
1 2 3 6 4 1 3 0 4 8 9 2 9

Question 1:

Question 2:

Question 3:

Question 4:

Question 5:

Question 6:

Question 7:

Question 8:

Question 9:

Important notes about this examination

1. You have 120 minutes to complete this exam.
2. No notes or electronics of any kind are allowed.
3. Good luck!

THE UNIVERSITY OF BRITISH COLUMBIA
CPSC 221: MIDTERM EXAMINATION – November 7, 2019

Student Conduct during Examinations
1. Each examination candidate must be prepared to produce, upon the request of

the invigilator or examiner, his or her UBCcard for identification.
2. Examination candidates are not permitted to ask questions of the examiners or

invigilators, except in cases of supposed errors or ambiguities in examination
questions, illegible or missing material, or the like.

3. No examination candidate shall be permitted to enter the examination room
after the expiration of one‐half hour from the scheduled starting time, or to leave
during the first half hour of the examination. Should the examination run forty‐
five (45) minutes or less, no examination candidate shall be permitted to enter
the examination room once the examination has begun.

4. Examination candidates must conduct themselves honestly and in accordance
with established rules for a given examination, which will be articulated by the
examiner or invigilator prior to the examination commencing. Should dishonest
behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or
forgetfulness shall not be received.

5. Examination candidates suspected of any of the following, or any other similar
practices, may be immediately dismissed from the examination by the
examiner/invigilator, and may be subject to disciplinary action:
i. speaking or communicating with other examination candidates, unless

otherwise authorized;
ii. purposely exposing written papers to the view of other examination

candidates or imaging devices;
iii. purposely viewing the written papers of other examination candidates;
iv. using or having visible at the place of writing any books, papers or other

memory aid devices other than those authorized by the examiner(s); and,
v. using or operating electronic devices including but not limited to telephones,

calculators, computers, or similar devices other than those authorized by the
examiner(s)—(electronic devices other than those authorized by the
examiner(s) must be completely powered down if present at the place of
writing).

6. Examination candidates must not destroy or damage any examination material,
must hand in all examination papers, and must not take any examination material
from the examination room without permission of the examiner or invigilator.

7. Notwithstanding the above, for any mode of examination that does not fall into
the traditional, paper‐based method, examination candidates shall adhere to any
special rules for conduct as established and articulated by the examiner.

8. Examination candidates must follow any additional examination rules or
directions communicated by the examiner(s) or invigilator(s).

Please do not write in this space:

 Full Name: ______________________ CS Account: _____________

 Signature: ______________________ UBC Student #:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

CPSC 221 2019W1: Midterm Exam 2

November 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

1 Who gets the marks? [1 marks]

Please enter your 4 or 5 digit CSID in this box: SOLVED

2 Things are still as complex as before [12 marks]

Each item below is a description of a data structure, its implementation, and an operation on the structure,
or an algorithm with inputs. In each case, choose the appropriate worst case complexity from the list
below. The variable n represents the number of items (keys, data, or key/data pairs) in the structure,
unless otherwise stated. In answering this question you should assume the best possible implementation
given the constraints, and also assume that every array is sufficiently large to handle all items, unless
otherwise stated.

A Θ(1)

B Θ(log n)

C Θ(n)

D Θ(n log n)

E Θ(n2)

F None of these complexities is appropriate.

Place the LETTER corresponding to your response on the line beside each scenario.

C Add 2 to every key in an AVL tree.

B Find the maximum value in an AVL tree.

F Suppose you have an AVL tree of n keys, and a query set of log n keys.
Determine how many keys from the query set are in the tree.

E Insert integer keys n to n
2 , in that order, into an initially empty Binary Search

Tree (not necessarily balanced).

B Remove a key with two children from an AVL Tree which subsequently be-
comes unbalanced, and whose balance is restored via the maximum number
of rotations.

E Create a Voronoi diagram of an image with n centers using the Breadth First
algorithm from PA2 on a region with n2 pixels.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 Hash Shorts [14 marks]

1. [6 marks] The table on the left gives a hash function for a set of keys. The keys are inserted into an
originally empty hash table in some order, using linear probing to handle collisions. The state of the
hash table after the insertions is illustrated below the hash function.

key k hash h(k)

B 2
D 5
E 1
L 2
M 2
T 0
U 0

In the table below, fill in the bubbles corresponding to the
keys that satisfy each situation.

D E M T
Could have been the first key entered:
Could have been the last key entered:

Must have been entered before E:
Must have been entered after E:

0 1 2 3 4 5 6
T U M B L E D

2. [2 marks] Give an expression for the load factor for a hash table of size s containing t keys:

t/s

3. [2 marks] Which of the following statements describes a collision in a hash table?

Two entries are identical, except for their keys.
Two entries with different data have the exact same key.
Two entries with different keys have the exact same hash value.
Two entries with different hash values have the exact same key.

4. [4 marks] Suppose that your hash function does not spread keys uniformly in the hash table. Which
of the following can result?

Poor performance for insert(k).
Poor performance for a successful find(k).
The time it takes to compute the hash function increases with every new insertion.
Uneven distribution of chain lengths in a separate-chaining hash table.
Large clusters could form in a linear-probing hash table.
The same key may hash to two different indices.
A separate-chaining hash table can become 100% full.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4 Choices, miscellany, and some originality [12 marks]

1. [4 marks]

Select every condition that, by itself, ensures that a binary tree with n nodes has height O(log n).

For every node, the heights of its left and right child trees differ by at most 2.
For every node, the sizes of its left and right child trees differ by at most 3.
The number of children at every node is either 0 or 2 and every leaf has depth between d
and d + 4 for some value d.
The depth of any two leaf nodes differ by at most 5.

2. [4 marks] Suppose A is an algorithm with a worst case running time of O(n) and B is an algorithm
with a worst case running time of Ω(n2) on inputs of size n. Select all true statements:

For all n ≥ n0 (for some constant n0) and all inputs X of size n, A(X) (A on input X)
finishes before B(X).
For all n ≥ n0 (for some constant n0) there is some input X of size n, so that A(X) finishes
before B(X).
For some n and all inputs X of size n, A(X) finishes before B(X).
For some n there is some input X of size n, so that A(X) finishes before B(X).

3. [2 marks]

Suppose we have an arbitrary binary tree T . What is returned by calling the function blueMoon with
(a pointer to) the root of T as its parameter? (i.e. blueMoon(T.root);) Assume we have a binary
tree node definition with fields data, left, and right. (Select the one best answer.)

1 int blueMoon(Node * & p) {
2 if (p == NULL) return 0;
3 int s = blueMoon(p->left) + blueMoon(p->right);
4 if (p->left != NULL && p->right != NULL) return s+1;
5 else return s;
6 }

This returns the height of the tree T .
This returns the number of edges in the tree T .
This returns the number of nodes with more than one child in the tree T .
This returns the number of nodes with at most one child in the tree T .
None of these choices are correct.

4. [2 marks]

In function blueMoon above, exactly how many times is the test if (p == NULL) made in the worst
case as a function of the number, n, of nodes in the tree A.

dlog2(n)e − 1 blog2(n)c+ 1 n n + 1 2n + 1

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5 B-Trees [8 marks]

In this problem we explore the characteristics of order 3 B-Trees, commonly referred to as 2-3 trees.

1. [2 marks] Add integer keys to the diagram below so that the result is a valid 2-3 tree. Only array
locations that hold keys are shown, so all seven boxes should be filled.

2. [2 marks] This tree is not a valid 2-3 tree. Eliminate as few nodes as you must so that the tree is a
valid 2-3 tree. (Simply cross off the nodes and/or keys you would like to eliminate.)

3. [4 marks] We describe a 2-3 tree as almost perfect if every level of the tree has exactly 1 node with 2
keys (and all the other nodes have only one key). Use a careful sketch to derive an exact expression
for the number of keys in an almost perfect 2-3 tree of height h.

2(2h+1 − 1)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

6 Find kth smallest key [12 marks]

We are asked to implement a dictionary structure. In addition to the normal dictionary operations, we must
support a findKmin operation that takes an integer k and returns the (key,value) pair with the kth smallest
key in the dictionary (the keys are orderable). For example, findKmin(1) would return the (key,value) pair
with the smallest key. Let n be the number of (key,value) pairs in the dictionary.

We can choose to implement the dictionary as: 1) a hash table of size m (much bigger than n) using
linear probing, 2) an AVL tree, or 3) a regular (non-self-balancing) binary search tree. Assume each tree
node contains the size of its subtree. What is the tightest (i.e. largest) asymptotic lower bound we can
claim on the worst-case running time of findKmin(k) for each of these approaches? Assume a fastest
correct implementation using the approach. Here “worst-case” is over all possible insertion orders into the
dictionary and values of parameter k to findKmin(k).

1. [1 mark] Hash table Assume the hash function spreads keys uniformly in the table.

Ω(1) Ω(log n) Ω(n) Ω(m)

2. [1 mark] AVL tree

Ω(1) Ω(log n) Ω(n) Ω(n2)

3. [1 mark] Regular BST

Ω(1) Ω(log n) Ω(n) Ω(n2)

4. [2 marks] In the binary search tree shown to the right, circle the
node that contains the 5th smallest key and put a box around the

node with the 10th smallest key.

5. [7 marks] Suppose we choose an AVL tree to implement findKmin. Complete the following function,
findKmin, that takes as input a pointer root to the root of an AVL tree (ordered by key) and an
integer k, and returns a pointer to the node containing the kth smallest key in the tree, or NULL if no
such key exists. You may assume the size field of a Node contains the number of nodes in its subtree.

struct Node { KeyT key; ValT value; int size, height; Node *left, *right; };
Node *findKMin(Node *root, int k) {

if(root == NULL) return NULL;
int L;
if(root->left == NULL) L=0;

else L= root->left->size ;

if(L == k-1) return root;

if(L >= k) return findKmin(root->left , k);

return findKmin(root->right , k-L-1); }

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

7 Universal Hash [8 marks]

We would like to hash k-bit integer keys down to b-bit integer indices for b much smaller than k. Thus the
hash table has sizem = 2b. Our first attempt is to count the number of 1’s in a k-bit integer x and use that as
the hash function for x; call it count(x). For example, the 4-bit key 7 = 01112 has count(01112) = 3 = 112,
which is a 2-bit index.

1. [1 mark] What is the smallest value of b as a function of k so that every
k-bit key will hash to a b-bit index if we use count() as our hash function? Θ(

log k
)

2. [1 mark] Many k-bit keys hash to the same b-bit index when b is less than k. What is the maximum

number of 4-bit keys that hash to the same 3-bit index using count()? 6

We decide to select a hash function from a universal set of hash functions. We pick k b-bit numbers
r1, r2, . . . , rk at random. We calculate the hash of x as follows: (Note that this function depends on the
choice of r1, r2, . . . , rk. Different choices select different hash functions.)

hash(x)
h = 00 . . . 0︸ ︷︷ ︸

b bits
for i = 1 to k

if ith bit of x is 1 then // Note: the first bit is the rightmost bit.
h = h⊕ ri

return h

The operator ⊕ is bitwise exclusive-or, so 0012 ⊕ 0112 = 0102, i.e., if the ith bit in x and y differ then the
ith bit in x⊕ y is 1, otherwise it’s 0.

3. [1 mark] How many different hash functions are in this set? 2kb

4. [1 mark] Suppose r1 = 0012, r2 = 0112, r3 = 1002, and r4 = 1102. What is hash(01012)?

1012

5. [1 mark] Suppose k = 4 and b = 3. Let x = 01012 and y = 10012; and r1 = 0012, r2 = 0112, and

r4 = 1102. How many possible choices of r3 are there? 2b

6. [1 mark] How many of choices of r3 will cause hash(x) to equal hash(y)? 1

7. [1 mark] For two k-bit integers x and y with x 6= y there is some i between 1 and k where the ith
bits of x and y differ. Let’s imagine that we have chosen r1, r2, . . . , rk except for ri. What is the
probability we choose a b-bit integer ri so that hash(x) equals hash(y)?

1/2 1/2b 1/2k 1/x

8. [1 mark] Does this scheme describe a universal set of hash functions? Yes No.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

8 Snake-like Tree Traversals [9 marks]

h

d k

b f i

jgeca

hdkifbacegj

right-to-left S-order

A snake-like tree traversal visits the nodes of
a tree in level order (and prints their keys) but
reverses direction at each level. For example, the
snake-like order (or S-order) that starts right-to-
left is shown on the left and the one that starts
left-to-right is shown on the right.

h

d k

b f i

jgeca

hkdbfijgeca

left-to-right S-order

1. [2 marks] Draw two different full binary trees (each node has 0 or 2 children) that have the same
left-to-right S-orders and the same right-to-left S-orders. You will receive full credit only for the
smallest examples.

1

2 3

4 5

1

2

4 5

3

2. [1 mark] Suppose the right-to-left S-order of a rooted, ordered tree T with single character keys
produces abcdefghij and the left-to-right S-order of T produces adcbfeihgj. How many nodes have

depth 2 in T (assuming the root has depth 0)? 2

3. [1 mark] Given only the left-to-right and right-to-left S-orders of any rooted, ordered tree, is it always
possible to determine the height of the tree? Yes No

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4. [4 marks] The following code uses two stacks to output the keys of a binary tree in left-to-right
S-order given a pointer to its root. However, its not quite finished. Fill in the each blank with a
single line of code so that the procedure produces the correct left-to-right S-order.

struct Node { KeyT key; Node *left, *right; };
void snakeOrderL2R(Node * p) {

stack<Node *> A, B;
A.push(p);
while(!A.empty()){

while(!A.empty()){
Node *x = A.top(); A.pop();
if(x != NULL) {

cout << x->key << " ";

B.push(x->left);

B.push(x->right);

} }
while(!B.empty()){

Node *x = B.top(); B.pop();
if(x != NULL) {

cout << x->key << " ";

A.push(x->right);

A.push(x->left);

} } } }

h

d k

b f i

jgeca

hkdbfijgeca

left-to-right S-order

5. [1 mark]What is the running time of the above code as a function of n, the number of nodes in its

input? O(n)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem’s page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem’s page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem’s page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Who gets the marks? [1 marks]
	Things are still as complex as before [12 marks]
	Hash Shorts [14 marks]
	Choices, miscellany, and some originality [12 marks]
	B-Trees [8 marks]
	Find kth smallest key [12 marks]
	Universal Hash [8 marks]
	Snake-like Tree Traversals [9 marks]

