
CPSC 221 Winter 2, 2019

Assignment 2

Due 23:59, Friday, February 14, 2020

CS ID 1: Cinda

CS ID 2:

Instructions:

1. Do not change the problem statements we are giving you. Simply add your solutions by
editing this latex document.

2. Take as much space as you need for each problem. You’ll tell us where your solutions are
when you submit your paper to gradescope.

3. Export the completed assignment as a PDF file for upload to gradescope.

4. On gradescope, upload only one copy per partnership. (Instructions for uploading to grade-
scope will be posted on the HW2 page of the course website.)

1

CPSC 221 Winter 2, 2019

1. Pizza! (22 points).

Suppose we have an infinitely large pizza (every computer scientist’s dream), and we
wish to determine what is the maximum number of pizza pieces that we can produce,
using only n perfectly straight (and infinitely long) cuts. The figure below illustrates
the most pieces we can make, for n = 1, 2, 3 and 4 cuts. Pay careful attention to how
many/which pieces are divided (and thus added) by the newest cut.

Let S(n) denote the number of slices, given n cuts across the pie. From the illustration
above, we see that S(1) = 2, and S(2) = 4, and we can also infer from the description
that S(0) = 1.

(a) [1 marks] What is the value of S(5)? 16

(b) [3 marks] Complete the following recurrence relation for S(n):

S(0) = 1

S(n) = S(n− 1) + n for n > 0

(c) [6 marks] What is S(n) as a function of n? Your solution should not be a recurrence,
contain a summation, or use asymptotic notation.

1 + n(n+1)
2

2

CPSC 221 Winter 2, 2019

S(n) = S(n− 1) + n

= S(n− 2) + (n− 1) + n

...

= S(n− k) +
k−1∑
i=0

(n− i)

...

= S(0) +

n−1∑
i=0

(n− i)

= 1 +

n∑
j=1

j

= 1 +
n(n + 1)

2

3

CPSC 221 Winter 2, 2019

Prove using induction, that the maximum number of pizza pieces made using n cuts (n ≥ 0)
is given by your closed form in part (c).

(d) [3 marks] Base case: For n = 0 , (complete the rest)

The recurrence gives S(n) = 1 and the closed form gives S(n) = 1 + 0(1)
2 = 1.

(e) [3 marks] State your inductive hypothesis:

Answer: For any 0 ≤ j < n, S(j) = 1 + j(j+1)
2

(f) [2 marks] State for your inductive step, the number of pieces in the current step (S(n)),
in terms of the number of pieces from the previous step (S(n− 1)):

Answer: S(n) = S(n− 1) + n

(g) [4 marks] Complete your inductive step in the space below:

Note, by IH, S(n− 1) = 1 + (n−1)n
2 .

S(n) = S(n− 1) + n recurrence

= 1 +
(n− 1)n

2
+ n IH

= 1 +
n(n + 1)

2
algebra

4

CPSC 221 Winter 2, 2019

2. Still Hungry! (12 points).

Suppose we still have an infinitely large pizza, and we still wish to determine what is the
maximum number of pizza pieces that we can produce, but this time our cuts are shaped like
Vs. The figure below illustrates the most pieces we can make, for n = 1,and n = 2 V-shaped
cuts. Note that it’s important to remember that the size of the pizza is so large that you can
consider the cuts to be infinitely long, and the points of the Vs can be placed anywhere that
maximizes the number of regions.

Let Z(n) denote the number of slices, given n V-shaped cuts in the pie. From the illustration
above, we see that Z(1) = 2, and Z(2) = 7, and we can also infer from the description that
Z(0) = 1.

(a) [2 marks] What is the value of Z(3)? 16

(b) [5 marks] Write an expression for Z(n) in terms of function S(·) from the previous
problem. This will require lots of sketching! It may help to realize that a drawn V is
just half of a drawn X.

Z(n) = S(2n)− 2n

This comes from the fact that a V shape arises from drawing two lines that cross, and
then erasing half of each line. The number of regions you eliminate when doing that
erasing is 2 for each line, which explains the −2n term. See pages 7-8 in Don Knuth’s
concrete math book.

(c) [5 marks] What is Z(n) as a function of n? Your solution should not be a recurrence,
contain a summation, or use asymptotic notation.

2n2 − n + 1

5

CPSC 221 Winter 2, 2019

3. Dinner Rolls [10 points]. In each case, you will state an exact (not asymptotic) solution.
Please show us the details of your work. Place your final formula in the box.

(a) (5 points) For this problem you may assume that n is a power of 2.

T (n) =

{
0 if n = 1

2T (n2) + 1 if n > 1

T (n) = n− 1

T (n) = 2T (
n

2
) + 1

= 4T (
n

4
) + 3

= 8T (
n

8
) + 7

...

= 2kT (
n

2k
) + 2k − 1

... (let n=2k)

= nT (1) + n− 1

= n− 1

(b) (5 points) For this problem you may assume that n is a power of 3.

T (n) =

{
1 if n = 1

27T (n3) + n2 if n > 1

T (n) = 3n3−n2

2

6

CPSC 221 Winter 2, 2019

(c) (5 points) Assume that ∃k ∈ Z, n = 22
k
.

T (n) =

{
1 if n ≤ 2

T (
√
n) + 1 if n > 2

T (n) = 1 + log log n

Achieved via unrolling, and letting n
1

2k = 2. Easy proof by induction.

(d) Assume that ∃k ∈ Z, n = 22
k
. As a hint, try the following substitution: S(n) = T (n)

n .

T (n) =

{
200 if n ≤ 2
√
nT (
√
n) + 100n if n > 2

T (n) = 100n + 100n log log n

Following the hint, define S(n) = T (n)
n and find S(n) = S(n

1
2)+100. Solve this recurrence

exactly as you did for the previous problem, and then multiply it by n to get the desired
result.

7

CPSC 221 Winter 2, 2019

4. Quicksort (20 points).

In practice, quicksort is one of the fastest sorting algorithms.

1. Pick a pivot (e.g. the first element) bee bed cab ace dad baa add ebb

2. Reorder the array such that all elements < pivot are to its left, and all elements ≥ pivot
are to its right.

add bed ace baa

left partition

bee cab dad ebb

right partition

3. Recursively sort each partition.

void qsort(vector<string> & x, int lo, int hi) {

if (lo >= hi) return;

int p = lo;

for(int i=lo+1; i <= hi; i++)

if(x[i] < x[lo]) { p++; swap(x[p], x[i]); }

swap(x[lo], x[p]);

qsort(x, lo, p-1);

qsort(x, p+1, hi);

}

void quicksort(vector<string> & x) {

qsort(x, 0, x.size()-1);

}

(a) (4 points) Show the contents of the array x at the start of each iteration of the for-loop,
after the for-loop, and after the swap, in the call qsort(x, 0, 3) on the input shown
below:

lo=0 1 2 hi=3 4 5 6 7

start of iter i = 1 add bed ace baa bee cab dad ebb

start of iter i = 2 add bed ace baa bee cab dad ebb

start of iter i = 3 add ace bed baa bee cab dad ebb

end of iter i = 3 add ace bed baa bee cab dad ebb

after swap(x[lo],x[p])| ace add bed baa bee cab dad ebb

(b) (4 points) Complete the following loop invariant by providing the range of indices for
which the statement is true. Note that x[a ... b] is empty if a > b.

At the start of iteration i of the for-loop in qsort:

(A) x[lo+1 ... p] < x[lo] and

(B) x[p+1 ... i-1] ≥ x[lo]

8

CPSC 221 Winter 2, 2019

(c) (4 points) To prove the loop invariant, we use induction on the iteration index i. In
the base case, when i=lo+1 and p=lo, the ranges for parts (A) and (B) are empty and
the invariant is trivially true. For the inductive step, going from iteration i to iteration
i′ = i + 1:

i. If x[i] < x[lo], the value of p in the next iteration is p′ = p+1 and the
order of strings in the vector x changes. If we replaced swap(x[p],x[i])

with x[p]=x[i], which part of the invariant would be false at iteration
i + 1, (A) or (B)?

B

ii. If x[i] >= x[lo], which part of the invariant at iteration i + 1 is the
same as at iteration i, (A) or (B)? A

(d) (4 points) What is the worst case running time of Quicksort on inputs of size n? First,
show the recurrence relation representing the running time for a worst case input. Then
give the asymptotic result.

T (n) = T (n− 1) + Θ(n), T (1) = Θ(1)

Θ(n2)

(e) (4 points) Suppose in every recursive call to sort a subarray, we choose a pivot, in time
proportional to the size of the subarrary, that is never one of the smallest 1/4 or largest
1/4 elements. What is the worst case running time of Quicksort on inputs of size n in
this case? Give the recurrence and the asymptotic closed form.

T (n) = T (3n/4) + T (n/4) + Θ(n), T (1) = Θ(1)

Θ(n log n)

9

