
1 2 3 6 4 1 3 0 4 8 9 2 9

Question 1:

Question 2:

Question 3:

Question 4:

Question 5:

Question 6:

Question 7:

Question 8:

Question 9:

Important notes about this examination

1. You have 120 minutes to complete this exam.
2. No notes or electronics of any kind are allowed.
3. You must submit all pages of this booklet, including any detached pages.
4. In case of uncertainty, clearly write down your assumptions.
5. Good luck!

THE UNIVERSITY OF BRITISH COLUMBIA
CPSC 221: MIDTERM EXAMINATION – February 5, 2020

Student Conduct during Examinations
1. Each examination candidate must be prepared to produce, upon the request of

the invigilator or examiner, his or her UBCcard for identification.
2. Examination candidates are not permitted to ask questions of the examiners or

invigilators, except in cases of supposed errors or ambiguities in examination
questions, illegible or missing material, or the like.

3. No examination candidate shall be permitted to enter the examination room
after the expiration of one‐half hour from the scheduled starting time, or to leave
during the first half hour of the examination. Should the examination run forty‐
five (45) minutes or less, no examination candidate shall be permitted to enter
the examination room once the examination has begun.

4. Examination candidates must conduct themselves honestly and in accordance
with established rules for a given examination, which will be articulated by the
examiner or invigilator prior to the examination commencing. Should dishonest
behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or
forgetfulness shall not be received.

5. Examination candidates suspected of any of the following, or any other similar
practices, may be immediately dismissed from the examination by the
examiner/invigilator, and may be subject to disciplinary action:
i. speaking or communicating with other examination candidates, unless

otherwise authorized;
ii. purposely exposing written papers to the view of other examination

candidates or imaging devices;
iii. purposely viewing the written papers of other examination candidates;
iv. using or having visible at the place of writing any books, papers or other

memory aid devices other than those authorized by the examiner(s); and,
v. using or operating electronic devices including but not limited to telephones,

calculators, computers, or similar devices other than those authorized by the
examiner(s)—(electronic devices other than those authorized by the
examiner(s) must be completely powered down if present at the place of
writing).

6. Examination candidates must not destroy or damage any examination material,
must hand in all examination papers, and must not take any examination material
from the examination room without permission of the examiner or invigilator.

7. Notwithstanding the above, for any mode of examination that does not fall into
the traditional, paper‐based method, examination candidates shall adhere to any
special rules for conduct as established and articulated by the examiner.

8. Examination candidates must follow any additional examination rules or
directions communicated by the examiner(s) or invigilator(s).

Please do not write in this space:

 Full Name: ______________________ CS Account: _____________

 Signature: ______________________ UBC Student #:

CPSC 221 2019W2: Midterm Exam 1

February 5, 2020

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

1 Who gets the marks? [1 mark] Write your 4 or 5 digit CSID here MMMMM

NOTE: You may find the following formulas useful:

•
∑n

i=0 r
i = rn+1−1

r−1

•
∑n

i=1 i = n(n+1)
2

2 Two-tailed Queues [12-marks]

Suppose we implement a queue using a modification of a Singly-Linked-List, as shown in the illustration
below. Our innovative list maintains one tail pointer whose target is the last node, and an additional tail
pointer pointing to the node two before the last.

(a) [4-marks] If we implement enqueue() to occur at the head of the list, and dequeue() to occur
at the tail, what can we say about the worst case running times of the best implementations of the
functions? In the problems below, please assume that the data element in a node cannot be changed.

Fill in the bubble if the given function runs in the given asymptotic time.

Ω(1) O(1) Θ(1) Ω(n) O(n) Θ(n)

enqueue
dequeue

(b) [4-marks] If we implement dequeue() to occur at the head of the list, and enqueue() to occur
at the tail, what can we say about the worst case running times of the best implementations of the
functions? In the problems below, please assume that the data element in a node cannot be changed.

Fill in the bubble if the given function runs in the given asymptotic time.

Ω(1) O(1) Θ(1) Ω(n) O(n) Θ(n)

enqueue
dequeue

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 Love letters [14-marks]

For each code fragment, enter the exact number of lines printed as a function of n. Then, select the
appropriate asymptotic running time from options A. to F. below. Finally, in the boxes at the bottom
of the page, enter the code fragment numbers ordered by running time, fastest to slowest (breaking ties
arbitrarily).

You may assume n is a power of 2, and that n ≥ 1. Further, assume that function lg(n) returns log2 n,
and that function pow(a,b) returns ab.

A. Θ(1) B. Θ(log n) C. Θ(n) D. Θ(n log n) E. Θ(n2) F. Θ(n3)

Code fragment # Lines printed Asymptotic

1 for(int i=pow(n,3); i>1; i=i/2)
cout << "1" << endl;

3 log2 n B

2 for(int i=2; i<n; i++)
for(int j=i-1; j>0; j--)
cout << "2" << endl;

(n−1)(n−2)
2 E

3

int s=0;
while(s <= lg(n)) {
for (int i=0; i<pow(2,s); i++){
cout << "3" << endl;

}
s++;

}

2n− 1 C

Write the code numbers from (asymptotically) fastest to slowest: 1 3 2

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4 Dynamite! [12-marks]

Suppose we are designing a class to represent a string of characters, and that we implement the class using
a dynamically sized contiguous block of memory like an array or vector. The array resizes by doubling
when it is full, and by halving when it less than 1

4 full. It also always stores the first character of the string
in position 0, and the last character of the string in position n− 1, where n is the length of the string.

In each scenario below, select the best asymptotic growth rate from the given list, and write its letter
in the box:

A. Θ(1)

B. Θ(log n)

C. Θ(n)

D. Θ(n log n)

E. Θ(n2)

F. Θ(n3)

A Return the character in position n
2 in the array, assuming the

string has length n.

C Maximum amount of memory used by the array to represent
a string of length n.

C Worst case time to perform n consecutive additions to the
end of an originally empty string.

E Worst case time to remove n
2 characters, one at a time, from

the front of an n character string.

B
Maximum number of times the array is resized when perform-
ing n consecutive additions to the end of an originally empty
string.

A Maximum number of times the array is resized when perform-
ing n

2 consecutive additions to the end a string of length n.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5 Sweetarts hearts for you, my sweetheart [11-marks]

Valentine’s day is coming soon! You want to send a candy gram to your secret crush, but it’s late and the
candy shop might be sold out of the best candies. To save yourself the embarrassment of being repeatedly
denied sale of your top choices, you will instead purchase the kth-ranked candy on your list, which is stored
as an unordered 1-indexed array (the first index is 1) whose values are candy ratings. A natural solution
is to sort your array of candy by value, and then choose the kth position easily, but here you will try a
different algorithm which achieves the same result without (fully) sorting the array.

The algorithm is provided with a parameter k, and returns the element in the input collection that is
the kth lowest value (when sorted in increasing order).

The algorithm operates by choosing one element p, called the pivot, from the input array A and splits
the input into elements which are Lower than the pivot value, and elements which are Higher than the
pivot. Assume that your array does not contain duplicate values. Next the algorithm checks how many
elements are in Lower, and Higher, and recurses on one of the pieces, possibly with a modified value of k.

(a) [2-marks] Suppose that k = 5 and we have completed one round of splitting, and the array is in the
following arrangement with the pivot value highlighted.

On which piece of the array should we recurse? (Lower or Higher) What should be the parameter k
for this recursive call? Enter your answers in the boxes.

Array piece: Lower k : 5

(b) [2-marks] Suppose that k = 5 and we have completed one round of splitting, and the array is in the
following arrangement with the pivot value highlighted.

On which piece of the array should we recurse? (Lower or Higher) What should be the parameter k
for this recursive call? Enter your answers in the boxes.

Array piece: Higher k : 2

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

(c) [3-marks] With your understanding of the recursive call and parameters from the above two ques-
tions, fill in the blanks to complete the pseudocode of the SelectCandy function below: (Note that
in the pseudocode we denote the length of an array A by |A|.)

1. SelectCandy(A [1 . . . n], k)
2. p = pivot(A) // p is the index of the pivot element, randomly chosen from indices of A
3. Lo = array of elements in A that are < A [p]
4. Hi = array of elements in A that are > A [p]

5. if (k = p) return A[p]
6. else if (|Lo| > k)

7. return SelectCandy(Lo , k)

8. else if (|Lo| < k)

9. return SelectCandy(Hi , (k-p))

(d) [2-marks] Let V (n) be the number of steps taken by SelectCandy on an input of size n, and suppose
that the selection of p always divides the array evenly so that |Lo| = |Hi|. Assume that lines 2, 3, 4,
6, and 8 take a total of cn steps. What is the recurrence equation for V (n) expressed using functions
of c, and n?

V (0) = V (1) = 1

V (n) = V (n/2) + cn for n > 1

(e) [2-marks] What is asymptotic value of V (n)?

Θ(n) Θ(n2) Θ(log n) Θ(n2 log n) Θ(n log n)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

6 Put a little love in your heart [7-marks]

It’s time to reserve little portions of your heart for all of the people you secretly admire!
Carefully study the diagrams below. Let H(n) be the number of enclosed, non-heart-shaped regions.

These regions have been shaded for clarity. The value of H(n) for small values of n is shown below:

(a) [1-marks] Fill in the value of H(4). Observe how many new enclosed regions will be created and
added to the existing regions.

(b) [3-marks] Complete the following recurrence relation for H(n):

H(1) = 0

H(n) = 3 H(n− 1) + 5 for n ≥ 1

(c) [3-marks] What is H(n) as a function of n? Your solution should not be a recurrence, contain a
summation, or use asymptotic notation. (To check your formula, note that H(5) = 200.)

5
2(3

n−1 − 1)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

7 Ms. Americana [16-marks]

Suppose you want to rearrange a music playlist so that every other song you hear is by Taylor Swift, and
that no two songs in a row are by the same artist. In this problem you will formulate, solve, prove correct,
and analyze an algorithm to achieve this task.

The data for the problem is simply a vector<char> whose entries each represent a song, denoted by a
single character indicating its artist. The letter T represents Taylor Swift. So, for example, the array PLbad
= [T, T, A, B] consists of two songs by Taylor, followed by one whose artist is denoted by ‘A’ followed
by a fourth whose artist is denoted by ‘B’. That play list does not satisfy our constraints, though, because
the songs do not alternate between Taylor Swift and other artists. The play lists represented by PLgood1
= [T, A, T, B], PLgood2 = [B, T, A, T], and PLgood3 = [T, A, T, A], are good.

For simplicity, you may assume that the playlist is non-empty, that it has even length, and that exactly
half of the songs are by Taylor Swift. Also, please use n to represent A.size().

Consider the following helper function int findNext(vector<char> & A, int start, bool Tay):

1 int findNext(vector<char> & A, int start, bool Tay) {
2 int curr = start;
3 while ((A[curr] == ’T’) == Tay){
4 curr++;
5 }
6 return curr;
7 }

Assume also that you are given a function void swap(char & a, char & b) that can be used to ex-
change the data in a vector. In your arguments for parts (e) through (g), please refer to this assumption
as (fact A).

Finally, our complete algorithm for solving the playlist problem is given here:

1 void playList(vector<char> & A) {
2 bool Tay = (A[0] == ’T’);
3 for (int i = 1; i < A.size(); i++){
4 int next = findNext(A, i, Tay);
5 swap(A[next],A[i]);
6 Tay = !Tay;
7 }
8 }

(a) [2-marks] Show the state of the A vector at the start of iteration i = 5.

0 1 2 3 4 5 6 7

A T A B C T T D T

A at i = 5 T A T C T B D T

(b) [2-marks] What does function findNext do? (Fill in the blanks to answer.) In your arguments for
parts (e) through (g), refer to these observations as (fact B).

If Tay == True: findNext returns index of first non-’T’ in A[i ... n-1].

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

If Tay == False: findNext returns index of first ’T’ in A[i ... n-1].

(c) [2-marks] Fill in the blanks for the following loop invariant for playList:
For all i ∈ {1, 2, . . . , n}, at the start of iteration i,

(inv A) the play list represented by A[0 ... i-1] consists of Taylor Swift songs in every

other location, and no two consecutive songs are by the same artist, and

(inv B) variable Tay is True if and only if A[i-1]==’T’ . (Write an expression here–no

words!)

(d) [2-marks] Is the base case true? Yes No

For the inductive step of the correctness proof, we assume that the loop invariant is true at the beginning
of iteration i and show that it is true at the beginning of iteration i + 1. In your reasoning below, please
refer to the inductive assumptions as inv A(i) and inv B(i), corresponding to their descriptions in part
(c) above. You may also use fact A and fact B.

(e) [2-marks] Which three invariants, facts, or lines of code, guarantee that at the beginning of iteration
i + 1, A[i-1] 6= A[i]?

INV B FACT B FACT A

(f) [1-marks] A[i-1] 6= A[i] together with one other observation, restores invariant A for the start of
iteration i + 1. What is that observation? (Answer with an invariant, fact, or line of code.)

INV A

(g) [1-marks] Finally, invariant B is restored for the start of iteration i + 1 by one line of code from
function playList. Which one?

LINE 6

(h) [2-marks] Our problem is completely solved if we observe that at the start of iteration i = n ,

invariant A gives us what we want! (Choose part A or B of the invariant.)

(i) [2-marks] The worst case asymptotic running time of playList is:

Θ(1) Θ(log n) Θ(n) Θ(n log n) Θ(n2)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

8 Kiss on my list [7-marks]

In the problem below, we have given you “before and after” models of linked lists. Your task is to transform
the “before” into the “after” using simple pointer manipulations on the list nodes. Refer to the elements of
the list nodes using the Node class below. Your solution should follow these guidelines:

• Any variables listed in the picture have already been declared and can be used in your solution.

• You may write loops to simplify your solutions, but your answers don’t need to be general... they just
need to work on the given lists. (Don’t worry about even/odd length, or empty lists, for example.)

• You may not create or destroy any Node objects.

class Node {
public:

int data;
Node * next;
Node(int e): data(e), next(NULL) {} };

Perform the necessary transformation, without declaring any additional local pointer variables, without
referring to the list1 or list2 variables, and without referring to the data attribute. Pointers p1 and p2
should be set to NULL when your code finishes.

line #
1 while (p1->next != NULL) {
2 p2->next = p1->next; // required first move.
3 p2 = p2->next; // could be in different order if next line is different choice
4 p1->next = p2->next; // could be p1->next = p1->next->next;
5 p2->next = NULL; // not necessary until end
6 p1 = p1->next->next;
7 }
8 p1=p2=NULL;
9
10

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem’s page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem’s page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Who gets the marks? [1 mark]
	Two-tailed Queues [12-marks]
	Love letters [14-marks]
	Dynamite! [12-marks]
	Sweetarts hearts for you, my sweetheart [11-marks]
	Put a little love in your heart [7-marks]
	Ms. Americana [16-marks]
	Kiss on my list [7-marks]

