
-- --

On the Complexity of the Policy Improvement Algorithm

for Markov Decision Processes

Mary Melekopoglou
Anne Condon 1

Computer Sciences Department
University of Wisconsin - Madison

1210 West Dayton Street
Madison, WI 53706

ABSTRACT

We consider the complexity of the policy improvement algorithm for Markov deci-

sion processes. We show that four variants of the algorithm require exponential time in

the worst case.

1. Introduction

Finding an optimal policy in a Markov decision process is a classical problem in optimization theory.

Although the problem is solvable in polynomial time using linear programming (Howard [4], Khachian

[7]), in practice, the policy improvement algorithm is often used. We show that four natural variants of this

algorithm require exponential time in the worst case.

A stationary Markov decision process consists of a finite number of states, which includes an initial

state s 0. At each time t=0,1, . . . , the process is in some state st . For each state s there is a finite set of

decisions Ds . If the process is in state s at time t and a decision d in Ds is chosen, there is a fixed transition

probability p (s,s′,d) of being in a state s′ at time t +1. The decision d incurs a cost c (s,d). A policy S is a

mapping from states to decisions. The cost of a policy can be measured in different ways (see Howard

[4]). The discounted cost with discount factor b is the expectation of the sum over all t of c (st, S (st))b
t .

The total cost is the expectation of the sum over all t of c (st, S (st)). The average cost is the limit as t goes

to infinity, of the total cost up to time t divided by t +1. The discounted cost is always finite, whereas the

other measures may be infinite. For a given cost measure, a policy is optimal if it minimizes the expected

cost.

The policy iteration algorithm is an iterative procedure that finds an optimal policy within a finite

number of steps, which is at most exponential in the number of states. Assume for the moment that the cost
hhhhhhhhhhhhhhhhhh

1 Supported by National Science Foundation grant number CCR-8802736.



-- --

- 2 -

measure is the discounted measure, since this is always finite. Roughly, the algorithm proceeds as follows.

With respect to a given policy, we say that a state is switchable if the policy obtained by changing the deci-

sion at that state improves the policy, that is, lowers its cost. Initially, choose an arbitrary policy to be the

current policy. Improve the current policy by switching the decision at one or more switchable states.

Repeat this until no state is switchable. At that point, an optimal policy is reached. Since the number of

policies is at most exponential in the number of states, the algorithm halts within exponential time. See

Howard [4] for a proof of correctness of this algorithm. We describe this algorithm in more detail in the

next section.

There are many versions of this algorithm, depending on how the states to be switched are selected at

a step of the algorithm. In this paper, we consider four versions and prove that they require exponential

time in the worst case. To do this, we present for each algorithm an example of a Markov decision process

on which the algorithm takes exponential time.

2. Exponential Time Examples for the Policy Improvement Algorithm

Our examples are represented as graphs, where vertices represent states and edges represent transi-

tions. The graphs have two types of vertices, called min and average vertices. Min vertices have two deci-

sions, 0 and 1, and on each there is one transition with probability 1. Average vertices have one decision,

with two transitions, each with probability 1/2. There are two special sink vertices, each with no outgoing

edges. All edges have cost 0, except edges to the 1 sink, which have cost 1. Thus the total cost of a policy

is the probability of reaching the 1-sink vertex.

The cost of a vertex i with respect to a policy P is the probability of reaching the 1-sink from i,

when the policy is P. (Note that this cost is the total cost of the process, as defined in the previous section).

A min vertex is switchable with respect to a fixed policy if its cost is not the minimum of the costs of its

children.

On these graphs, the policy improvement algorithm works as follows. The algorithm starts from an

initial policy. Then it repeatedly selects a switchable min vertex, and switches it. That is, it changes the

policy so that the edge corresponding to the selected vertex is replaced by the other edge from the vertex.

The algorithm halts when there is no switchable vertex, in which case an optimal policy has been found.

For our graphs, the policy is optimal with respect to any of the three cost measures defined in the previous

section. More than one vertex may be switchable at any iteration. Thus, to completely specify the algo-

rithm, a select procedure must be defined, which returns the next vertex to be switched, if any. We now

describe four select procedures and later we present exponential time examples for each of these pro-

cedures.

The select procedure of the Simple Policy Improvement Algorithm selects arbitrarily one of the

switchable min vertices. Specifically, it selects the switchable vertex with the largest number. The algo-

rithm is simple in the sense that the select procedure does not select the vertex to be switched based on



-- --

- 3 -

either the costs of the vertices or the structure of the graph.

The select procedure of the Topological Policy Improvement Algorithm needs some preprocess-

ing of the graph. The vertices are topologically sorted, that is, an integer order is assigned to each min ver-

tex, such that if there is a path from vertex i to vertex j, then the order of i is greater or equal to the order of

j. The graph is in this way divided into components of vertices with the same order. The select procedure

selects the largest numbered switchable vertex in the component of lowest order that contains switchable

vertices. In this way, when a vertex i is switched, there is a decrease in the cost of every vertex with larger

order from which there is a path to i, according to the current policy. This algorithm can perform a lot

better than the simple algorithm. If a directed graph is divided into k strongly connected components, and

the numbers of min vertices in them are n 1, n 2, ..., nk , then, in the worst case the algorithm takes

2n 1 + 2n 2 + . . . + 2nk steps. If the maximum size of a component is bounded by a constant, the algorithm

can find a best policy in a polynomial number of steps. In particular, if the graph is acyclic the algorithm

makes at most linear number of switches.

We now describe the select procedure of the Difference Policy Improvement Algorithm. As in the

topological policy algorithm, the vertices are first topologically ordered. Consider the min vertices in the

component with the lowest order that contains switchable vertices. For these vertices, the select procedure

computes the difference between the costs of its two children, and selects the vertex with the largest differ-

ence. (If more than one vertex has this difference, the largest numbered one is selected). This is a natural

approach to the problem of reducing the maximum number of switches required by the policy improvement

algorithm, because when a vertex with a large difference is switched, the decreases of the costs of the ver-

tices with larger order may be large too.

Finally, we describe the Best Decrease Policy Improvement Algorithm. The select procedure of

this algorithm first topologically sorts the vertices of the graph. Again, consider the switchable min ver-

tices in the component of lowest order that contains switchable vertices. For these vertices, the select pro-

cedure computes the decrease of the cost of the vertex, if it is switched. The vertex that will get the largest

decrease is selected (if more than one vertex can get this decrease, the largest numbered one is selected).

We now present exponential time examples for these four algorithms. We use the following conven-

tions in presenting our examples. A policy for a graph with n min vertices is represented as an n-bit vector,

S = SnSn −1
. . . S 1, where Si is the label of the edge in S that originates from i. For simplicity, when

describing the execution of a policy improvement algorithm, we denote by V (i) the cost of vertex i with

respect to the current policy. In our figures, min vertices are represented with circles numbered 1, 2 , ...,

average vertices with circles numbered 0′, 1′, ..., and the sink vertices with squares. The two edges for

every min vertex are labeled with the decisions 0 and 1.



-- --

- 4 -

2.1. The Simple, Topological and Difference Algorithms

We first consider the difference policy improvement algorithm. Our exponential time example for

this algorithm is also an exponential time example for the simple and topological policy improvement algo-

rithms. We first present a basic graph and then we add a gadget in appropriate places of this graph. The

basic graph, given in Figure 2.1, has n min vertices (labeled 1, 2, ..., n), n +1 average vertices (0′, 1′, ..., n′),

and the two sinks.

n
0

n −1
0

n −2 ... 2
0

1
0

0′ 1

1

n′ (n −1)′ ... 2′ 1′ 0

111

Figure 2.1: Basic graph for general n.

The structure can be described recursively; to construct the basic graph for n +1, given the graph for

n, we add a new min vertex, vertex n +1, and a new average vertex, vertex (n +1)′. The two edges for vertex

n +1 lead to vertex (n +1)′ and vertex n. Vertex (n +1)′ is the average of n′ and n −1 (or 0′ if n is 1). Also,

there is an edge from 0′ to min vertex n +1 instead of n.

This basic graph of Figure 2.1 is augmented by adding the gadget gk of Figure 2.2 in appropriate

places.

j
0

k′ ... 2′ 1′ m

1

Figure 2.2: Gadget gk

The gadget gk is placed between a min vertex j and another, m, which can be a min, average or sink

vertex. It consists of k average vertices, 1′, 2′, ..., k′. Vertex i′ (1 ≤ i ≤ k) has one edge going to min vertex

j and another going to the previous average vertex, (i −1)′, or to vertex m if i is 1.

It is easy to notice that this gadget has the following properties:



-- --

- 5 -

— If a policy contains the edge (j, k′), then the cost of j is equal to the cost of m.

— If a policy contains the other edge from j, then

V (k′) =
2k

(2k−1)hhhhhhV (j) +
2k

V (m)hhhhhh => V (j) − V (k′) =
2k

(V (j) − V (m))hhhhhhhhhhhhh ≤
2k

1hhh .

Hence the difference between the costs of j’s children is at most
2k

1hhh .

The gadget g 2(n −k) is added between vertex k and each of its two neighbors of the basic graph, for

every k, 1 < k < n, and g 2(n −1) is added only between vertex 1 and 1′ (because vertex 1 is switched only

once). Note that the number of new average vertices is polynomial (2(n −1)2) in the number of the min

vertices n. Let the resulting graph be Gn.

Now suppose that the initial policy is the 0-vector (S = SnSn −1
. . . S 1 = 00...0). With respect to this

policy, every min vertex has cost 1. The best policy is edge 0 for every min vertex except vertex 1, and

edge 1 for that (S = 00...01). With this policy, every min vertex has cost 1/2. Although this policy differs

by only one edge from the initial policy, the difference policy improvement algorithm takes 2n−1 steps to

find it.

We next describe how the algorithm performs for the graph for n equal to 2. Initially both min ver-

tices 1 and 2 are switchable. The difference between the values of the neighbors of vertex 1 is 1/8, whereas

the corresponding difference for vertex 2 is 1/4, so it is first switched. Vertex 1 is switched next, and then

vertex 2. We have a total of 22−1 = 3 switches.

The values V (0′), V (1), V (2), V (3) can be expressed by the following expressions (if n is greater

than or equal to 3):

V (0′) =
2
1hh (1 + V (n)) =

2
1hh +

2
V (n)hhhhh ,

V (1) = S 1V (1′) + (1−S 1)V (0′) =
2

S 1hhh + (1−S 1)
I
J
L 2
1hh +

2
V (n)hhhhh

M
J
O
=

2
1hh +

2
V (n)hhhhh −

2

S 1V (n)hhhhhhh = V (0′) −
2

S 1V (n)hhhhhhh ,

V (2′) =
2
1hh (V (1′) + V (0′)) =

2
1hh

I
J
L 2
1hh +

2
1hh +

2
V (n)hhhhh

M
J
O
=

2
1hh +

4
V (n)hhhhh ,

V (2) = S 2V (2′) + (1−S 2)V (1) = V (1) −
4

S 2V (n)hhhhhhh +
2

S 1S 2V (n)hhhhhhhhh = V (1) −
2

S 2hhh
I
J
L 2
1hh − S 1

M
J
O
V (n).

V (3) . . . = . . . V (2) −
2

S 3hhh
I
J
L 2
1hh − S 1

M
J
O

I
J
L 2
1hh − S 2

M
J
O
V (n).

This leads us to Lemma 2.2 which is the first step of the proof that the difference policy improvement

algorithm makes an exponential number of switches to reach the best policy for this structure. In the main

lemma of this proof (Lemma 2.7) we show that if the policy for the leftmost k vertices is 0...00, and these



-- --

- 6 -

vertices are switchable, the next 2k−1 switches of the algorithm are made on these vertices to reach the pol-

icy 0...01 for these vertices. The most important step to that lemma is to express the cost of every vertex

with a formula that depends on the current policy and on costs of other vertices (Lemma 2.2). (After that

point we do not need the graph.) The formulas give necessary and sufficient conditions (depending only on

the current policy), for a vertex to be switchable (Corollary 2.4). The next two results (Corollary 2.5 and

Lemma 2.6, which are also used in the proof of the main lemma) give relations between the switching of a

vertex and other vertices becoming switchable.

Definition 2.1. a (k), for every positive k, is defined to be

a (k +1) = a (k)
I
J
L 2
1hh − Sk

M
J
O

and a (1) = −
2
1hh .

The next lemma is technical and it is only used in the proof of Lemma 2.2.

Lemma 2.1. For every 2 ≤ k ≤ n:

V (k′) − V (k −1) =
a (k −1)

a (k)hhhhhhh I
LV ((k −1)′) − V (k −2) MO,

where V (0) should be substituted by V (0′) in case k is 2.

Proof: Note that addition of the gadgets does not affect the costs that the vertices get, but only hides the

actual difference between the min vertices.

V(k′) − V (k −1) =
I
J
L 2
1hhV ((k −1)′) +

2
1hhV (k −2)

M
J
O
− I

LSk −1V ((k −1)′) + (1−Sk −1)V (k −2) MO (by the construction) =

=
a (k −1)

a (k)hhhhhhh I
LV ((k −1)′) − V (k −2) MO (by Definition 2.1.) `

Lemma 2.2. For every k, 2 ≤ k ≤ n, the costs of the vertices, with respect to the current policy S, are given

by the following formulas:

V (k) = V (k −1) + SkV (n)a (k) and V (1) = V (0′) + S 1V (n)a (1), (I)

V (k′) = V (k −1) + V (n)a (k), V (1′) = V (0′) + V (n)a (1), and V (0′) =
2
1hh +

2
V (n)hhhhh , (II)

where a (k) is as in Definition 2.1.

Proof: The formulas can be proved by induction on k. The pair (I) is proved first:

Basis Case: It has been proved that (I) holds for k equal to 1, 2 and 3 by the relations presented before the

lemma.

Induction Hypothesis: We suppose that (I) holds for every k ≤ m.

Induction Step: We prove that (I) holds for k equal to m +1.

V(m +1) = Sm +1V((m +1)′) + (1−Sm +1)V (m) (by the construction) =



-- --

- 7 -

= V (m) + Sm +1
I
LV ((m +1)′) − V (m −1) − SmV (n)a (m) MO (induction hypothesis) =

= V (m) + Sm +1

I
J
L 2
1hhV (m′) +

2
1hhV (m −1) − V (m −1) − SmV (n)a (m)

M
J
O

(by the construction) =

= V (m) + Sm +1

I
J
L 2
1hh

a (m −1)
a (m)hhhhhhhh (V ((m −1)′) − V (m −2)) − SmV (n)a (m)

M
J
O

(by Lemma 2.1) = . . . =

= V (m) + Sm +1

I
J
L 2
1hh

a (1)
a (m)hhhhh (V (1′) − V (0′)) − SmV (n)a (m)

M
J
O

(by applying Lemma 2.1 m −2 times) =

= V (m) + Sm +1V (n)a (m)
I
J
L 2
1hh − Sm

M
J
O

(by the construction) =

= V (m) + Sm +1V (n)a (m +1) (by Definition 2.1).

Proof of the pair (II):

Basis Case: The formulas obviously hold for k equal to 0 and 1. The basis case for k equal to 2 is derived as

follows.

V (2′) = V (1) + V (n)a (2) = V (0′) + S 1V (n)a (1) + V (n)a (1)
I
J
L 2
1hh − S 1

M
J
O
=

=
2
1hh +

2
V (n)hhhhh +

2
1hhV (n)a (1) =

2
1hh +

4
V (n)hhhhh .

Induction Hypothesis: We suppose that (II) holds for every k ≤ m.

Induction Step: We prove that (II) holds for k equal to m +1.

V ((m +1)′) =
2
1hh I

LV (m′) + V (m −1) MO (by the construction) =

= V (m −1) +
2
1hhV (n)a (m) (induction hypothesis) =

= V (m) +
I
J
L 2
1hh − Sm

M
J
O
V (n)a (m) (by applying (I) for m) =

= V (m) + V (n)a (m +1) (by Definition 2.1). `

From Definition 2.1, the following corollary is easily derived.

Corollary 2.3. If a (k) is as Definition 2.1, then the following holds, for every positive k.

a (k +1) =
2

(−1)Sk

hhhhhha (k)



-- --

- 8 -

Proof: The proof is based on the recursive formula for a (k +1): a (k +1) = a (k)
I
J
L 2
1hh − Sk

M
J
O
.

If Sk is equal to 1 then a (k +1) = −
2
1hha (k) =

2
(−1)Sk

hhhhhha (k). If Sk is equal to 0 then a (k +1) =
2
1hha (k) =

2
(−1)Sk

hhhhhha (k). `

Corollary 2.4. Vertex k is switchable if and only if either Sk is 0 and a (k) is negative, or Sk is 1 and a (k)

is positive, for every positive k.

Proof: Proof that if k is switchable and Sk is 0, a (k) is negative:

If k is greater than 1 then, according to Lemma 2.2,

V (k) = V (k −1) + SkV (n)a(k).

Since Sk is 0, V (k) = V (k −1). Since the switch of the vertex to Sk equal to 1 gives a smaller cost,

V (k −1) > V (k −1) + V (n)a(k) => a (k) < 0.

(since V (n) is always positive). The rest can be proved by a very similar reasoning. `

Corollary 2.5. If vertex k (for every positive k) is switchable, and one or more larger numbered vertices

are switched arbitrarily, vertex k is still switchable.

Proof: The fact that k is switchable means that either Sk is 0 and a (k) is negative, or Sk is 1 and a (k) is

positive. Since the switches of larger numbered vertices do not have any effect on the cost of a (k), k is still

switchable after these switches. `

Lemma 2.6. If vertex k (for every positive k less than n) is switched, and Sn
. . . Sk +2Sk +1 = 0...01, then all

the vertices k +1, k +2, ..., n are switchable.

Proof: First, suppose that Sk is switched from 0 to 1. From Corollary 2.4, it is deduced that a (k) is nega-

tive. By Corollary 2.3, a (k +1) is positive, so by Corollary 2.4, vertex k +1 is switchable. By Corollary 2.3,

a (k +2) is negative, so by Corollary 2.4, vertex k +2 is switchable. It can be proved by induction that the

other larger numbered vertices are switchable, too.

If Sk is switched from 1 to 0, the proof that the lemma holds is the same. `

Lemma 2.7. The following two statements hold (for every positive k):

— If Sn
. . . Sk +1Sk = 0...01, and the vertices k, k +1, .., n are switchable, the next 2n −k +1−1 switches of the

difference policy improvement algorithm are made on these vertices, to reach the policy where

Sn
. . . Sk +1Sk = 0...00.

— If Sn
. . . Sk +1Sk = 0...00, and the vertices k, k +1, .., n are switchable, the next 2n −k +1−1 switches of the

difference policy improvement algorithm are made on these vertices, to reach the policy where

Sn
. . . Sk +1Sk = 0...01.



-- --

- 9 -

Proof: The lemma will be proved by induction on k. Before that, an important notice on the difference

between the costs of the vertices:

According to Lemma 2.2, the cost of vertex k (k ≤ n), according to the policy S = SnSn −1...S 1, is

V (k) = V (k −1) + SkV (n)a (k) and V (1) = V (0′) + S 1V (n)a (1).

From these formulas it follows that the difference between the costs of the two neighbors of vertex k is

V (n)a (k), or
2k

V (n)hhhhh (by Corollary 2.3), for the basic structure (without the gadgets). Note that the differ-

ence is constant for every vertex and does not depend on the policy. With the gadgets added to it, the

difference for k becomes
22n −k

V (n)hhhhh , which is an increasing function of k, so the algorithm performs like the

simple policy algorithm.

Basis Case: It is obvious that the statements hold for the case k = n.

Induction Hypothesis: The statements hold for every k ≥ m.

Induction Step: We will prove that the statements hold for k equal to m −1. We prove the first one first:

The difference policy improvement algorithm works first on the vertices numbered n, n −1, ..., m, since the

select procedure always chooses the highest numbered switchable vertex. From the second statement of

the induction hypothesis, we deduce that it performs 2n −m +1−1 switches to reach the policy where

Sn
. . . Sk +1Sm = 0...01. Vertex m −1 is still switchable (Corollary 2.5), so it is switched (from Sm −1 = 1 to 0).

By Lemma 2.6, the vertices n, n −1, ..., m are again all switchable. From the first statement of the induction

hypothesis, we deduce that the difference policy improvement algorithm performs 2n −m +1−1 switches on

these vertices to reach the policy where Sn
. . . Sk +1Sm = 0...00. The total number of the switches is

2n −m +2−1.

The second statement is proved following the same reasoning. `

We can now present the main result of the section.

Theorem 2.8. The difference policy improvement algorithm requires exponential time in the worst case.

Proof: Consider the graph Gn. For every positive n, the algorithm makes 2n−1 switches to find the best

policy (vector 00...01) if the initial policy is the 0-vector. This follows from Lemma 2.7, if initially every

vertex is switchable. Since the initial policy is the 0-vector and a (1) is negative, every other a (k) is nega-

tive, too; so, by Corollary 2.4, every vertex is switchable. `

As corollaries of this theorem, it also follows that the simple and topological improvement algo-

rithms require exponential time in the worst case. This is because on the graph Gn, the simple and topologi-

cal policy improvement algorithms perform just like the difference algorithm.

Corollary 2.9. The topological policy improvement algorithm requires exponential time in the worst case.



-- --

- 10 -

Corollary 2.10. The simple policy improvement algorithm requires exponential time in the worst case.

The proof of Theorem 2.8 showed that the difference between between the costs of the two neigh-

bors of a vertex is not proportional to the decrease that will actually result by making the switch. As a

result, the difference algorithm can require exponential time. A better approach might be to compute for

each switchable vertex the decrease that its switch will give, and decide which vertex to select based on

that. This observation leads us to the best decrease policy improvement algorithm.

2.2. The Best Decrease Algorithm

The select procedure of this algorithm first topologically sorts the vertices of the graph. For every

switchable min vertex in the component with the lowest order that contains switchable vertices, the

decrease of the cost of the vertex if it is switched is computed. The vertex that will get the largest decrease

is selected (if more than one vertex can get this decrease, the largest numbered one is selected).

The algorithm can find the best policy of the graph Gn in one step, if the initial policy is the 0-vector.

However, we can construct another graph on which the best decrease algorithm requires exponential time.

For the new structure we will use another gadget; the gadget gm,l is presented in Figure 2.4.

k

l′′ ... 2′′ 1′′

i
b

m′ ... 2′ 1′ j
c

1

a

Figure 2.4: Gadget gm,l

The gadget gm,l is placed between a min vertex k and another vertex j, that can be a min, average or

sink vertex. The gadget introduces a new min vertex i, and l +m new average vertices. Each vertex p′ of

the set of m average vertices, has one edge going to min vertex k and another going to the previous average

vertex (p −1)′ or to vertex j if p is 1. Each vertex p′′ of the set of l average vertices (double-primed ver-

tices), has one edge going to min vertex k and another going to the next average vertex (p +1)′′ or to the 1-

sink if p is l. Finally, there are edges from the new min vertex i to the average vertices 1′′ and m′, and an

edge from min vertex k to min vertex i. The letters a, b and c denote the labels (0 or 1) of the edges (i, 1′′ ),

(i, m′) and (k, i), respectively.



-- --

- 11 -

Roughly, the key property of this gadget is as follows. If Sk ≠ c, Si ≠ b and V (j) is much smaller than

V (k), then k and i can decrease in cost by a large amount if both are switched. However, if only one of k

or i is switched, the decrease in cost of k or i is small.

It can be easily checked that the gadget has the following properties:

— If Sk = c and Si = b, then V (k) = V (j).

— If Si = a, then V (i) = (1 − 2−l)V (k) + 2−l .

— If Si = b, then V (i) = (1 − 2−m)V (k) + 2−mV (j).

— If Sk ≠ c, then the improvement of V (i) when it is switched from a to b is:

V (k) + 2−l(1 − V (k)) − V (k) − 2−m(V (j) − V (k)) = 2−m(V (k) − V (j)) + 2−l(1 − V (k)).

— If Sk ≠ c, then the improvement of V (i) when it is switched from b to a is:

V (k) + 2−m(V (j) − V (k)) − V (k) − 2−l(1 − V (k)) = 2−m(V (j) − V (k)) − 2−l(1 − V (k)).

The last two properties make sense only if the cost of vertices j and k are the same before and after the

switch of vertex i, because in this case V (j) and V (k) are the same with respect to the current policy before

and after the switch. This is true for the structure that will be presented because no edge (other than the

edge labeled c in the gadget) will connect any vertex with vertex i.

3. Conclusion and Open Problems

We have studied the complexity of the policy improvement algorithm for Markov decision processes

and have shown that many natural variations of this algorithm require exponential time in the worst case.

Apparently, no probabilistic analysis of the policy improvement algorithm has been undertaken,

motivating the following questions. Suppose we define a new algorithm, the Randomized Policy

Improvement Algorithm, by defining the select procedure to choose a switchable vertex randomly and

uniformly from the set of switchable vertices. Does the randomized policy improvement algorithm run in

expected polynomial time on all inputs? For all of the constructions in this paper, the randomized policy

improvement algorithm requires only polynomial expected time (we leave it to the reader to verify that this

is the case). It would also be interesting to obtain results on the average case performance of the policy

improvement algorithm, on reasonable distributions of inputs. The work of Tovey [12], may be a useful

start in this direction.

A select procedure widely used in practice is one in which all switchable states are switched at each

iteration. Does this algorithm require exponential time in the worst case?



-- --

- 12 -

References

[1] A. Condon. The Complexity of Stochastic Games. Information and Computation, to appear, 1990.

Also available as Technical Report Number 863, Computer Sciences Department, University of

Wisconsin-Madison.

[2] C. Derman. Finite State Markov Decision Processes. Academic Press, 1972.

[3] J. Gill. The Computational Complexity of Probabilistic Turing Machines. SIAM Journal on Comput-

ing, 6:675-695, 1977.

[4] Howard. Dynamic Programming and Markov Processes. M.I.T. Press, 1960.

[5] R. J. Jeroslow. The Simplex Algorithm with the Pivot Rule of Maximizing Criterion Improvement.

Discrete Math., 4:367-378, 1973.

[6] D. S. Johnson, C. H. Papadimitriou and M. Yannakakis. How Easy is Local Search? Journal on Com-

puter and System Sciences, 37:79-100, 1988.

[7] L. G. Khachiyan. A Polynomial algorithm in linear programming. Soviet Math Dokl., 20:191-194,

1979.

[8] V. Klee and G. Minty. How Good is the Simplex Algorithm? Inequalities III, O. Shisha, Academic

Press, New York, 159-175, 1979.

[9] C. H. Papadimitriou, A. A. Sch"affer and M. Yannakakis. On the Complexity of Local Search.

Proceedings of the 22nd Annual Symposium on the Theory of Computing (STOC), 438-445, 1990.

[10] H. J. M. Peters and O. J. Vrieze. Surveys in game theory and related topics, CWI Tract 39. Centrum

voor Wiskunde en Informatica, Amsterdam, 1987.

[11] L. S. Shapley. Stochastic Games. Proceedings of the National Academy of Sciences, U.S.A, 39:

1095-1100, 1953.

[12] C. A. Tovey. Low Order Polynomial Bounds on the Expected Performance of Local Improvement

Algorithms. Mathematical Programming, 35(2): 193-224, 1986.

-- --


