................................................................................................................. 7
4.4. Configurations........................................................................................................................................................................................ 7

5. Results ............................................................................................................................................................................................................. 7
5.1. RQ1. Literature, popular applications, and developers’ needs ..................................................................................................................... 7
5.2. RQ2. Applications’ performance............................................................................................................................................................... 9
5.3. RQ3. Resource consumption .................................................................................................................................................................... 10
5.4. RQ4. Generalization ............................................................................................................................................................................... 10

6. Discussion and threats to validity........................................................................................................................................................................ 11

∗ Corresponding author.
E-mail address: xiaoy367@mail.sysu.edu.cn (Y. Xiao).

1 Equal contribution.
https://doi.org/10.1016/j.neunet.2024.107067
Received 3 July 2024; Received in revised form 7 December 2024; Accepted 16 December 2024
vailable online 24 December 2024 
893-6080/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 
c/4.0/ ). 

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0000-0002-2563-083X
https://orcid.org/0009-0008-4411-3054
mailto:xiaoy367@mail.sysu.edu.cn
https://doi.org/10.1016/j.neunet.2024.107067
https://doi.org/10.1016/j.neunet.2024.107067
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.107067&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Y. Xiao et al.

M
N
t

t
c

m
g

C

e
e

m

o
p
w
i
e
o
l
i
w
p
f

h
e

Neural Networks 184 (2025) 107067 
6.1. Discussion on additional statistics ............................................................................................................................................................ 11
6.2. Threats to validity .................................................................................................................................................................................. 12

7. Related work .................................................................................................................................................................................................... 12
7.1. Pre-trained language models ................................................................................................................................................................... 12
7.2. Applications........................................................................................................................................................................................... 13

7.2.1. Bug fixing................................................................................................................................................................................ 13
7.2.2. Bug detection........................................................................................................................................................................... 13
7.2.3. Code summarization ................................................................................................................................................................. 13
7.2.4. Code search ............................................................................................................................................................................. 13

7.3. Empirical study ...................................................................................................................................................................................... 13
8. Conclusion ........................................................................................................................................................................................................ 13

CRediT authorship contribution statement ........................................................................................................................................................... 13
Declaration of competing interest ........................................................................................................................................................................ 14
Acknowledgments .............................................................................................................................................................................................. 14
Data availability ................................................................................................................................................................................................ 14
References......................................................................................................................................................................................................... 14
t
w
a
t
b
a

a
g

1. Introduction

The availability of large natural language corpora and advances in
L have led recent models to achieve extraordinary performance on
atural Language Processing (NLP) tasks. Transformer-based architec-

ures (Vaswani et al., 2017) are among the most successful model vari-
ants in this field. Transformer-based models, like BERT (Bidirectional
Encoder Representations from Transformers) and GPT (Generative Pre-
rained Transformer), have revolutionized NLP tasks, including text
lassification, sentiment analysis, and language generation.

Given a large number of software code corpora available, Transfor
er-based models have also rapidly gained traction in software en-

ineering (SE) research (Le-Cong, Kang, Nguyen, Haryono, Lo, Le,
& Huynh, 2022), with hundreds of transformer-related papers pub-
lished in top-tier SE conferences and journals in the past five years.
In many instances, these works have reported state-of-the-art per-
formance on a variety of SE tasks. Some example applications of
transformer-based techniques include automated program repair (Fu,
Tantithamthavorn, Le, Nguyen, & Phung, 2022; Xia & Zhang, 2022;
Zhang, Panthaplackel, Nie, Li & Jessy and Gligoric, 2022), merge con-
flict resolution (Svyatkovskiy et al., 2022; Zhang, Mytkowicz, Kaufman,
Piskac, & Lahiri, 2022), requirements engineering (Anish, Lawhatre,

hatterjee, Joshi, & Ghaisas, 2022; Devine, 2022; Ezzini, Abualhaija,
Arora, & Sabetzadeh, 2022), and more (Huang et al., 2022; Le-Cong
t al., 2022). Model structures, like encoder-only, decoder-only, and
ncoder–decoder (Chakraborty, Ahmed, Ding, Devanbu, & Ray, 2022),

together with the different pre-training objectives, such as generative
objectives and denoising objectives, also add to the diversity of work
in this space.

The excitement around these transformer-based models, however,
ust be tempered with a careful assessment of their advantages and

pitfalls. This is our focus in this paper.
In this paper, we take a step back and reflect on the copious amount

f work that has been published in this area thus far. We study 519
apers published at 27 top conferences and journals during 2017–2023,
hich cover 101 different applications. We consider the models used

n these papers, which SE applications they target, benchmarks used in
valuation, and other key characteristics of this quickly growing body
f work. We then consider the performance of the top models from the
iterature on the most popular applications and review the correspond-
ng model generalizability and computational efficiency. Throughout,
e present each of our findings as either a promise or a peril to help
osition SE research that relies on transformer-based models on a firmer
ooting.

The closest related empirical studies of this rich research space
ave conducted performance evaluation of different pre-trained mod-
ls across various applications (Niu et al., 2023; Zeng et al., 2022).
2 
Additionally, Zhou, Sha, and Peng (2024) investigated the calibra-
ion effectiveness of pre-trained models for code understanding tasks,
hile Liu, Tantithamthavorn, Liu, and Li (2024) explored the reliability
nd explainability of language models in program generation. Unlike
hese studies, our work is more comprehensive. We select applications
ased on extensive literature from 2017–2023 and we explore more
spects of pre-trained models of code, such as their resource consump-

tion and generalizability. Our study, therefore, provides a more holistic
view of the capabilities and limitations of transformer-based models in
SE research.

We consider three representative pre-trained transformer-based
models for code and four most popular applications. We study model
rchitecture trade-offs, model performance, time consumption, and
eneralizability. We support our findings with statistical tests. We have

made all of our related code and data open-source (Zuo, 2023).
In summary, our work makes the following contributions:

• We perform a comprehensive review of transformer-based re-
search published during 2017–2023 and report on key char-
acteristics. For example, we find that the four most popular
applications of transformer-based models in SE are Bug Fixing,
Bug Detection, Code Summarization, and Code Search, with 54,
53, 51, and 33 papers respectively. However, we also find that
existing work overlooks many applications that developers need.

• We find that CodeBERT is best suited for understanding tasks and
demonstrate that both CodeBERT and CodeGPT deliver promising
results in certain generation tasks when evaluated with more
pertinent metrics. This highlights the power of encoder-only and
decoder-only models, which contrasts with prior work. Addition-
ally, we provide guidance for software engineering researchers on
how to effectively choose models for specific tasks.

• We further consider model resource consumption and find that
CodeBERT is highly efficient for understanding tasks, achieving
the highest performance with the lowest resource use. We ques-
tion CodeT5’s efficiency for generation tasks, as its high resource
consumption does not guarantee consistently better performance.
Therefore, when selecting transformer-based models, researchers
and practitioners should carefully consider the performance and
time complexity trade-offs for their specific application.

• We fill a gap in our understanding of the generalizability of
transformer-based models for SE. We find that models trained
on the popular benchmarks and datasets for Code Summarization
and Bug Fixing generalize poorly to other datasets. This highlights
a need for improvements in dataset quality.

2. Background

The background section is divided into two parts: an introduction
to the overall research landscape of Transformer-based models, and
a detailed explanation of the specific pipelines and knowledge of the
Transformer-based models used in, or relevant to, our study.



Y. Xiao et al.

T
T

m
d

e
r
t
e

d
m
b

o

p
s
T

a
C
p
t
t

T
b

y

i
e

b

t
m

a
d

i

s
T
s

b

i

t
c
t
i
m

Neural Networks 184 (2025) 107067 
2.1. Overview of research in transformer-based methods

In the past seven years, there has been extensive research on
ransformer-based pre-trained models. These models are large-scale
ransformer architectures trained on vast amounts of unlabeled data

using self-supervised learning objectives. The goal of developing such
odels is to obtain general, transferable knowledge within a specific
omain, such as programming languages Chakraborty et al. (2022).

In this section, we provide a brief overview of the foundational
architectures of Transformer-based models, the key models that have
been proposed, the tasks they address, and the techniques used to
enhance their performance.
Model Architectures: The most important components of Transformer
architecture are the encoder–decoder structure and attention mecha-
nism, which resides in the Transformer blocks. The encoder aims to
xtract important information from the input, and outputs the encoded
epresentation. The encoded representation is then taken in as input by
he decoder to generate output in an autoregressive manner (Vaswani
t al., 2017). Some variants of the Transformer model may contain only

an encoder or only a decoder.
A Transformer has multiple layers, which are called Transformer

blocks, and they serve as the building blocks for the encoder and
ecoder. The core component of a Transformer block is the attention
echanism, which is used to process the input to each Transformer

lock. Through the attention mechanism, a Transformer provides con-
text for different tokens in the input sequence.
Models: Several foundational models have shaped the field of Transfor
mer-based pre-trained models. BERT Kenton and Toutanova (2019) rev-
lutionized tasks like classification and question answering. RoBERTa

Liu et al. (2019) refined BERT’s pre-training strategies, achieving better
erformance. GPT models Radford et al. (2019) advanced autoregres-
ive generation, excelling in text generation and few-shot learning.
5 Raffel et al. (2020) unified NLP tasks in a text-to-text frame-

work, simplifying multi-task learning. CodeBERT Feng et al. (2020)
nd Codex Chen et al. (2021) specialized in code-related tasks, with
odex powering tools like GitHub Copilot. XLNet Yang (2019) im-
roved on BERT by introducing permutation-based language modeling
o better capture bidirectional context. ALBERT Lan (2019) reduced
he number of parameters to improve efficiency, while DistilBERT Sanh

(2019) provided a smaller, faster model by distilling BERT’s knowledge.
hese models represent foundational advancements in Transformer-
ased models, significantly impacting the field and inspiring ongo-

ing research into expanding their capabilities across a wide range of
applications.
Applications: Pre-trained models have demonstrated exceptional per-
formance across a range of tasks in natural language processing (NLP),
such as machine translation, question answering, and sentiment anal-
sis (Lan, 2019; Vaswani et al., 2017; Yang, 2019). Building on their

success in the NLP domain, these models have also been applied to var-
ous tasks in other fields, including software engineering (Bommasani
t al., 2021; Wei et al., 2022; Zhao et al., 2023). For instance, in

code search, GraphCodeBERT enhances query-matching accuracy by
incorporating structural information from code Shi et al. (2023). For
code generation, CodeT5 excels in tasks like cross-language code trans-
lation, ensuring functional consistency across different programming
languages Shi et al. (2023). In code clone detection, pre-trained models
have been highly effective at identifying functionally equivalent code
fragments with different implementations by learning deep seman-
tic representations Shi et al. (2023). Similarly, in equivalent mutant
detection (EMD), traditional approaches struggle with capturing com-
plex semantic nuances, but models like UniXcoder have significantly
improved detection accuracy in this challenging task Guo et al. (2022).
Tuning Techniques: Different types of tuning techniques have been
employed in the literature to improve the performance of Transformer-
ased models on specific downstream tasks. Fine-tuning is a widely

used technique that tunes a pre-trained model on a labeled dataset
3 
to achieve high performance on downstream tasks. Benefiting from
the general knowledge learned during the pre-training phase of model
raining, fine-tuning requires a much smaller data size than training a
odel from scratch.

Despite the prevalence of fine-tuning, there exist some variants.
Zero-shot learning directly applies pre-trained models without tuning
nd few-shot learning simulates data scarcity by providing limited
ata examples. Prompt tuning transforms the downstream tasks into a

similar format as the pre-training tasks using prompts. Closely related is
n-context learning, which capitalizes on the ability of large language

models to generate responses based on a small selection of examples
included within the prompt. We summarize the characteristics and
respective advantages of these different tuning methods in Table 1.
Some recent studies focus on reducing the computational costs of
fine-tuning. For example, Shi et al. (2023) proposed a layer-freezing
technique that fine-tunes only the upper layers of the model, thereby
reducing training time and resource consumption while maintaining
performance.

2.2. Transformer-based pre-trained models in this study

Following the introduction to the broader research landscape, this
ection shifts focus to the specific pipelines and knowledge of the
ransformer-based models that are used in or directly relevant to our
tudy.
Input: The inputs of Transformers vary across different models. For
natural language models like BERT (Kenton & Toutanova, 2019), the
input starts with a special token [CLS], and sentences are separated by
the special separator token [SEP]. As illustrated in Fig. 1, 𝑤1, 𝑤2, . . . ,
𝑤𝑖 represents the first sentence and 𝑤𝑗 , 𝑤𝑗+1, . . . , 𝑤𝑘 represents the
second sentence.

Language models for code (the focus of this paper), such as Code-
BERT (Feng et al., 2020), CodeGPT (Lu et al., 2021), CodeT5 (Wang,
Wang, Joty, & Hoi, 2021), accept bimodal data instead, i.e., both
natural language and code. 𝑤1, 𝑤2, . . . , 𝑤𝑛 represents the natural
language, and 𝑐1, 𝑐2, . . . , 𝑐𝑚 represents the corresponding code. The two
segments are separated by the [SEP] token, and [EOS] token denotes
the end of input.

There exist variants of language models for code which contain
more information in their input, e.g., GraphCodeBERT (Guo et al.,
2020) additionally includes variables in the input program, denoted
y 𝑥1, 𝑥2, . . . , 𝑥𝑘. Additional input combined with corresponding pre-

training objectives will enhance models’ knowledge regarding a certain
aspect, e.g., code structure in the case of GraphCodeBERT.
Input Embedding: Inputs with correct formats are used to generate
nput embeddings that are fed into the Transformer blocks. An input

embedding typically consists of three parts: token embedding, segment
embedding, and position embedding. For token embedding, there exists
hree different options, word embedding, subword embedding, and
haracter embedding. Among the three options, subword embedding is
he most frequently used technique in Transformer-based models since
t can deal with out-of-vocabulary (OOV) issues. There are two com-
on subword tokenization methods, WordPiece (Schuster & Nakajima,

2012) and Byte Pair Encoding (Shibata et al., 1999).
Segment embedding is used to distinguish which segment of input

a specific token belongs to.
Lastly, position embedding encodes the positional information of

words. There are different options available. A traditional one is se-
quential embedding (Chirkova & Troshin, 2021). To capture structure-
related positional information, tree positional embedding (Shiv & Quirk,
2019) can be used. Sequential relative positional embedding (Shaw,
Uszkoreit, & Vaswani, 2018) and tree relative positional embedding
(Kim, Zhao, Tian, & Chandra, 2021) are more effective in sequence-
based tasks as they capture the relative position of the input elements.
Model Architecture: There are three different model structures for
Transformer-based models: encoder-only model, decoder-only model,



Y. Xiao et al. Neural Networks 184 (2025) 107067 
Table 1
Fine-tuning and variations.

Tuning methods Characteristics Advantage

Fine-tuning Require high-quality Task-specific & Flexiblelabeled dataset

Zero/Few-shot Simulates Better generalization ability
Learning data scarcity Chakraborty et al. (2022), Palatucci, Pomerleau, Hinton, and Mitchell (2009)

Prompt Tuning Augment input Fully utilizes pre-trained
with prompts models (Huang et al., 2022; Wang et al., 2022)

In-context Learning Include examples No updates to the model
in model inputs weights (Brown et al., 2020)
Fig. 1. Pipeline and variations for transformer-based pre-trained models.
and encoder–decoder model. The most representative pre-trained lan-
guage models with such structures are BERT, GPT, and T5 for natural
language, and CodeBERT, CodeGPT, and CodeT5 for programming
languages.

BERT (Kenton & Toutanova, 2019), Bidirectional Encoder Repre-
sentations from Transformers, is an encoder-only model pre-trained
on BookCorpus and Wikipedia, with the objective of masked language
modeling and next sentence prediction (Kenton & Toutanova, 2019).
There are multiple variants of BERT used for SE-related tasks, such as
CodeBERT (Feng et al., 2020) and GraphCodeBERT (Guo et al., 2020).

GPT (Radford et al., 2019), Generative Pre-trained Transformer, is
a decoder-only autoregressive language model pre-trained on BookCor-
pus, with the generative objective of predicting the next word given
some previous words (Radford et al., 2019). GPT variants that are
applied to SE-related tasks include GPT-C (Svyatkovskiy, Deng, Fu, &
Sundaresan, 2020) and CodeGPT (Lu et al., 2021).

T5 (Raffel et al., 2020) is an encoder–decoder model pre-trained
on the C4 (Colossal Clean Crawled Corpus) dataset with a ‘‘span cor-
ruption’’ objective (Raffel et al., 2020). T5’s code variants include
4 
CodeT5 (Wang et al., 2021) and CoditT5 (Zhang, Panthaplackel,et al.,
2022).

CodeBERT, CodeGPT, and CodeT5 have the same model architec-
tures as BERT, GPT, and T5 (see Fig. 1). Apart from the encoder and
decoder components, the differences between the model architectures
exist in the multi-head attention mechanism and input/output. For
CodeBERT and CodeT5, the attention mechanism is bidirectional, al-
lowing the model to capture the context from both directions and to
better capture long-range dependencies. Whereas the attention mecha-
nism in CodeGPT is unidirectional, which means that the model only
attends to the past inputs in the sequence, avoiding potential future
information leakage.

The output of CodeBERT is a contextualized representation of input,
and can be utilized to perform, e.g., classification tasks. For CodeT5,
after the encoder has generated the contextualized representation of
an input, the decoder takes it in to combine with the output generated
at previous steps to form the input to the decoder. CodeGPT generates
output using the input combined with the output generated at previous
steps, and the output of CodeT5 and CodeGPT are both probabilities of
tokens that can be converted to the corresponding generated sequence.



Y. Xiao et al.

t

L

a
o

M
a
C
M
s
i
p

a

c
r

p
w
(

T
t
p
T
B
a
t
o

f
p

t
a
e
a
m

Neural Networks 184 (2025) 107067 
Fig. 2. Original program.

Fig. 3. Objectives of CodeBERT.

Fig. 4. Objectives of CodeGPT.

Pre-training Objectives: A pre-trained model for code may have mul-
iple objectives, which constitute a hybrid objective function and con-

tribute to better code understanding (Feng et al., 2020; Wang et al.,
2021). The three pre-trained models that we investigate in this pa-
per have different pre-training objectives. However, Transformer-based
pre-trained models for code are mostly pre-trained on different subsets
of the same dataset, CodeSearchNet (Husain, Wu, Gazit, Allamanis, &
Brockschmidt, 2019).

CodeBERT: CodeBERT is pre-trained with the objectives of Masked
anguage Modeling (MLM) and Replaced Token Detection (RTD) (Feng

et al., 2020). MLM aims to predict the masked out token in both NL
nd PL sections of the program. Fig. 3(a) is an example of MLM. The
bjective is to predict the original token for [MASK]. RTD aims to

determine whether a token is the original one or a replaced one. For
example, if the generator mutates the original program (Fig. 2), to
Fig. 3(b), the discriminator should recognize that ‘‘length’’ is a replaced
token.

CodeGPT: CodeGPT is pre-trained with the objective to predict the
next token, given previous context. Fig. 4 is the illustration of the
pre-training objective.

CodeT5: CodeT5 has four pre-training objectives. The first one is
asked Span Prediction (MSP). It can be viewed as a variation of MLM,

nd it allows masking of multiple consecutive tokens. Besides MSP,
odeT5 introduced two additional tasks: Identifier Tagging (IT) and
asked Identifier Prediction (MIP), to enable the model to learn code-

pecific structural information. IT aims to determine whether a token
s an identifier and MIP performs obfuscation on the PL part of the
rogram and aims to predict the masked-out identifiers, as shown in

Figs. 5(a) and 5(b). The last pre-training objective of CodeT5 is bimodal
dual generation, which aims to perform NL→PL generation and PL→NL
generation simultaneously, as illustrated in Fig. 5(c).

The different pre-training objectives, together with different model
architectures, enable the models to be suitable for different tasks.
5 
Fig. 5. Objectives of CodeT5.

3. Methodology

The objective of this paper is twofold: first, to provide a comprehen-
sive review of transformer-based techniques for tackling SE problems,
nd second, to design and address research questions that explore

both the promises and potential pitfalls of these techniques. Through a
ombination of literature review and empirical study, we aim to offer
esearchers and practitioners a clearer understanding of the capabilities

and limitations of transformer-based models. In the following section,
we introduce the methodology for the literature review, as well as the
research questions designed to guide the empirical study.

3.1. Literature review

Keywords for Literature Review. To generate keywords for our com-
rehensive literature review, we first searched for the top four soft-
are engineering conferences from 2019-2023: (1) ESEC/FSE (2) ICSE

3) ASE (4) ISSTA.2 There are multiple types of pre-trained models
mentioned in the papers, including Vanilla Transformer, BERT, GPT,

5, and their variants. We recorded all the models mentioned in
he papers, as well as their popular variants, resulting in a com-
rehensive list of 17 keywords, including Transformer, BERT, GPT,
5, CodeBERT, CodeBERTa, GraphCodeBERT, RoBERTa, CuBERT, C-
ERT, BERTOverflow, GPT-C, CodeGPT, PLBART, BART, IntelliCode,
nd CodeT5. We believe these keywords are sufficient in supporting us
o identify Transformer-based papers in SE research, which is the focus
f this study.
Identify Related Literature. We identify 27 relevant SE conferences
and journals with core ranking A* or A, as shown in Table 2. Using
the keywords mentioned above, we conducted an extensive search
or Transformer-based papers in those 27 conferences and journals
ublished between 2017 and 2023.

We locate the keywords to confirm that the papers are relevant
o applying Transformer-based pre-trained models to the SE domain,
nd exclude papers in which the keywords appear by coincidence:
.g., a mathematical transformer. Note that transformer-related papers
re unlikely to be missed out using the keyword list, as papers usually
ention or reference the models in the list, even if the paper uses

2 Corresponding full names are provided in the GitHub link (Zuo, 2023).



Y. Xiao et al.

i
p
f
s
e

W
t
h

o
p
b
p
d
i
o

w
C
e
D
m
p
m
f
o
c
c

a
a

w

c

t
b
e

(
S

g

t
l
p

m
t

a
S
l
p

o
t
o
W

Neural Networks 184 (2025) 107067 
Table 2
Statistics for papers published in top-tier venues.

Venues 2019 2020 2021 2022 2023 Sum

ESEC/FSE 0 6 14 16 24 60
ICSE 0 4 15 21 48 88
ASE 1 4 13 15 52 85
ISSTA 0 3 2 7 9 21
TSE 0 1 9 12 14 36
TOSEM 0 0 1 8 14 23
ESE 0 0 2 6 6 14
PLDI 0 0 7 0 1 8
OOPSLA 0 1 0 0 0 1
ISSRE 0 2 7 0 8 17
ESEM 1 1 0 0 2 4
SANER 0 0 4 8 10 22
EASE 0 0 1 1 1 3
IST 0 0 4 13 12 29
JSS 0 1 1 8 10 20
ICPC 0 0 3 7 9 19
RE 0 4 13 2 9 28
CAiSE 0 1 2 1 1 5
ICSME 1 4 11 0 3 19
ICST 0 0 1 1 1 3
MSR 0 1 4 4 3 12
ICSA 0 0 0 1 0 1
ECSA 0 1 0 0 0 1
Sum 3 34 114 131 237 519

Note that, POPL, SEAMS, TOPLAS, and FM had 0 papers for all years.

variants of them. Finally, we identified 519 relevant papers and 101
different applications.

To extract information from the selected papers, we primarily fo-
cused on the pipelines used by the authors to incorporate transformers
nto their research. This involved studying the applications, datasets,
re-processing, input, architecture, training, and output of the trans-
ormers used. We also searched through all 519 papers using the 101
ummarized application names and recorded the number of papers for
ach application.

3.2. Research questions

RQ1. Literature, Popular Applications, and Developers’ Needs:
hat are the characteristics of papers utilizing Transformer models, such as

he yearly publication trends and the extent to which different applications
ave been explored?

To summarize the publication characteristics, we conducted a thor-
ugh review of 519 papers mentioned in Section 3. Based on these
apers, we summarized all the applications related to transformer-
ased models. We have examined why certain applications are more
opular than others and whether they are relevant to the needs of SE
evelopers. Through this analysis, we aim to shed light on the most
mportant applications for SE research, and help the community focus
n the areas that are most relevant to developers’ needs.
RQ2. Applications’ Performance: How do the three base models with
varying architectures perform across the top four popular applications?

To investigate the performance of various models for different tasks,
e conducted a comparative analysis of three representative models:
odeBERT, CodeGPT, and CodeT5. Specifically, we evaluated their
ffectiveness on the top four most popular applications: Bug Fixing, Bug
etection, Code Summarization, and Code Search. By fine-tuning these
odels on benchmark datasets for each application, we found that
revious claims about model performance and architectures have been
isleading without the use of up-to-date metrics for specific tasks. Our

indings are reinforced by statistical testing, enhancing the validity of
ur conclusions regarding model suitability. We also identified the most
ommonly-used models for each task by reviewing the literature, and
hecked for consistency with our concluded best-performing models.
RQ3. Resource Consumption: What is the resource consumption of
inference for each base model and application?
6 
We answer this question by comparing and analyzing the aver-
ge inference time and memory usage of various models on all 4
pplications across different datasets.
RQ4. Generalization: How well do the base models trained on commonly-
used benchmark datasets for each application generalize to frequent datasets,
and conversely, how well do models trained on frequent datasets perform
on the benchmark datasets?

To evaluate the generalization ability of the models across datasets
ithin the same domain, we conducted a search for the datasets used

in all papers related to the top four applications. For these appli-
ations, we adopt the datasets from CodeXGLUE (Lu et al., 2021)

as the benchmark datasets, which are widely used in the study of
Transformer-based techniques for SE applications. The frequent dataset,
defined as the dataset with the highest frequency of use other than
the benchmark dataset, implies high quality and reliability due to its
repeated selection by the research community. We follow the common
rain test split used in the literature. Our review revealed that the
enchmark datasets were most commonly used across all applications,
xcept for Bug Fixing, where datasets such as Defects4J (Just, Jalali, &

Ernst, 2014) were used more frequently than the benchmark datasets
BFPsmall & BFPmedium (Tufano et al., 2019)). However, for Code
earch and Bug Detection, only a few researchers used non-benchmark

datasets, which makes it less meaningful to investigate generalization
on those datasets. Therefore, our focus was primarily on the bench-
mark and frequent datasets for Code Summarization and Bug Fixing.
We then evaluated the models trained on the benchmark dataset on
the test set of the frequent dataset and vice versa to examine their
eneralization capabilities. Statistical testing is performed to safeguard

our conclusions.

4. Experimental setup

In this section, we outline the experimental setup, which includes
he pre-trained models used, the datasets for the four most popu-
ar SE tasks, and the evaluation metrics employed to assess model
erformance.

4.1. Pre-trained models

We choose CodeBERT, CodeGPT, and CodeT5 as the pre-trained
odels with the consideration of representativeness in model architec-

ures and their wide presence in the literature.
CodeBERT is an encoder-only model which has the same model

rchitecture as RoBERTa (Liu et al., 2019). It is pre-trained on Code-
earchNet and is capable of processing both source code and natural
anguage text. The model we use is CodeBERT-base, which has 125M
arameters.3

CodeGPT is a decoder-only model with the same model architec-
ture as GPT-2 (Radford et al., 2019). We use CodeGPT-small-java-
adaptedGPT24 with 124M parameters, which is pre-trained on the Java
corpora from the CodeSearchNet dataset and uses the GPT-2 model as
the starting point.

CodeT5 is a variant of T5 (Raffel et al., 2020), and achieves state-
f-the-art performance for many code intelligence tasks. It views all
asks through a sequence-to-sequence paradigm. CodeT5 is pre-trained
n CodeSearchNet and an additional C/C# dataset (Wang et al., 2021).
e use CodeT5-base5 that has 220M parameters.

4.2. Datasets

Table 3 shows the benchmark datasets we use in the experiments
for the four applications, following the widely used CodeXGLUE bench-
marks in Transformer-based techniques.

3 https://huggingface.co/microsoft/codebert-base
4 https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2
5 https://huggingface.co/Salesforce/codet5-base

https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/CodeGPT-small-java-adaptedGPT2
https://huggingface.co/Salesforce/codet5-base


Y. Xiao et al.

o
s
B
h

<

N

a

A

a

d

s

𝑤

Neural Networks 184 (2025) 107067 
Table 3
Datasets.

Task Fine-tuning dataset Train/Valid/Test

Bug fixing BFPsmall (Tufano et al., 2019) 46,680/5,835/5,835

BFPmedium (Tufano et al., 2019) 52,364/6,545/6,545

Bug detection Zhou et al. Zhou, Liu, Siow, Du, and Liu (2019) 21,854/2,732/2,732

Code summarization Java Subset in CodeSearchNet (Husain et al., 2019) 164,923/5,183/10,955

Code search Python Subset in CodeSearchNet (Husain et al., 2019) 251,820/9,604/19,210
s
w
s

t

l
g
t

C
m

l

Bug Fixing: This dataset is provided by Tufano et al. (2019). It
contains method-level pairs of the buggy and fixed code from thousands
f GitHub Java repositories. The pairs are called bug-fix pairs, BFPs in
hort. Based on the code length, Tufano et al. provided two datasets:
FPsmall, which has a code length below 50; and BFPmedium, which
as a length between 50 and 100.

Bug Detection: This dataset is provided by Zhou et al. (2019). It
contains 27k+ C code snippets from two open-source projects, FFmpeg
and QEMU, of which 45% are defective.

Code Summarization: CodeSearchNet is a dataset which consists of
 𝑐 𝑜𝑑 𝑒, 𝑐 𝑜𝑚𝑚𝑒𝑛𝑡 > pairs from open source projects (Husain et al., 2019).

Code refers to the code snippet for a method, and comment refers to
the description of the code, for example in Javadoc format.

Code Search: This dataset is the Python version of the CodeSearch-
et (Husain et al., 2019) dataset.

4.3. Evaluation metrics

A variety of evaluation metrics are applied to assess model perfor-
mance across the four applications, and statistical tests are conducted
to validate the findings.

Bug Fixing: We use BLEU (Bilingual Evaluation Understudy)
(Papineni, Roukos, Ward, & Zhu, 2002), Accuracy, and CodeBLEU (Ren
et al., 2020) to measure the quality of the repaired code, where
ccuracy considers only exact matches, and CodeBLEU additionally

considers code structure, etc., and involves n-gram, weighted n-gram,
ST, and data-flow matches:

𝐶 𝑜𝑑 𝑒𝐵 𝐿𝐸 𝑈 = 𝛼 ∗ 𝐵 𝐿𝐸 𝑈 + 𝛽 ∗ 𝐵 𝐿𝐸 𝑈𝑤𝑒𝑖𝑔 ℎ𝑡 + 𝛾 ∗ 𝑀 𝑎𝑡𝑐 ℎ𝑎𝑠𝑡 + 𝛿 ∗ 𝑀 𝑎𝑡𝑐 ℎ𝑑 𝑓
(1)

BLEU is defined below under Code Summarization. The definition
of accuracy adopted in this paper is the same as below except that 𝑦𝑖
nd �̂�𝑖 refer to the buggy and fixed code instead.

Bug Detection: We use Accuracy as the evaluation metric for bug
etection, following the work of CodeT5 (Wang et al., 2021). Accuracy

helps to measure the ability of the model to distinguish buggy code
from normal code:

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 =
∑

|𝐷|

𝑖=1 1(𝑦𝑖 == �̂�𝑖)
|𝐷|

(2)

where |𝐷| refers to the dataset size, 𝑦𝑖 and �̂�𝑖 refer to the ground truth
label and predicted label, respectively. The function in the numerator
is 1 if the two labels are equal, and 0 otherwise.

Code Summarization: We use BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee & Lavie, 2005), and ROUGE-L (Lin, 2004) to measure
the quality of the summary generated in the Code Summarization task.
Each of them considers different aspects.

BLEU is based on the n-gram precision between the generated
ummary and the Papineni et al. (2002):

𝐵 𝐿𝐸 𝑈 = 𝐵 𝑃 ∗ 𝑒𝑥𝑝(
𝑁
∑

𝑛=1
𝑤𝑛𝑙 𝑜𝑔 𝑝𝑛) (3)

where BP penalizes short summary. 𝑝𝑛 refers to n-gram precision and
is the weight.
𝑛 2

7 
METEOR focuses on the harmonic mean of unigram precision and
recall (Banerjee & Lavie, 2005):

𝑀 𝐸 𝑇 𝐸 𝑂 𝑅 = (1 − 𝑃 ) ∗ 𝐹𝑚𝑒𝑎𝑛 (4)

where P is the penalty for difference between the word order in the
ummary generated and the reference, and more weight is put on recall
hen calculating the harmonic mean 𝐹𝑚𝑒𝑎𝑛. METEOR allows exact,

tem, and synonym matches.
ROUGE-L is based on the longest common sub-sequence (LCS) be-

ween the generated summary and the Lin (2004):

𝑅𝑂 𝑈 𝐺 𝐸 − 𝐿 =
(1 + 𝛽2)𝑅𝑙 𝑐 𝑠𝑃𝑙 𝑐 𝑠
𝑅𝑙 𝑐 𝑠 + 𝛽2𝑃𝑙 𝑐 𝑠

(5)

where 𝑅𝑙 𝑐 𝑠 measures the proportion of the LCS length relative to the
ength of the reference and 𝑃𝑙 𝑐 𝑠 measures that to the length of the
enerated summary, and ROUGE-L calculates the harmonic mean of
hem.

Code Search: We use Mean Reciprocal Rank (MRR) to measure
the ability of the model to retrieve relevant code given a natural
language query. It calculates the multiplicative inverse of the rank of
the correctly retrieved code snippet and is defined as below (Hu et al.,
2022):

𝑀 𝑅𝑅 = 1
|𝑄|

|𝑄|

∑

𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(6)

where 𝑟𝑎𝑛𝑘𝑖 refers to the rank of the first correctly retrieved code
snippet and |𝑄| represents the number of queries.

Statistical Testing: To evaluate the significance of the differences
in model performance across tasks, we employ the Wilcoxon signed-
rank test, a non-parametric method suitable for comparing paired data
without assuming a normal distribution. This approach ensures a robust
analysis of performance variations across models. For all tests, we set
the significance level at 𝛼 = 0.05.

4.4. Configurations

We conducted all experiments on an NVIDIA RTX A4000 GPU with
UDA version 11.6 and 16 GB of VRAM. The implementation of all
odels, as described in Section 4.1, was carried out using the PyTorch

framework. Detailed hyperparameter settings, including learning rates,
batch sizes, and other parameters for fine-tuning across various tasks,
are available in the GitHub repository (Zuo, 2023).

5. Results

In this section, we aim to answer the research questions men-
tioned in Section 3.2 by discussing the promises and perils of using
transformer-based models for SE research. Our findings through the
iterature review help answer RQ1, and we conduct our own empirical

study to answer RQ2-4.

5.1. RQ1. Literature, popular applications, and developers’ needs

On Papers Published.
Table 2 presents the number of papers on Transformer-based tech-

niques published in top-tier SE conferences or journals during 2019–
023. Through our search described in Section 3, we found a total of



Y. Xiao et al. Neural Networks 184 (2025) 107067 
Fig. 6. Frequency of Applications. We only list applications with frequency ≥ 10.
3 papers published in 2019, 34 papers in 2020, 114 papers in 2021,
131 papers in 2022, and 237 papers in 2023. The increasing trend in
the numbers indicates a rapidly growing interest in using Transformer-
based techniques to solve SE-related problems, demonstrating their
promising future with more application domains and outstanding per-
formance. The emergence of large language models with unprecedented
scale and effectiveness, such as ChatGPT (OpenAI, 2022), has led to a
remarkable escalation in relevant academic publications in 2023.

Although the Transformer architecture was proposed in 2017
(Vaswani et al., 2017), it was rarely used by SE researchers until 2020.
Besides, even though transformer models are more widely studied
over time, there is still room for improvement. For example, some SE
studies (Cheng, Hu, Wei, & Mo, 2022; Li et al., 2022; Zhou et al.,
2022; Zhu, Sha, & Niu, 2022) only base their implementations on or
compare their models to the Vanilla Transformer, introduced in 2017
by Vaswani et al. instead of using or including additional and more
advanced models such as T5, nearly three years after the proposal of
these new models. This shows that the SE research community needs to
explore breakthrough techniques from other domains and investigate
their application to SE-related tasks. Additionally, researchers should
stay informed and attentive to the latest methodologies, such as T5,
CodeT5, and so on.

Peril 1: SE researchers using transformer-based models should pay
attention to recent techniques in domains like NLP and be more
attentive to the latest methodologies.

On Applications.
We examined the frequency of the 101 different applications ex-

plored by papers counted in Table 2. Parts of the application statistics
are shown in Fig. 6.6

Out of the 519 papers, we found that bug fixing appeared 54 times,
bug detection appeared 53 times, code summarization appeared 51
times, and code search appeared 33 times, making them the top four
popular applications. They are the only four applications with a count
larger than 30, and due to their representation of the community’s
research focus and diversity in the task nature, we chose to conduct
experiments on these four applications for our research questions.

Bug Fixing (Tufano et al., 2019): This task aims to fix buggy pro-
grams automatically.

Bug Detection (Zhou et al., 2019): This task performs binary classi-
fication - determining if a program is buggy or not.

6 Full list of applications can be found in GitHub (Zuo, 2023).
8 
Table 4
Top-4 popular applications.

Task name Nature Category

Bug fixing Code → Code Generation
Bug detection Code → Class (0/1) Understanding
Code summarization Code → NL Generation
Code search NL → Code Understanding

Code Summarization (Iyer, Konstas, Cheung, & Zettlemoyer, 2016):
This task generates a natural language summary for a code snippet to
aid programmers’ understanding.

Code Search (Husain et al., 2019): This task searches for relevant
code snippets given their natural language descriptions.

The four tasks belong to different categories ( Table 4), making them
representative of SE tasks researchers study and appropriate for our
empirical study. Furthermore, due to their specific task implementa-
tion, bug detection and code search focus more on understanding, while
code summarization and bug fixing are more generation-oriented. Thus,
optimal performance on different tasks is achieved by different types of
models, as discussed in RQ2.

Promise 1: The four topmost targeted tasks, in descending order
of popularity, are Bug Fixing, Bug Detection, Code Summarization,
and Code Search. The first and third are generation tasks and
the others are understanding tasks. Transformer-based techniques
demonstrate a promising future with increasing attention from the
SE research community, more diverse application domains, and
outstanding performance.

Apart from experimenting with the most representative and popular
applications, we have also identified the least-studied applications.
Some applications are too specific, e.g., taint propagation detection,
leading to fewer researchers studying them. In this context, ‘‘too spe-
cific’’ refers to topics that are highly specialized or narrow in scope,
focusing on particular issues that may not have broad applicability
across different fields, thereby attracting less research activity. Ad-
ditionally, some applications are derivatives of more popular ones,
e.g., algorithm classification can be considered a specialized offshoot
of code summarization, as both seek to understand intent. Another
potential reason other applications are less well-studied is that no
commonly used benchmarks exist. For example, developers’ dialog
analysis has been studied in three distinct works (Pan et al., 2021;
Shi et al., 2021; Silva, Galster, & Gilson, 2022), but each study used a
different dataset, complicating efforts to build upon previous research.



Y. Xiao et al.

M

H
b

h

Neural Networks 184 (2025) 107067 
Table 5
Performance of three representative models on top-4 applications.

CodeBERT CodeGPT CodeT5

Bug fixing (BLEU-4/
Accuracy/ CodeBLEU)

Small (S) 74.41/17.58/79.04 72.84/19.78/77.31 78.04/21.54/77.70
Medium (M) 88.60/10.10/88.40 86.56/12.07/86.09 88.86/13.60/86.42

Bug detection (Accuracy) 63.54 63.25 62.99

Code summarization (BLEU-4/METEOR/ ROUGE-L) 18.48/13.07/35.02 14.63/16.36/34.18 20.25/15.07/38.29

Code search (MRR) 28.45 23.93 27.41
p
S

g

w
B

r
m
e
d
R

t
d
u
e
s
a
o
B

Peril 2: The least-studied applications are typically too specific,
related to the more popular applications, or lack high-quality
benchmarks.

Developers’ Needs. Existing studies have emphasized the importance
of communication and collaboration in the software development pro-
cess (Aniche et al., 2018; Gonçalves, de Souza, & González, 2011).
However, the potential of transformer-based techniques, such as Chat-
GPT, to facilitate these processes is yet to be extensively explored.
Additionally, the time developers spend seeking information is a critical
factor in their daily work (Gonçalves et al., 2011; Ko, DeLine, &
Venolia, 2007). While code search has been identified as one of the
top-4 most popular applications, there are still many detailed issues that
developers frequently encounter that remain unexplored. For example,
how to efficiently transfer deprecated features, functions, or methods
to new ones (Sawant, Aniche, van Deursen, & Bacchelli, 2018), or how
to solve module dependencies (Bogart, Kästner, & Herbsleb, 2015).
Furthermore, despite code summarization being the top-1 most popular
application, it is rated much lower than commit conflict resolution by
developers (Treude, Figueira Filho, & Kulesza, 2015).

In addition to these needs, there is a significant gap in tools and
practices for Efficient Debugging, Security Practices Integration, and
Accessible Documentation. Efficient debugging tools are essential as
they directly impact the developers’ productivity and software quality,
yet advancements in this area have been limited (Ceccato, Marchetto,

ariani, Nguyen, & Tonella, 2015). Similarly, integrating security prac-
tices throughout the development lifecycle remains underexplored, de-
spite the increasing importance of software security (Valdés-Rodríguez,

ochstetter-Diez, Díaz-Arancibia, & Cadena-Martínez, 2023). Accessi-
le and comprehensive documentation is also critical, yet often ne-

glected, impacting developers’ ability to understand and use software
effectively (Dagenais & Robillard, 2010). These underdeveloped areas
ighlight the discrepancy between developers’ actual needs and the

current research and development focus, suggesting that more attention
should be directed towards these critical aspects to better support the
software development process.

Peril 3: Current research neglects applications actually demanded
by developers. SE researchers should prioritize applications that
are most relevant to developers’ needs, such as improving commu-
nication and collaboration, efficiently transferring deprecated fea-
tures/functions/methods to new ones, solving module dependencies,
and dealing with commit conflicts.

5.2. RQ2. Applications’ performance

Suitability for Different Tasks. The performance of three represen-
tative models - CodeBERT, CodeGPT, and CodeT5, on the four dif-
ferent tasks - Bug Fixing, Bug Detection, Code Summarization, and
Code Search is summarized in Table 5. Our implementation demon-
strates comparable performance to those reported in the literature
(Chakraborty et al., 2022; Lu et al., 2021; Zeng et al., 2022), according
to the metrics used in existing papers, therefore validating our imple-
mentation’s correctness. Moreover, to provide a thorough evaluation of
9 
model capabilities, we add more up-to-date metrics to our experiments.
We can observe from Table 5 that the highest performance on each of
the four applications is achieved by different models.

For Bug Detection and Code Search, CodeBERT achieves the best
erformance, whereas, the best performance for Bug Fixing and Code
ummarization is achieved by different models under different metrics.

Bug Detection is an understanding task, as once the model un-
derstands the code, it will be able to predict whether the code is
defective or not. Our implementation of Code Search is to compare
the vector representations of code candidates and the natural language
query, which makes the task fall into the category of understanding
as well. With 𝛼 = 0.05, CodeBERT significantly outperforms CodeGPT
and CodeT5 in Code Search. Although the advantage in Bug Detection
is not statistically significant, CodeBERT still remains the best choice
with the lowest resource consumption, as discussed in RQ4. Thus,
consistent with the literature (Zeng et al., 2022), we conclude that an
encoder-only model like CodeBERT is suitable for understanding tasks.

For Bug Fixing, CodeT5 achieves the highest BLEU-4 and Accu-
racy, whereas CodeBERT achieves the highest CodeBLEU. CodeBLEU
is a metric that considers aspects such as code structure and is ar-
uably more important than BLEU-4 and Accuracy, which focus on

term matching in the Bug Fixing task. Moreover, CodeT5’s better
performance on BLEU-4 on the BFPmedium dataset is insignificant,

hereas CodeBERT significantly outperforms CodeT5 in terms of Code-
LEU. This indicates that encoder-only models, such as CodeBERT,

can not only compete with but also outperform encoder–decoder mod-
els in specific program generation tasks when evaluated under more
elevant, task-specific metrics, while also achieving the highest perfor-
ance in code-understanding tasks. Previous studies have often favored

ncoder–decoder architectures for their supposed versatility in han-
ling both understanding and generation tasks (Ahmad, Chakraborty,
ay, & Chang, 2021; Lewis et al., 2019; Raffel et al., 2020), how-

ever, our findings challenge this assumption. Additionally, the superior
performance of CodeT5 in BLEU-4 and Accuracy may not solely be
attributed to its architecture; rather, it could be influenced by its pre-
training objectives, which are specifically tailored to code-related tasks,
potentially enhancing its term matching capabilities. Future research
could explore whether encoder-only models might further excel in
code generation tasks with the introduction of more sophisticated,
code-focused generative pre-training objectives.

For Code Summarization, CodeT5 achieves the highest scores in
BLEU-4 and ROUGE-L metrics. However, CodeGPT notably excels in
METEOR, a metric highly correlated with human judgment (Banerjee
& Lavie, 2005) due to its consideration of synonyms during evalua-
ion. Previous studies (Roy, Fakhoury, & Arnaoudova, 2021) have also
emonstrated that METEOR is a more reliable metric than commonly
sed metrics such as BLEU-4, and it has become the state-of-the-art
valuation metric for Code Summarization tasks. This finding under-
cores the effectiveness of decoder-only models, like CodeGPT, in man-
ging specific generative tasks. It offers a more nuanced understanding
f the capabilities of these models using a more reliable metric than
LEU-4, which has been predominantly used in prior research. Our

finding extends the claim (Zeng et al., 2022) that decoder-only models
(such as CodeGPT) fail to enable optimal performance on any task.
This result not only broadens the scope of evaluation for decoder-only
models but also highlights the importance of using diverse metrics to
fully appreciate the capabilities of different models.



Y. Xiao et al.

a
p

b
g

a

e
i
s

t

o
b
m
p
m

t
m

t

s

p

o
c

t
t
t
l
t

6

b

t

Neural Networks 184 (2025) 107067 
Table 6
Most frequently used model vs. Best performing model.

Task name Most frequent model Best performing modela

Bug fixing CodeBERT (26/54) CodeBERT/CodeT5

Bug detection CodeBERT (32/53) CodeBERT

Code summarization Vanilla Transformer (26/51) CodeGPT/CodeT5

Code search CodeBERT (20/33) CodeBERT

a Best Performing Model refers to the model with the highest performance in Table 5.

Most Frequently Used Pre-trained Model for Each Task. We ex-
tracted the information from every paper with any one of the four
pplications. Table 6 is the summary of the most frequently used
re-trained model, as well as the best-performing model for each task.

We can see that the most frequently used model is also the best-
performing model for Bug Detection and Code Search, and partially for
Bug Fixing. However, this is not the case for Code Summarization.

For Bug Fixing, it is worth noting that the literature commonly
elieves that the encoder–decoder models are more suitable for code
eneration tasks (Ahmad et al., 2021; Lewis et al., 2019; Raffel et al.,

2020), yet many papers have opted for encoder-only models (Code-
BERT) without proper justification or comparison to encoder–decoder
models.

For Code Summarization, the best-performing models are CodeT5
nd CodeGPT, whereas the most frequently used model is the Vanilla

Transformer. CodeT5 is a more advanced pre-trained model with an
ncoder–decoder architecture, just like Vanilla Transformer. CodeGPT
s a decoder-only model with a different model architecture. Previous
tudies (Lu et al., 2021; Wang et al., 2021) collectively demonstrate

that CodeT5 can outperform the Vanilla Transformer significantly in
his task, and our result shows that CodeGPT has competitive per-

formance over CodeT5 under state-of-the-art evaluation metric. Thus,
the community should watch for ML and SE advancements and inte-
grate advanced models to achieve optimal results, instead of using the
earliest or maybe the most well-known models.

Peril 4: Previous claims regarding the optimality of the encoder–
decoder architecture and the low performance of decoder-only models
do not hold. The SE research community should put more care into
selecting the most suitable model for the task; for example, the most
frequently used model for Code Summarization is Vanilla Transformer
(26 out of 51 papers).

5.3. RQ3. Resource consumption

In this research question, we investigate the resource consumption
f different models across tasks and datasets. Resource consumption
ecomes important if a model is deployed and concurrently used by
any users. We focus on resource consumption during the inference
hase for this reason. Table 7 presents the average inference time and
emory consumption for the three models across tasks and datasets.

We conclude that CodeBERT is highly efficient for understanding
asks like Bug Detection and Code Search, achieving the highest perfor-
ance while consuming the least resources. Additionally, significantly

more resources are required for CodeBERT to perform generation tasks
han understanding tasks.

For generation tasks like Bug Fixing and Code Summarization, while
CodeT5 demonstrates superior performance in certain metrics, it also
exhibits an increase in resource consumption attributable to the model’s
complexity. This raises questions regarding the efficiency of CodeT5 in
generation tasks, especially given its higher resource consumption and
ubpar performance observed in some experiments employing more

targeted and contemporary metrics, such as CodeBLEU and METEOR.

Additionally, CodeT5 consistently utilizes more memory compared to

10 
Table 7
Inference time and memory consumption.

Time (seconds)/Memory (GB) CodeBERT CodeGPT CodeT5

Bug fixing
Benchmark (S)a 0.55/0.71 0.55/0.51 0.87/0.89
Benchmark (M)b 1.55/0.71 1.07/0.51 1.70/0.89
Frequent 0.78/0.71 0.68/0.51 1.00/0.89

Bug detection Benchmark 0.13/0.51 0.14/0.52 0.17/0.90

Code summarization
Benchmark 0.27/0.72 0.34/0.52 0.26/0.90
Frequent 0.20/0.72 0.19/0.52 0.25/0.90
Mix 0.22/0.72 0.26/0.52 0.26/0.90

Code search Benchmark 0.14/0.51 0.14/0.52 0.15/0.90

a Stand for BFPsmall.
b Stand for BFPmedium.

CodeBERT and CodeGPT across all tasks, a consequence of its larger
arameter size, standing at 220M.

Besides, with the contrast between the time consumption for Bench-
mark (S) and Benchmark (M) for Bug Fixing, which differ in the length
f code, we can clearly see that the time complexity of models for a
ertain task increases when the input complexity increases.

Promise 2: CodeBERT is the most efficient model for code un-
derstanding tasks, achieving the highest performance with the least
resources.

Peril 5: CodeT5 is not efficient for generation tasks: this complex
model requires high resource consumption, but does not guarantee a
consistently better performance.

5.4. RQ4. Generalization

In the last research question, we explore how well the base mod-
els trained on commonly-used benchmark datasets for each applica-
ion generalize to frequent datasets, and conversely, how well models
rained on frequent datasets perform on the benchmark datasets. Both
he benchmark and frequent datasets are similar in nature and uti-
ize the same programming language, suggesting that models should
heoretically generalize well to both. Table 8 presents the benchmark

and frequent datasets used in our study. For Bug Fixing, the frequent
dataset was used 18 times (compared to 10 times for the benchmark
dataset), while for Code Summarization, the frequent dataset was used
 times (compared to 22 times for the benchmark dataset). To ensure

the validity of the comparison, we pre-processed the frequent datasets
to be in the same format as benchmark datasets. For example, patches
in Defects4J were processed into bug-fix pairs.

To assess the generalization ability of the models trained on the
enchmark and frequent datasets, we conducted experiments where we

trained each model on the benchmark dataset and then evaluated it on
the test set of the frequent dataset. This enabled us to evaluate whether
the knowledge that the models learned from the benchmark dataset is
ransferable to other datasets or if it is only useful for the benchmark

dataset. We also evaluated the performance of the model trained on the
frequent dataset on the test set of the benchmark dataset and compared
it to the performance of the model trained on the benchmark dataset
itself.
Bug Fixing. Table 9 presents the results of evaluating models trained
on Benchmark/Frequent datasets on the Frequent/Benchmark test sets
for Bug Fixing. Through statistical testing, we found that the frequent
model (trained on the frequent dataset) significantly outperforms the
benchmark model (trained on the benchmark dataset) when tested on
the frequent dataset. Similarly, the benchmark model’s performance on
the benchmark dataset is significantly higher than the frequent model’s



Y. Xiao et al.

d

C
u

m

a
d
d

t

t
s
t
B
F
b
o

h
t

i

m

Neural Networks 184 (2025) 107067 
Table 8
Frequency of datasets.

Task name Benchmark dataset Frequent dataset

Bug fixing BFPmedium (Tufano et al., 2019) (10) Defects4J (Just et al., 2014), etc.a (18)
Code summarization CodeSearchNet (Husain et al., 2019) (22) LeClair et al. LeClair and McMillan (2019) (11)

a The frequent datasets for Bug Fixing include Defects4J Just et al. (2014), Bugs.jar Saha, Lyu, Lam, Yoshida, and Prasad (2018),
Bears Madeiral, Urli, Maia, and Monperrus (2019), QuixBugs Lin, Koppel, Chen, and Solar-Lezama (2017), and ManySStuBs4J Karampatsis
and Sutton (2020).

Note: The numbers in parentheses indicate the frequency of dataset usage. Code Search and Bug Detection (excluded) are less meaningful as
only a few researchers used non-benchmark datasets.
a
d

p
d
r
r

u
u

S
D

Table 9
Generalization performance of models on bug fixing (BLEU-4/Accuracy/CodeBLEU).

Bug Fixing CodeBERT CodeGPT CodeT5

B model on B 88.60/10.10/88.40 86.56/12.07/86.09 88.86/13.60/86.42
F model on B 88.04/0.05/81.45 87.41/0.08/84.91 67.10/0.00/76.35
F model on F 97.61/92.87/92.73 97.16/92.20/92.24 90.04/90.37/92.21
B model on F 13.29/0.00/18.96 14.55/0.00/16.99 8.16/0.00/32.84

Note: the zeroes in the table indicate that there are no exact matches, however, partial
matches exist and are reflected by the BLEU-4/CodeBLEU scores.

performance on the benchmark dataset, except for CodeGPT on BLEU-
4, where the frequent model is able to generalize onto the benchmark
ataset and significantly outperform the benchmark model.

These findings indicate that while there is potential for models
to generalize across datasets of the same nature, as evidenced by

odeGPT’s performance, both the benchmark and frequent datasets
sed in Bug Fixing tasks require enhancements to better support model

generalization across different datasets.
Code Summarization. Table 10 presents the performance of various

odels on different datasets and settings. Note that ‘‘B’’ refers to the
benchmark dataset, ‘‘F’’ refers to the frequent dataset, ‘‘Mix-bench’’ con-
sists of the benchmark dataset combined with randomly sampled data
from the frequent dataset (the sampled dataset has roughly equal size
s the benchmark dataset), and ‘‘Mix-Frequent’’ consists of the frequent
ataset combined with equal size of data from oversampling benchmark
ataset. ‘‘B model on B’’ refers to the performance of the model trained

on the benchmark dataset evaluated on the corresponding testing set.
‘‘F model on B’’ refers to the performance of the model trained on the
frequent dataset evaluated on the testing set of the benchmark dataset,
etc.

When evaluating the models trained on either the benchmark or
he frequent dataset on the test set of the other dataset, we found that

they both do not generalize well (refer to columns ‘‘B model on B’’,
‘‘F model on B’’, ‘‘F model on F’’, and ‘‘B model on F’’ in Table 10).
For instance, CodeBERT, when trained on the benchmark dataset and
ested on the frequent dataset, achieved a BLEU-4 score of 17.23—
ignificantly lower than its score of 31.48 when trained and tested on
he frequent dataset itself. Across all models and evaluation metrics,
 model on B is able to significantly outperform F model on B, and
 model on F significantly outperforms B model on F. Thus, both the
enchmark and frequent datasets fail to enable models to generalize
nto other datasets, indicating sub-optimal dataset quality.

Therefore, we look into improving dataset quality, subsequently en-
ancing model capabilities, by including more diverse knowledge, with
he simplest implementation of combining data from both datasets.

While our experiment results have shown promising signs, we rec-
ognize the opportunity for refining our experimental approach and
ncorporating dataset selection methods in future research.

The performance of the models trained on the Mix-bench dataset
and evaluated on the benchmark dataset is shown in the ‘‘Mix-bench

odel on B’’ column of Table 10. Comparing with ‘‘B model on B’’,
we found that the performance drop is only significant for CodeGPT on
ROUGE-L and CodeT5 on METEOR. The performance gain by including
frequent data is significant for CodeBERT across all metrics and CodeT5
on BLEU-4. When comparing ‘‘Mix-frequent model on F’’ to ‘‘F model on
 g

11 
F’’, we found significant improvements in performance for CodeBERT
cross all metrics, and CodeGPT on BLEU-4 and ROUGE-L. The only
rop in performance is on CodeT5’s METEOR.

These findings suggest that incorporating more diverse data can
otentially enhance model performance and generalization capabilities,
espite the introduction of potential noise. We recommend future
esearch to explore dataset pruning or selection techniques to further
efine dataset quality and thus improve model generalization.

Peril 6: For Code Summarization and Bug Fixing, both bench-
marks and frequent datasets largely fail to provide effective model
generalization to other dataset. However, there is potential for gener-
alization across similar datasets. Therefore, the research community
should prioritize improving dataset quality to enhance generalization
capabilities.

Promise 3: Integrating data from additional sources enhances model
performance and generalization, despite the potential introduction
of noise. We recommend investigating dataset pruning and selection
techniques to further refine data quality and improve model efficacy.

6. Discussion and threats to validity

6.1. Discussion on additional statistics

In this section, we explore the statistical data collected in 2024 and
its implications for future trends. Survey results show that the number
of research papers published in 2024 has reached 301, a significant
increase compared to 2023. This growth is evident despite the fact that
not all conferences and journals have released their proceedings, indi-
cating a notable rise in research activity related to Transformer-based
models. The surge in publications likely reflects the strong performance
of Transformer-based models in software engineering tasks, signaling a
promising future for their continued application and development.

Applications. Although the total number of applications in 2024
did not increase significantly, we observed notable shifts in the pop-
larity of certain tasks. To capture these changes, we summarize the
pdated statistics of applications, now including data for 2024, in

Fig. 7. For instance, Code Generation has seen a substantial rise in
interest, now surpassing Code Search in popularity. This trend can be
attributed to the widespread adoption of generative large language
models, such as ChatGPT, which excel at producing coherent and
contextually relevant code. The success of these models has enhanced
the efficiency and flexibility of Code Generation tasks, encouraging an
increase in research. Additionally, the growing demand from users for
open-source generative tools has further encouraged development in
this field.

Despite the increasing prominence of Code Generation, it is im-
portant to highlight that our research still focuses on four specific
tasks: the two most popular generation tasks (Bug Fixing and Code
ummarization) and the two most popular understanding tasks (Bug
etection and Code Search). To maintain a balanced exploration of
eneration and understanding tasks, we have chosen not to include



Y. Xiao et al. Neural Networks 184 (2025) 107067 
Table 10
Generalization performance of models on code summarization (BLUE-4/METEOR/ROUGE-L).

Code summarization CodeBERT CodeGPT CodeT5

B model on B 18.48/13.07/35.02 14.63/16.36/34.18 20.25/15.07/38.29
F model on B 9.02/5.34/14.93 2.19/1.73/6.01 11.08/8.11/19.34
Mix-bench model on B 19.36/13.25/35.74 14.46/16.32/33.74 20.68/14.74/38.39
F model on F 31.48/20.16/41.65 31.43/19.78/41.02 32.40/22.08/44.00
B model on F 17.23/12.26/24.66 12.61/13.37/22.94 19.21/14.34/28.32
Mix-frequent model on F 32.17/20.46/42.32 31.62/19.91/41.57 32.47/21.86/44.11
Fig. 7. Frequency of Applications (2017–2024). We only list applications with frequency ≥ 10.
Code Generation, now the third most popular generation task, in our
empirical study. However, we recognize its rising importance and leave
the exploration to future research.
Most Frequently Used Pre-trained Models. Table 11 summarizes the
most commonly used pre-trained models before and in 2024, as well as
the best-performing models for each task. We observe that the most
commonly used models are also the top-performing models for Bug
Detection and Code Search, and partially for Bug Fixing, preserving the
conclusions drawn in RQ2.

For Code Summarization, although CodeGPT and CodeT5 demon-
strate superior performance, CodeBERT remains the most widely used
model in 2024. As with our previous conclusion, we suggest that the
research community should closely monitor advancements in the field
and consider integrating more advanced models to optimize outcomes,
rather than continuing to rely on widely recognized models.
Frequency of Datasets. After including the statistics from 2024, the
datasets listed in Table 8 continue to be the most frequently used.

6.2. Threats to validity

Internal Validity. The experimental settings in this paper are influ-
enced by literature published before 2024. To minimize the risk of
bias, we have ensured broad coverage across a long period and exten-
sive software engineering venues, aiming to provide a comprehensive
literature review and a representative empirical study.
External Validity. The conclusions drawn in this research may not
be directly applicable to other tasks or models. Further consideration
is needed to evaluate their relevance across different settings. We
encourage future work to explore additional advanced models and tasks
to gain broader insights into the field of Transformer-based models.
12 
Table 11
Most frequently used model before and in 2024 vs. Best performing model.

Task name Most frequent
model before
2024

Most frequent
model in 2024

Best performing
modela

Bug fixing CodeBERT
(26/54)

CodeT5(10/19) CodeBERT/CodeT5

Bug detection CodeBERT
(32/53)

Code-
BERT(27/44)

CodeBERT

Code
summarization

Vanilla
Transformer
(26/51)

Code-
BERT(21/27)

CodeGPT/CodeT5

Code search CodeBERT
(20/33)

CodeBERT(9/9) CodeBERT

a Best Performing Model refers to the model with the highest performance in Table 5.

7. Related work

For our related work, we focus on the pre-trained language models,
the four applications - bug fixing, bug detection, code summarization,
and code search, and related empirical studies of transformers.

7.1. Pre-trained language models

Different pre-trained language models are developed and demon-
strated to have high performance in many NLP tasks
(Kenton & Toutanova, 2019; Lewis et al., 2019; Liu et al., 2019;
Radford et al., 2019). With the success of pre-trained language models
in the NLP domain, researchers have been exploring and applying
these models to code-related tasks (Kanade, Maniatis, Balakrishnan, &
Shi, 2020; Liu, Li, Zhao, & Jin, 2020; Roziere, Lachaux, Chanussot, &
Lample, 2020). Many pre-trained models for code have been developed.



Y. Xiao et al.

a
s
p
u
s

c

O
p

a
t
Z

l

E

e
s

s

m

e

o

a
o
e
t
h
m

o
i

Neural Networks 184 (2025) 107067 
CodeBERT (Feng et al., 2020) is one of the earliest models that has
been specifically trained for code-related tasks. Subsequently, models
like GraphCodeBERT (Guo et al., 2020) were proposed to improve
over CodeBERT by incorporating additional information, such as data
flow. Similarly, CodeGPT (Lu et al., 2021) and CodeT5 (Wang et al.,
2021) are built based on GPT and T5 architectures, but pre-trained
on a code-related corpus with additional pre-training objectives to
better understand code. Our experiments are conducted on these three
representative pre-trained models for code - CodeBERT, CodeGPT, and
CodeT5. Currently, many revolutionary large language models are
being developed and applied to different domains, e.g., GPT-4 (OpenAI,
2023) and LLaMA (Touvron et al., 2023). These models, however,
re not included in our study due to their commercial nature and
ubstantial size, which demand extensive resources. Furthermore, com-
aring them with the models we studied in this paper could introduce
nfairness, as they have vastly more parameters and are trained on
ignificantly larger datasets.

7.2. Applications

We study four applications in this paper - bug fixing, bug detection,
ode summarization, and code search.

7.2.1. Bug fixing
There has been a lot of work in the domain of Transformer-based

models that focuses on bug fixing. A majority of this work fine-tunes
a pre-trained model for code. For example, CURE (Jiang, Lutellier,
& Tan, 2021) fine-tuned a GPT model to generate patches for buggy
code. SPT-Code (Niu et al., 2022), which has similar model structure
as CodeBERT, also used fine-tuning to perform code refinement. In ad-
dition, Fu, Nguyen, Tantithamthavorn, Phung, and Le (2024) enhanced
bug fixing by incorporating vulnerability queries and vulnerability
masks into the Transformer model. AIBugHunter Fu, Tantithamthavorn,
et al. (2024) fine-tuned CodeBERT to predict vulnerability severity
scores and achieve real-time repairs.

7.2.2. Bug detection
Many approaches have been explored in the field of bug detection.

ver the past decades, developer information has been utilized to
redict bugs (Meneely, Williams, Snipes, & Osborne, 2008; Pinzger,

Nagappan, & Murphy, 2008; Weyuker, Ostrand, & Bell, 2007). With
the development of deep learning techniques, Yang, Lo, Xia, Zhang,
nd Sun (2015) leveraged deep learning to generate new features from
raditional features using a Deep Belief Network (DBN). Later, Li, He,
hu, and Lyu (2017) generated new features from Abstract Syntax Trees

(ASTs) and combined them with hand-crafted features to perform bug
prediction. There are also deep learning algorithms that specialize in
bug detection, e.g., DeepJIT (Hoang, Dam, Kamei, Lo, & Ubayashi,
2019) and CC2Vec (Hoang, Kang, Lo, & Lawall, 2020). Furthermore, Du
and Yu (2023) employ Semantic Flow Graph (SFG), while Steenhoek,
Gao, and Le (2024) and Rahman et al. (2024) leverage causal analysis
to enhance the efficiency of bug detection.

7.2.3. Code summarization
Code summarization is one of the most popular tasks in deep

earning. Fernandes, Allamanis, and Brockschmidt (2018) combined
RNN/Transformers with GGNN. Ahmad, Chakraborty, Ray, and Chang
(2020) applied Transformer to code summarization, and showed the
advantage of sequential relative attention over positional encoding.
yeTrans Zhang, Li, et al. (2024) integrates human attention with ma-

chine attention to improve the effectiveness of neural code summariza-
tion, whereas Esale Fang et al. (2024) enhances code summarization by
mploying a multi-task learning approach, training encoders on three
ummary-focused tasks to better capture code-summary alignment.
 I

13 
7.2.4. Code search
In deep learning domain for code search, Sachdev et al. (2018)

developed the tool NCS to learn embeddings of code without su-
pervision. Gu, Zhang, and Kim (2018) proposed CODEnn to learn
code representations through three encoded individual channels. With
the outstanding performance of Transformer-based pre-trained models,
many works (Ahmad et al., 2021; Feng et al., 2020; Mastropaolo et al.,
2021; Phan et al., 2021) have looked into their application to code
earch and achieved satisfying results. Oracle4CS Phan and Jannesari

(2024) improves code search by integrating a novel code representa-
tion technique, ASTSum, with classical machine translation models.
HFEDR Zhang, Peng, Shen and Wu (2024) enhances code retrieval by
increasing training data through hierarchical feature extraction and
data reorganization.

7.3. Empirical study

There are some empirical studies on transformers in the litera-
ture. For example, Ma et al. (2024) analyzed various code models
across different code comprehension tasks, while Zeng et al. (2022)
and Niu et al. (2023) examined the suitability of different pre-trained

odels for a range of SE tasks. In Hou et al. (2023), Hou et al.
surveyed existing pre-trained models, methods, and SE tasks. Minaee
t al. (2024) expanded the scope of research beyond merely comparing

coding abilities of pre-trained models to include diverse areas such as
arithmetic reasoning and hallucination evaluation. Furthermore, there
are studies that delve into the impacts of various pre-training (Tufano,
Pascarella, & Bavota, 2023) and tuning techniques (Shi et al., 2023)
on the performance of these models. For example, Hu et al. (2024)
investigated the effectiveness of active learning on code models.

Compared to these previous works, our work additionally reviews
the literature, summarizes the most widely studied applications, sug-
gests on developers’ needs, contests certain beliefs, investigates the
resource consumption of different models, and concludes on model
generalization ability trained on different datasets.

8. Conclusion

In this empirical study, we comprehensively review the literature
n transformer-based pre-trained models used in SE research pub-

lished during 2017–2023. We focus on the three widely used models
– CodeBERT, CodeGPT, CodeT5 – and evaluate their performance on
the four most popular code-related tasks: Bug Fixing, Bug Detection,
Code Summarization, and Code Search. We examine existing literature
and developers’ needs, contest current beliefs for model architectures,
consider model resource consumption, and evaluate model generaliza-
tion abilities. We frame our findings as promises and perils of using
transformer-based models for SE research.

Our study highlights several practical and important concerns for
researchers working in this field. First, it is important to investigate
pproaches to support applications that are most relevant to devel-
pers’ needs, such as communication and collaboration. Second, the
ncoder–decoder architecture’s optimality for general-purpose coding
asks should be re-examined, given its non-dominant performance and
igh resource consumption. Third, it is important to carefully select the
ost suitable model for each specific task. Finally, the commonly used

benchmark datasets should be improved to enhance model generaliza-
tion, potentially with data selection strategies.

CRediT authorship contribution statement

Yan Xiao: Writing – original draft. Xinyue Zuo: Writing –
riginal draft. Xiaoyue Lu: Data curation. Jin Song Dong: Val-
dation. Xiaochun Cao: Validation, Supervision, Conceptualization.
van Beschastnikh: Writing – review & editing, Supervision.



Y. Xiao et al.

c
i

Neural Networks 184 (2025) 107067 
Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

The work was supported by the Fundamental Research Funds for
the Central Universities, China, Sun Yat-sen University, China, under
Grant 24qnpy153.

Data availability

We have provided the link of code and dataset.

References

Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K.-W. (2020). A transformer-based
approach for source code summarization. arXiv preprint arXiv:2005.00653.

Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K.-W. (2021). Unified pre-training
for program understanding and generation. arXiv preprint arXiv:2103.06333.

Aniche, M., Treude, C., Steinmacher, I., Wiese, I., Pinto, G., Storey, M.-A., et al. (2018).
How modern news aggregators help development communities shape and share
knowledge. In Proceedings of the 40th international conference on software engineering
(pp. 499–510).

Anish, P. R., Lawhatre, P., Chatterjee, R., Joshi, V., & Ghaisas, S. (2022). Automated la-
beling and classification of business rules from software requirement specifications.
In Proceedings of the 44th international conference on software engineering: Software
engineering in practice (pp. 53–54).

Banerjee, S., & Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summarization
(pp. 65–72).

Bogart, C., Kästner, C., & Herbsleb, J. (2015). When it breaks, it breaks: How ecosystem
developers reason about the stability of dependencies. In 2015 30th IEEE/ACM
international conference on automated software engineering workshop (pp. 86–89).
IEEE.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., et
al. (2021). On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al. (2020).
Language models are few-shot learners. Advances in Neural Information Processing
Systems, 33, 1877–1901.

Ceccato, M., Marchetto, A., Mariani, L., Nguyen, C. D., & Tonella, P. (2015). Do auto-
matically generated test cases make debugging easier? an experimental assessment
of debugging effectiveness and efficiency. ACM Transactions on Software Engineering
and Methodology (TOSEM), 25(1), 1–38.

Chakraborty, S., Ahmed, T., Ding, Y., Devanbu, P. T., & Ray, B. (2022). NatGen:
generative pre-training by ‘‘naturalizing’’ source code. In Proceedings of the 30th
ACM joint European software engineering conference and symposium on the foundations
of software engineering (pp. 18–30).

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., et al.
(2021). Evaluating large language models trained on code. arXiv preprint arXiv:
2107.03374.

Cheng, W., Hu, P., Wei, S., & Mo, R. (2022). Keyword-guided abstractive code
summarization via incorporating structural and contextual information. Information
and Software Technology, 150, Article 106987.

Chirkova, N., & Troshin, S. (2021). Empirical study of transformers for source code. In
Proceedings of the 29th ACM joint meeting on European software engineering conference
and symposium on the foundations of software engineering (pp. 703–715).

Dagenais, B., & Robillard, M. P. (2010). Creating and evolving developer documen-
tation: understanding the decisions of open source contributors. In Proceedings
of the eighteenth ACM SIGSOFT international symposium on foundations of software
engineering (pp. 127–136).

Devine, P. (2022). Finding appropriate user feedback analysis techniques for multiple
data domains. In Proceedings of the ACM/IEEE 44th international conference on
software engineering: Companion proceedings (pp. 316–318).

Du, Y., & Yu, Z. (2023). Pre-training code representation with semantic flow graph for
effective bug localization. In Proceedings of the 31st ACM joint European software
engineering conference and symposium on the foundations of software engineering (pp.
579–591).

Ezzini, S., Abualhaija, S., Arora, C., & Sabetzadeh, M. (2022). Automated handling of
anaphoric ambiguity in requirements: a multi-solution study. In Proceedings of the
44th international conference on software engineering (pp. 187–199).
14 
Fang, C., Sun, W., Chen, Y., Chen, X., Wei, Z., Zhang, Q., et al. (2024). Esale: Enhancing
code-summary alignment learning for source code summarization. IEEE Transactions
on Software Engineering.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., et al. (2020). Codebert:
A pre-trained model for programming and natural languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020 (pp. 1536–1547).

Fernandes, P., Allamanis, M., & Brockschmidt, M. (2018). Structured neural
summarization. arXiv preprint arXiv:1811.01824.

Fu, M., Nguyen, V., Tantithamthavorn, C., Phung, D., & Le, T. (2024). Vision
transformer inspired automated vulnerability repair. ACM Transactions on Software
Engineering and Methodology, 33(3), 1–29.

Fu, M., Tantithamthavorn, C., Le, T., Kume, Y., Nguyen, V., Phung, D., et al. (2024).
Aibughunter: A practical tool for predicting, classifying and repairing software
vulnerabilities. Empirical Software Engineering, 29(1), 4.

Fu, M., Tantithamthavorn, C., Le, T., Nguyen, V., & Phung, D. (2022). VulRepair: a
T5-based automated software vulnerability repair. In Proceedings of the 30th ACM
joint European software engineering conference and symposium on the foundations of
software engineering (pp. 935–947).

Gonçalves, M. K., de Souza, C. R., & González, V. M. (2011). Collaboration, information
seeking and communication: An observational study of software developers’ work
practices. Journal of Universal Computer Science, 17(14), 1913–1930.

Gu, X., Zhang, H., & Kim, S. (2018). Deep code search. In Proceedings of the 40th
international conference on software engineering (pp. 933–944).

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., & Yin, J. (2022). Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Shujie, L., et al. (2020). GraphCodeBERT:
Pre-training code representations with data flow. In International conference on
learning representations.

Hoang, T., Dam, H. K., Kamei, Y., Lo, D., & Ubayashi, N. (2019). DeepJIT: an end-to-end
deep learning framework for just-in-time defect prediction. In 2019 IEEE/ACM 16th
international conference on mining software repositories (pp. 34–45). IEEE.

Hoang, T., Kang, H. J., Lo, D., & Lawall, J. (2020). CC2vec: Distributed representations
of code changes. In Proceedings of the ACM/IEEE 42nd international conference on
software engineering (pp. 518–529).

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., et al. (2023). Large language
models for software engineering: A systematic literature review. arXiv preprint
arXiv:2308.10620.

Hu, X., Guo, Y., Lu, J., Zhu, Z., Li, C., Ge, J., et al. (2022). Lighting up supervised
learning in user review-based code localization: dataset and benchmark. In Proceed-
ings of the 30th ACM joint European software engineering conference and symposium
on the foundations of software engineering (pp. 533–545).

Hu, Q., Guo, Y., Xie, X., Cordy, M., Ma, L., Papadakis, M., et al. (2024). Active code
learning: Benchmarking sample-efficient training of code models. IEEE Transactions
on Software Engineering.

Huang, Q., Yuan, Z., Xing, Z., Xu, X., Zhu, L., & Lu, Q. (2022). Prompt-tuned code
language model as a neural knowledge base for type inference in statically-
typed partial code. In 37th IEEE/ACM international conference on automated software
engineering (pp. 1–13).

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., & Brockschmidt, M. (2019). Code-
SearchNet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436.

Iyer, S., Konstas, I., Cheung, A., & Zettlemoyer, L. (2016). Summarizing source code
using a neural attention model. In Proceedings of the 54th annual meeting of the
Association for Computational Linguistics (Volume 1: Long papers) (pp. 2073–2083).

Jiang, N., Lutellier, T., & Tan, L. (2021). Cure: Code-aware neural machine translation
for automatic program repair. In 2021 IEEE/ACM 43rd international conference on
software engineering (pp. 1161–1173). IEEE.

Just, R., Jalali, D., & Ernst, M. D. (2014). Defects4J: A database of existing faults
to enable controlled testing studies for java programs. In Proceedings of the 2014
international symposium on software testing and analysis (pp. 437–440).

Kanade, A., Maniatis, P., Balakrishnan, G., & Shi, K. (2020). Learning and evaluating
contextual embedding of source code. In International conference on machine learning
(pp. 5110–5121). PMLR.

Karampatsis, R.-M., & Sutton, C. (2020). How often do single-statement bugs occur? the
manysstubs4j dataset. In Proceedings of the 17th international conference on mining
software repositories (pp. 573–577).

Kenton, J. D. M.-W. C., & Toutanova, L. K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT
(pp. 4171–4186).

Kim, S., Zhao, J., Tian, Y., & Chandra, S. (2021). Code prediction by feeding trees to
transformers. In 2021 IEEE/ACM 43rd international conference on software engineering
(pp. 150–162). IEEE.

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated software
development teams. In 29th international conference on software engineering (pp.
344–353). IEEE.

Lan, Z. (2019). Albert: A lite bert for self-supervised learning of language
representations. arXiv preprint arXiv:1909.11942.

Le-Cong, T., Kang, H. J., Nguyen, T. G., Haryono, S. A., Lo, D., Le, X.-B. D., et al. (2022).
AutoPruner: transformer-based call graph pruning. In Proceedings of the 30th ACM
joint European software engineering conference and symposium on the foundations of
software engineering (pp. 520–532).

http://arxiv.org/abs/2005.00653
http://arxiv.org/abs/2103.06333
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb3
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb3
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb3
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb3
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb3
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb3
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb3
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb4
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb4
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb4
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb4
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb4
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb4
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb4
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb5
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb5
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb5
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb5
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb5
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb5
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb5
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb6
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb6
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb6
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb6
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb6
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb6
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb6
http://arxiv.org/abs/2108.07258
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb8
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb8
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb8
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb8
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb8
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb9
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb9
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb9
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb9
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb9
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb9
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb9
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb10
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb10
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb10
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb10
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb10
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb10
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb10
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb12
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb12
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb12
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb12
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb12
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb13
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb13
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb13
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb13
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb13
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb14
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb14
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb14
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb14
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb14
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb14
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb14
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb15
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb15
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb15
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb15
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb15
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb16
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb16
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb16
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb16
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb16
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb16
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb16
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb17
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb17
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb17
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb17
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb17
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb18
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb18
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb18
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb18
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb18
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb19
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb19
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb19
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb19
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb19
http://arxiv.org/abs/1811.01824
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb21
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb21
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb21
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb21
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb21
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb22
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb22
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb22
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb22
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb22
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb23
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb23
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb23
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb23
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb23
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb23
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb23
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb24
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb24
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb24
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb24
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb24
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb25
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb25
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb25
http://arxiv.org/abs/2203.03850
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb27
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb27
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb27
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb27
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb27
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb28
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb28
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb28
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb28
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb28
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb29
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb29
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb29
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb29
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb29
http://arxiv.org/abs/2308.10620
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb31
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb31
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb31
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb31
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb31
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb31
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb31
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb32
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb32
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb32
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb32
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb32
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb33
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb33
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb33
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb33
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb33
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb33
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb33
http://arxiv.org/abs/1909.09436
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb35
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb35
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb35
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb35
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb35
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb36
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb36
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb36
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb36
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb36
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb37
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb37
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb37
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb37
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb37
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb38
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb38
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb38
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb38
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb38
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb39
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb39
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb39
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb39
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb39
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb40
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb40
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb40
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb40
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb40
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb41
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb41
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb41
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb41
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb41
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb42
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb42
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb42
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb42
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb42
http://arxiv.org/abs/1909.11942
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb44
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb44
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb44
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb44
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb44
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb44
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb44


Y. Xiao et al. Neural Networks 184 (2025) 107067 
LeClair, A., & McMillan, C. (2019). Recommendations for datasets for source code
summarization. In Proceedings of the 2019 conference of the North American chapter
of the association for computational linguistics: Human language technologies, volume 1
(Long and short papers) (pp. 3931–3937).

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., et al. (2019).
Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. arXiv preprint arXiv:1910.13461.

Li, J., He, P., Zhu, J., & Lyu, M. R. (2017). Software defect prediction via convolutional
neural network. In 2017 IEEE international conference on software quality, reliability
and security (pp. 318–328). IEEE.

Li, X., Liu, S., Feng, R., Meng, G., Xie, X., Chen, K., et al. (2022). Transrepair: Context-
aware program repair for compilation errors. In Proceedings of the 37th IEEE/ACM
international conference on automated software engineering (pp. 1–13).

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text
summarization branches out (pp. 74–81).

Lin, D., Koppel, J., Chen, A., & Solar-Lezama, A. (2017). QuixBugs: A multi-lingual
program repair benchmark set based on the quixey challenge. In Proceedings com-
panion of the 2017 ACM SIGPLAN international conference on systems, programming,
languages, and applications: Software for humanity (pp. 55–56).

Liu, F., Li, G., Zhao, Y., & Jin, Z. (2020). Multi-task learning based pre-trained language
model for code completion. In Proceedings of the 35th IEEE/ACM international
conference on automated software engineering (pp. 473–485).

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019). Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Liu, Y., Tantithamthavorn, C., Liu, Y., & Li, L. (2024). On the reliability and
explainability of language models for program generation. ACM Transactions on
Software Engineering and Methodology.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., et al. (2021).
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664.

Ma, W., Liu, S., Zhao, M., Xie, X., Wang, W., Hu, Q., et al. (2024). Unveiling code pre-
trained models: Investigating syntax and semantics capacities. ACM Transactions on
Software Engineering and Methodology, 33(7), 1–29.

Madeiral, F., Urli, S., Maia, M., & Monperrus, M. (2019). Bears: An extensible java bug
benchmark for automatic program repair studies. In 2019 IEEE 26th international
conference on software analysis, evolution and reengineering (pp. 468–478). IEEE.

Mastropaolo, A., Scalabrino, S., Cooper, N., Palacio, D. N., Poshyvanyk, D., Oliveto, R.,
et al. (2021). Studying the usage of text-to-text transfer transformer to support code-
related tasks. In 2021 IEEE/ACM 43rd international conference on software engineering
(pp. 336–347). IEEE.

Meneely, A., Williams, L., Snipes, W., & Osborne, J. (2008). Predicting failures with
developer networks and social network analysis. In Proceedings of the 16th ACM
SIGSOFT international symposium on foundations of software engineering (pp. 13–23).

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., et al.
(2024). Large language models: A survey. arXiv preprint arXiv:2402.06196.

Niu, C., Li, C., Ng, V., Chen, D., Ge, J., & Luo, B. (2023). An empirical comparison of
pre-trained models of source code. arXiv preprint arXiv:2302.04026.

Niu, C., Li, C., Ng, V., Ge, J., Huang, L., & Luo, B. (2022). SPT-code: sequence-to-
sequence pre-training for learning source code representations. In Proceedings of
the 44th international conference on software engineering (pp. 2006–2018).

OpenAI (2022). Chatgpt: Optimizing language models for dialogue. URL https://chat.
openai.com.

OpenAI (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.
Palatucci, M., Pomerleau, D., Hinton, G. E., & Mitchell, T. M. (2009). Zero-shot learning

with semantic output codes. Advances in Neural Information Processing Systems, 22.
Pan, S., Bao, L., Ren, X., Xia, X., Lo, D., & Li, S. (2021). Automating developer

chat mining. In 2021 36th IEEE/ACM international conference on automated software
engineering (pp. 854–866). IEEE.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics (pp. 311–318).

Phan, H., & Jannesari, A. (2024). Leveraging statistical machine translation for code
search. In Proceedings of the 28th international conference on evaluation and assessment
in software engineering (pp. 191–200).

Phan, L., Tran, H., Le, D., Nguyen, H., Anibal, J., Peltekian, A., et al. (2021). Cotext:
Multi-task learning with code-text transformer. arXiv preprint arXiv:2105.08645.

Pinzger, M., Nagappan, N., & Murphy, B. (2008). Can developer-module networks
predict failures? In Proceedings of the 16th ACM SIGSOFT international symposium
on foundations of software engineering (pp. 2–12).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2020).
Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(1), 5485–5551.

Rahman, M. M., Ceka, I., Mao, C., Chakraborty, S., Ray, B., & Le, W. (2024). Towards
causal deep learning for vulnerability detection. In Proceedings of the IEEE/ACM
46th international conference on software engineering (pp. 1–11).

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., et al. (2020). Codebleu: a method
for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297.
15 
Roy, D., Fakhoury, S., & Arnaoudova, V. (2021). Reassessing automatic evaluation
metrics for code summarization tasks. In Proceedings of the 29th ACM joint meeting on
European software engineering conference and symposium on the foundations of software
engineering (pp. 1105–1116).

Roziere, B., Lachaux, M.-A., Chanussot, L., & Lample, G. (2020). Unsupervised transla-
tion of programming languages. Advances in Neural Information Processing Systems,
33, 20601–20611.

Sachdev, S., Li, H., Luan, S., Kim, S., Sen, K., & Chandra, S. (2018). Retrieval on source
code: a neural code search. In Proceedings of the 2nd ACM SIGPLAN international
workshop on machine learning and programming languages (pp. 31–41).

Saha, R. K., Lyu, Y., Lam, W., Yoshida, H., & Prasad, M. R. (2018). Bugs. jar: A large-
scale, diverse dataset of real-world java bugs. In Proceedings of the 15th international
conference on mining software repositories (pp. 10–13).

Sanh, V. (2019). DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108.

Sawant, A. A., Aniche, M., van Deursen, A., & Bacchelli, A. (2018). Understanding
developers’ needs on deprecation as a language feature. In Proceedings of the 40th
international conference on software engineering (pp. 561–571).

Schuster, M., & Nakajima, K. (2012). Japanese and korean voice search. In 2012 IEEE
international conference on acoustics, speech and signal processing (pp. 5149–5152).
IEEE.

Shaw, P., Uszkoreit, J., & Vaswani, A. (2018). Self-attention with relative position
representations. arXiv preprint arXiv:1803.02155.

Shi, L., Chen, X., Yang, Y., Jiang, H., Jiang, Z., Niu, N., et al. (2021). A first look
at developers’ live chat on gitter. In Proceedings of the 29th ACM joint meeting on
European software engineering conference and symposium on the foundations of software
engineering (pp. 391–403).

Shi, E., Wang, Y., Zhang, H., Du, L., Han, S., Zhang, D., et al. (2023). Towards efficient
fine-tuning of pre-trained code models: An experimental study and beyond. arXiv
preprint arXiv:2304.05216.

Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T., et al.
(1999). Byte Pair encoding: A text compression scheme that accelerates pattern
matching.

Shiv, V., & Quirk, C. (2019). Novel positional encodings to enable tree-based
transformers. Advances in Neural Information Processing Systems, 32.

Silva, C. C., Galster, M., & Gilson, F. (2022). A qualitative analysis of themes in instant
messaging communication of software developers. Journal of Systems and Software,
192, Article 111397.

Steenhoek, B., Gao, H., & Le, W. (2024). Dataflow analysis-inspired deep learning for
efficient vulnerability detection. In Proceedings of the 46th IEEE/ACM international
conference on software engineering (pp. 1–13).

Svyatkovskiy, A., Deng, S. K., Fu, S., & Sundaresan, N. (2020). Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM joint meeting on
European software engineering conference and symposium on the foundations of software
engineering (pp. 1433–1443).

Svyatkovskiy, A., Fakhoury, S., Ghorbani, N., Mytkowicz, T., Dinella, E., Bird, C., et al.
(2022). Program merge conflict resolution via neural transformers. In Proceedings
of the 30th ACM joint European software engineering conference and symposium on the
foundations of software engineering (pp. 822–833).

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., et al.
(2023). Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971.

Treude, C., Figueira Filho, F., & Kulesza, U. (2015). Summarizing and measuring
development activity. In Proceedings of the 2015 10th joint meeting on foundations
of software engineering (pp. 625–636).

Tufano, R., Pascarella, L., & Bavota, G. (2023). Automating code-related tasks through
transformers: The impact of pre-training. arXiv preprint arXiv:2302.04048.

Tufano, M., Watson, C., Bavota, G., Penta, M. D., White, M., & Poshyvanyk, D. (2019).
An empirical study on learning bug-fixing patches in the wild via neural machine
translation. ACM Transactions on Software Engineering and Methodology (TOSEM),
28(4), 1–29.

Valdés-Rodríguez, Y., Hochstetter-Diez, J., Díaz-Arancibia, J., & Cadena-Martínez, R.
(2023). Towards the integration of security practices in agile software development:
a systematic mapping review. Applied Sciences, 13(7), 4578.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Advances in Neural Information Processing Systems,
30.

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv
preprint arXiv:2109.00859.

Wang, C., Yang, Y., Gao, C., Peng, Y., Zhang, H., & Lyu, M. R. (2022). No more
fine-tuning? an experimental evaluation of prompt tuning in code intelligence.
In Proceedings of the 30th ACM joint European software engineering conference and
symposium on the foundations of software engineering (pp. 382–394).

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., et al. (2022).
Emergent abilities of large language models. arXiv preprint arXiv:2206.07682.

Weyuker, E. J., Ostrand, T. J., & Bell, R. M. (2007). Using developer information as
a factor for fault prediction. In Third international workshop on predictor models in
software engineering (p. 8). IEEE.

http://refhub.elsevier.com/S0893-6080(24)00996-1/sb45
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb45
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb45
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb45
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb45
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb45
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb45
http://arxiv.org/abs/1910.13461
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb47
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb47
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb47
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb47
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb47
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb48
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb48
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb48
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb48
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb48
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb49
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb49
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb49
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb50
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb50
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb50
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb50
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb50
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb50
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb50
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb51
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb51
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb51
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb51
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb51
http://arxiv.org/abs/1907.11692
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb53
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb53
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb53
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb53
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb53
http://arxiv.org/abs/2102.04664
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb55
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb55
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb55
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb55
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb55
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb56
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb56
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb56
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb56
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb56
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb57
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb57
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb57
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb57
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb57
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb57
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb57
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb58
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb58
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb58
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb58
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb58
http://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2302.04026
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb61
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb61
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb61
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb61
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb61
https://chat.openai.com
https://chat.openai.com
https://chat.openai.com
http://arxiv.org/abs/2303.08774
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb64
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb64
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb64
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb65
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb65
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb65
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb65
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb65
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb66
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb66
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb66
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb66
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb66
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb67
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb67
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb67
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb67
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb67
http://arxiv.org/abs/2105.08645
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb69
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb69
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb69
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb69
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb69
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb70
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb70
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb70
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb71
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb71
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb71
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb71
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb71
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb72
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb72
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb72
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb72
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb72
http://arxiv.org/abs/2009.10297
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb74
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb74
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb74
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb74
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb74
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb74
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb74
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb75
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb75
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb75
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb75
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb75
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb76
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb76
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb76
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb76
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb76
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb77
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb77
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb77
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb77
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb77
http://arxiv.org/abs/1910.01108
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb79
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb79
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb79
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb79
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb79
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb80
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb80
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb80
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb80
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb80
http://arxiv.org/abs/1803.02155
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb82
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb82
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb82
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb82
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb82
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb82
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb82
http://arxiv.org/abs/2304.05216
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb84
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb84
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb84
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb84
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb84
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb85
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb85
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb85
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb86
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb86
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb86
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb86
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb86
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb87
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb87
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb87
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb87
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb87
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb88
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb88
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb88
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb88
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb88
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb88
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb88
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb89
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb89
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb89
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb89
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb89
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb89
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb89
http://arxiv.org/abs/2302.13971
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb91
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb91
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb91
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb91
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb91
http://arxiv.org/abs/2302.04048
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb93
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb93
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb93
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb93
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb93
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb93
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb93
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb94
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb94
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb94
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb94
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb94
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb95
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb95
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb95
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb95
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb95
http://arxiv.org/abs/2109.00859
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb97
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb97
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb97
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb97
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb97
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb97
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb97
http://arxiv.org/abs/2206.07682
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb99
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb99
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb99
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb99
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb99


Y. Xiao et al. Neural Networks 184 (2025) 107067 
Xia, C. S., & Zhang, L. (2022). Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM joint
European software engineering conference and symposium on the foundations of software
engineering (pp. 959–971).

Yang, Z. (2019). XLNet: Generalized autoregressive pretraining for language
understanding. arXiv preprint arXiv:1906.08237.

Yang, X., Lo, D., Xia, X., Zhang, Y., & Sun, J. (2015). Deep learning for just-in-time
defect prediction. In 2015 IEEE international conference on software quality, reliability
and security (pp. 17–26). IEEE.

Zeng, Z., Tan, H., Zhang, H., Li, J., Zhang, Y., & Zhang, L. (2022). An extensive study
on pre-trained models for program understanding and generation. In Proceedings of
the 31st ACM SIGSOFT international symposium on software testing and analysis (pp.
39–51).

Zhang, Y., Li, J., Karas, Z., Bansal, A., Li, T. J.-J., McMillan, C., et al. (2024). Eyetrans:
Merging human and machine attention for neural code summarization. Proceedings
of the ACM on Software Engineering, 1(FSE), 115–136.

Zhang, J., Mytkowicz, T., Kaufman, M., Piskac, R., & Lahiri, S. K. (2022). Using pre-
trained language models to resolve textual and semantic merge conflicts (experience
paper). In Proceedings of the 31st ACM SIGSOFT international symposium on software
testing and analysis (pp. 77–88).
16 
Zhang, J., Panthaplackel, S., Nie, P., Li, J. J., & Gligoric, M. (2022). CoditT5: Pretraining
for source code and natural language editing. In 37th IEEE/ACM international
conference on automated software engineering (pp. 1–12).

Zhang, F., Peng, M., Shen, Y., & Wu, Q. (2024). Hierarchical features extraction and
data reorganization for code search. Journal of Systems and Software, 208, Article
111896.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., et al. (2023). A survey of
large language models. arXiv preprint arXiv:2303.18223.

Zhou, Y., Liu, S., Siow, J., Du, X., & Liu, Y. (2019). Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural
networks. Advances in Neural Information Processing Systems, 32.

Zhou, Z., Sha, C., & Peng, X. (2024). On calibration of pre-trained code models. In
Proceedings of the IEEE/ACM 46th international conference on software engineering
(pp. 1–13).

Zhou, Y., Shen, J., Zhang, X., Yang, W., Han, T., & Chen, T. (2022). Automatic source
code summarization with graph attention networks. Journal of Systems and Software,
188, Article 111257.

Zhu, X., Sha, C., & Niu, J. (2022). A simple retrieval-based method for code comment
generation. In 2022 IEEE international conference on software analysis, evolution and
reengineering (pp. 1089–1100). IEEE.

Zuo, X. (2023). GitHub. URL https://github.com/ZuoXinyue/Transformer-Empirical-SE.

http://refhub.elsevier.com/S0893-6080(24)00996-1/sb100
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb100
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb100
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb100
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb100
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb100
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb100
http://arxiv.org/abs/1906.08237
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb102
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb102
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb102
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb102
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb102
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb103
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb103
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb103
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb103
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb103
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb103
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb103
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb104
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb104
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb104
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb104
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb104
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb105
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb105
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb105
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb105
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb105
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb105
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb105
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb106
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb106
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb106
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb106
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb106
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb107
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb107
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb107
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb107
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb107
http://arxiv.org/abs/2303.18223
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb109
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb109
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb109
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb109
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb109
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb110
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb110
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb110
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb110
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb110
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb111
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb111
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb111
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb111
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb111
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb112
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb112
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb112
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb112
http://refhub.elsevier.com/S0893-6080(24)00996-1/sb112
https://github.com/ZuoXinyue/Transformer-Empirical-SE

	Promises and perils of using Transformer-based models for SE research
	Introduction
	Background
	Overview of Research in Transformer-Based Methods
	Transformer-Based Pre-Trained Models in This Study

	Methodology 
	Literature Review
	Research Questions

	Experimental Setup
	Pre-trained Models
	Datasets
	Evaluation Metrics
	Configurations

	Results 
	RQ1. Literature, Popular Applications, and Developers' Needs
	RQ2. Applications' Performance
	RQ3. Resource Consumption
	RQ4. Generalization

	Discussion and Threats to Validity
	Discussion on Additional Statistics
	Threats to Validity

	Related Work 
	Pre-trained Language Models
	Applications
	Bug Fixing
	Bug Detection
	Code Summarization
	Code Search

	Empirical Study

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


