®

Check for
updates

Error-Free Stable Computation
with Polymer-Supplemented Chemical
Reaction Networks

Allison Tai® and Anne Condon

University of British Columbia, Vancouver, BC V6T 1Z4, Canada
{tyeuyang,condon}cs.ubc.ca

Abstract. When disallowing error, traditional chemical reaction net-
works (CRNs) are very limited in computational power: Angluin et al.
and Chen et al. showed that only semilinear predicates and functions
are stably computable by CRNs. Qian et al. and others have shown that
polymer-supplemented CRNs (psCRNs) are capable of Turing-universal
computation. However, their model requires that inputs are pre-loaded
on the polymers, in contrast with the traditional convention that inputs
are represented by counts of molecules in solution. Here, we show that
psCRNs can stably simulate Turing-universal computations even with
solution-based inputs. However, such simulations use a unique “leader”
polymer per input type and thus involve many slow bottleneck reactions.
We further refine the polymer-supplemented CRN model to allow for
anonymous polymers, that is, multiple functionally-identical copies of a
polymer, and provide an illustrative example of how bottleneck reactions
can be avoided in this new model.

Keywords: Stable computation - Chemical reaction networks -
DNA polymers

1 Introduction

The logical, cause-and-effect nature of chemical reactions has long been recog-
nized for its potential to carry information and make decisions. Indeed, biolog-
ical systems exploit interacting digital molecules to perform many important
processes. Examples include inheritance with DNA replication, passing infor-
mation from the nucleus to the cytoplasm using messenger RNA, or activating
different cellular states through signal transduction cascades. Chemical reaction
networks (CRNSs) exploit these capabilities to perform molecular computations,
using a finite set of molecular species (including designated input and output
species) and reactions. Reactions among molecules in a well-mixed solution cor-
respond to computation steps. CRN models may use mass-action kinetics, where
the dynamics of the reactions are governed by ordinary differential equations,
or stochastic kinetics, where the choice of reaction and length of time between
reactions depends on counts of molecular species. We focus on stochastic CRNs
in this work.

© Springer Nature Switzerland AG 2019
C. Thachuk and Y. Liu (Eds.): DNA 25, LNCS 11648, pp. 197-218, 2019.
https://doi.org/10.1007/978-3-030-26807-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26807-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-26807-7_11

198 A. Tai and A. Condon

Stochastic CRNs using unbounded molecular counts are Turing-universal [1],
but have a non-zero chance of failure. One challenge is that CRNs are unable to
detect the absence of a molecule, and therefore when all molecules of a particu-
lar species have been processed. For example, when trying to simulate a register
machine, if their count of a species corresponds to a register value, then a test-for-
zero instruction needs to detect when all molecules have been depleted, i.e., their
count is zero. Indeed, while the error of a CRN simulation of Turing-universal com-
putation can be made arbitrarily small, it can never reach zero [2].

Error-free CRNs include those that exhibit stable computation: the output
can change as long as it eventually converges to the correct answer; and commit-
ting computation: the presence of a designated “commit” species indicates that
the output is correct and does not change subsequently. The class of predicates
stably computable by CRNs is limited to semilinear predicates [3], and functions
computable by committing CRNs are just the constant functions [2].

Cummings et al. [4] introduced the notion of limit-stable computation, which
relaxes the stability requirement. In a computation of a limit-stable CRN, the
output may change repeatedly, but the probability of changing the output from
its correct value goes to zero in the limit. Cummings et al. show that any halting
register machine can be simulated by a limit-stable CRN. Their construction
involves repeated simulations of a register machine, resetting the register values
each time, along with slowing down any error-prone reactions each time they
occur. They show that the computational power then becomes equivalent to
that of a Turing machine with the ability to change its output a finite number
of times, capable of deciding predicates in the class AY of limit-computable
function.

From these insights, we can see that CRN computations that produce the
correct answer with probability 1 are still severely limited. We ask, “Is there any
way to extend CRNs to work around the lack of ability to detect absence?” Qian
et al. [5] gave a promising answer to this question by introducing a CRN model
that is supplemented by polymers that behave as stacks, onto which monomers
can be pushed and popped. Most importantly, this extended model allows for
the stack base unit L to be used as a reactant in implementing a “stack empty”
operation. Indeed, Qian et al. use this operation in an error-free simulation of a
stack machine. The resulting protocol, however, requires that the entire input is
pre-loaded onto one of the stacks, a large change from traditional CRNs which
assumes the inputs are well-mixed in a solution.

Motivated by the work of Qian et al., we wish to go one step further: Is
Turing-universal stable computation by polymer-supplemented CRNs (psCRNs)
possible when the input is represented by counts of monomers in a well-mixed
solution? Intuitively, if input monomers can be loaded on to a polymer, absence
of that species from the system could be detected by emptiness of the polymer,
and thus circumvent a significant barrier to error-free, Turing-universal compu-
tation. The obvious obstacle is that it seems impossible to guarantee that all
inputs are loaded on the polymer before computation can begin, if we can’t reli-
ably check for absence of inputs in the environment. At first glance, the logic
appears circular, but we show that indeed stable Turing-universal computation
is possible, and also present ideas for speeding up such computations.

Stable Computation with Polymers 199

In the rest of this section we describe our four main contributions and review
related work. Section 2 introduces our polymer CRN models, Sects. 3, 4, and 5
describe our results, and Sect.6 concludes with a summary and directions for
future work.

1.1 Contributions and Highlights

Stable Register Machine Simulation Using CRNs with Leader Polymers. We
design a polymer-supplemented CRN (psCRN) that simulates a register machine,
assuming that all inputs are pre-loaded on polymers, with one polymer per
species. We then augment the simulator CRN with CRNs that detect when an
input has been loaded, and that restarts the simulator in this case. This scheme is
similar to the error correction scheme of Cummings et al., but leverages polymers
to ensure stable computation. Our polymer simulation of register machines, and
thus Turing-universal computation, has a unique polymer per input species,
as well as a “program counter” to ensure that execution of reactions follows
the proper order. In the parlance of traditional CRNs, these molecules serve
as “leaders”. As a consequence, the simulation has a high number of so-called
bottleneck reactions, which involve two leader reactants. Bottleneck reactions
are undesirable because they are slow.

Anonymous Polymers Can Help Avoid Bottleneck Reactions. To avoid bottle-
neck reactions, we propose a CRN polymer model with no limit on the number
of polymers of a given species, other than the limit posed by the volume of
the system. In addition to type-specific increment, decrement and test-if-empty
operations (which are applied to one polymer of a given species), polymer stubs
can be created or destroyed. We call such polymers “anonymous”. We illustrate
the potential of psCRNs with anonymous polymers to reduce bottleneck reac-
tions, by describing psCRN to compute f(n) = n28™ (which is the same as n?
when n is a power of 2).

Abstractions for FExpressing CRN Multi-threading and Synchronization. Our
CRN for f(n) = n2l'8™) uses threading to ensure that polymer reactions can
happen in parallel, and uses a “leader” polymer for periodic synchronization.
To describe our psCRN, we develop threading abstractions for psCRNs with
anonymous polymers.

Time Complexity and a Simulator for CRNs with Anonymous Polymers. To test
the correctness of our psCRNs and evaluate their running times, we developed
a custom CRN simulator designed to support anonymous polymers and their
associated reactions. Underlying our simulator is a stochastic model of psCRN
kinetics that is a natural extension of traditional stochastic CRNs and population
protocols. We also use this model to analyze the expected time complexities of
our psCRNs examples in this paper, showing how speedups are possible with
anonymous polymers.

200 A. Tai and A. Condon

1.2 Related Work

Soloveichik et al. [6] demonstrated how Turing-universal computation is possi-
ble with traditional stochastic CRNs, achieving arbitrarily small (but non-zero)
error probability. For the CRN model without polymers Cummings et al. [4]
showed how to reset computations so as to correct error and achieve limit-stable
computation (which is weaker than stable computation).

In order to understand the inherent energetic cost of computation, Bennett
[7,8] envisioned a polymer-based chemical computer, capable of simulating Tur-
ing machines in a logically reversible manner. Qian et al. [5] introduced a stack-
supplemented CRN model in which inputs are pre-loaded on stacks, and showed
how the model can stably simulate stack machines. Johnson et al. [9] intro-
duce a quite general linear polymer reaction network (PRN) model for use with
simulation and verification, as opposed to computation. Cardelli et al. [10] also
demonstrated Turing-universal computation using polymers, using process alge-
bra systems, but these systems are not stochastic. Jiang et al. [11] also worked on
simulating computations with mass-action chemical reactions, using a chemical
clock to synchronize reactions and minimize errors.

Lakin et al. [12] described polymerizing DNA strand displacement systems,
and showed how to model and verify stack machines at the DSD level. They also
simulated their stochastic systems using a “just-in-time” extension of Gillespie’s
algorithm. Their model has a single complex to represent a stack. Recognizing
limitations of this, they noted that “it would be desirable to invent an alternative
stack machine design in which there are many copies of each stack complex...”,
which is what we do in this paper. They propose that updates to stacks could
perhaps be synchronized using a clock signal such as that proposed by Jiang
et al. [11]. In contrast, our synchronization mechanism is based on detection of
empty polymers.

The population protocol (PP) model introduced by Angluin et al. [13], which
is closely related to the CRN model, focuses on pairwise-interacting agents that
can change state. In Angluin et al.’s model, agents in a PP are finite-state. An
input to a computation is encoded in the agents’ initial states; the number of
agents equals the input size. Any traditional CRN can be transformed into a
PP and vice versa. Chatzigiannakis et al. [14] expand the n agents to be Turing
machines, then examine what set of predicates such protocols can stably compute
using O(logn) memory. Although the memory capacity of our polymers can
surpass O(logn), polymer storage access is constrained to be that of a counter
or stack, unlike the model of Chatzigiannakis et al.

2 Polymer-Supplemented Chemical Reaction Networks

A polymer-supplemented stochastic chemical reaction network (psCRN) models
the evolution of interacting molecules in a well-mixed volume, when monomers
can form polymers. We aim for simplicity in our definitions here, providing just
enough capability to communicate the key ideas of this paper. Many aspects of
our definitions can be generalized, for example by allowing multiple monomer

Stable Computation with Polymers 201

species in a polymer, or double-end polymer extensibility, as is done in the work
of Johnson et al. [9], Lakin et al. [12], Qian et al. [5], and others.

Reactions. A traditional CRN describes reactions involving molecules whose
species are given by a finite set X. A reaction

r+r —p+p (1)

describes what happens when two so-called reactant molecules of species r, 7’ € X
collide: they produce molecules of species p € X and p’ € Y. We assume that all
reactions have exactly two reactants and two products, that the multi-sets {r, r'}
and {p,p’} are not equal, that for any r and 7/, there is at most one reaction
with reactants of species r and /. For now we do not ascribe a rate constant to
a reaction; we will do that in Sect. 5.

Polymer-supplemented chemical reaction networks (psCRNs) also have reac-
tions pertaining to polymers. A designated subset X(™ of X is a set of
monomers. A polymer of type o € Y™ which we also call a o-polymer, is
a string L,0?, i > 0; its length is 4 and we say that the polymer is empty if its
length is 0. We call 1, a stub and let L = {1, | ¢ € X(™} C X. Reactions
can produce stubs from molecules of other species in Y'; this is an important
way in which our model differs from previous work [5,12]. Polymer reactions
also involve molecules in a set A = {A, | 0 € (™} of active query molecules,
where A C ¥ — X (™) For each o € X(™) there is a reversible polymer reaction,
with the forwards and backwards directions corresponding to o-push and o-pop,
respectively:

[Lg ...]+0 = [Ls ...0] + A,.

Later, we will introduce “inactive” variants of the A, molecules, both to help
control when pushes and pops happen, and to help track whether a polymer is
empty (has length 0) or not.

Configurations. A configuration specifies how many molecules of each species
are in the system, keeping track also of the lengths of all o-polymers. Formally,
a configuration is a mapping ¢ : ¥ U {1l,0® | i > 1} — N, where N is the set
of nonnegative integers. We let ¢([L, ...]) denote total number of o-polymers
in the system (including stubs) and let ¢([L, ...0o]) denote total number of o-
polymers in the system that have length at least 1. With respect to configuration
c, we say that a molecule of species o € X' is a leader if ¢(o) = 1, and we say
that a o-polymer is a leader if ¢([L,...]) = 1.

A reaction of type (1) is applicable to configuration c if, when r # 1/, ¢(r) > 1
and c(r') > 1, and when r = ¢/, ¢(r) > 2. If the reaction is applied to c, a new
configuration ¢’ is reached, in which the counts of r and " decrease by 1 (when
r =1’ the count of r decreases by 2), the counts of p and p’ increase by 1 (when
p = p’ the count of p increases by 2), and all other counts remain unchanged.

A o-push is applicable if ¢([Ly...]) > 0 and c(o) > 0, and a o-pop is
applicable if ¢([Ly...0]) > 0 and ¢(A,) > 0. The result of applying a o-push
reaction is that c(o) decreases by 1, c(A,) increases by 1 and also for exactly one

202 A. Tai and A. Condon

i > 0 such that ¢(L,0%) > 0, c(L,0?) decreases by 1 and c¢(L,0'™!) increases
by 1. Similarly, the result of applying a o-pop reaction is that c(o) increases
by 1, ¢(A4,) decreases by 1, and for exactly one i > 1 such that ¢(L,0%) > 0,
c(L,0") decreases by 1 and c(L,0"!) increases by 1. Intuitively, the length of
one o-polymer in the system either grows or shrinks by 1 and correspondingly
the count of A, either increases or decreases by 1. The affected polymer is
chosen nondeterministically; exactly how the polymer is chosen is not important
in the context of stable computation. For example, the polymer could be chosen
uniformly at random, consistent with the model of Lakin and Phillips [12]. We
defer further discussion of this to Sect. 5.

If ¢’ results from the application of some reaction to ¢, we write ¢ — ¢’ and
say that ¢’ is directly reachable from c. We say that ¢’ is reachable from c if for
some k > 0 and configurations ¢y, co, ..., Cg,

c—>c1—>c2...—>ck—>c'.

Computations and Stable Computations. We're interested in CRNs that com-
pute, starting from some initial configuration cg that contains an input. For
simplicity, we focus on CRNs that compute functions f : N¥ — N. For example,
the function may be Square, namely f(n) = n?.

In a function-computing psCRN, the input n = (ni,...,n;) € N* is repre-
sented by counts of species in a designated set 7 = {X1, Xs,..., X} € X0
and the output is represented by the count of a different designated species
Y € X(™). In the initial configuration ¢y = co(n), the initial counts of the input
species X; is n;, 1 < i < k, and the counts of all species other than the input
species, including polymers and active query molecules, is 0, with the following
exceptions. First, there may be some leader molecules or polymers present. Sec-
ond, the count of a designated “blank” species B € Y may be positive. Blank
molecules are useful in order to keep all reactions bimolecular, since a unimolec-
ular reaction 7 — p can be replaced by r + B — p+ B (if B’s are guaranteed to
always be present). Blanks can also be used to create new copies of a particular
molecular species.

A computation of a psCRN is a sequence of configurations starting with
an initial configuration cg, such that each configuration (other than the first)
is directly reachable from its predecessor. Let C be a psCRN, and let ¢ be a
configuration of C. We say that c is stable if for all configurations ¢’ reachable
from ¢, c(Y) = ¢/(Y), where Y is the output species. The psCRN stably computes
a given function f : N¥* — N if on any input n € N, for any configuration c
reachable from cg(n), a stable configuration ¢’ is reachable from ¢ and moreover,
c¢/(Y) = f(n). Finally if psCRN C stably computes a given predicate, we say that
C is committing if C has a special “commit” species Ly such that for all n € N¥,
for any configuration ¢ reachable from co(n) that contains species Ly, if ¢’ is
reachable from c then ¢’ also contains Ly and ¢/(Y) = f(n).

Bottleneck Reactions. In our CRN algorithms of Sect. 3, many reactions involve
a leader molecule, representing a program counter, that reacts with a leader

Stable Computation with Polymers 203

polymer. Such reactions, in which the count of both reactants is 1, is often
described as a bottleneck reaction [15]. As explained in Sect. 5, in a stochastic
CRN that executes in a well-mixed system with volume V', the expected time for
such a reaction is ©(V') [6]. Our motivation for the anonymous polymer model
in Sect.4 is to explore how to compute with polymers in a way that reduces
bottleneck reactions.

3 Stable, Turing-Universal Computation by Sequential
PsCRNs with Leader Polymers

Here we describe how psCRNs with leader polymers can stably simulate register
machines, thereby achieving Turing-universal computation. Before doing so, we
first introduce psCRN “pseudocode” which is convenient for describing psCRN
algorithms. Then, as an illustration, we describe a psCRN to compute the Square
function f(n) = n2. We first do this for a slightly different input convention than
that described in Sect. 2: we assume that all input molecules are “pre-loaded” on
polymers. For this pre-loaded input model, building strongly on a construction
of Cummings et al. [4], we show how committing psCRNs can simulate register
machines, thereby achieving Turing-universal computation. Finally, we remove
the requirement that the input is pre-loaded by adding mechanisms to detect
when an input is loaded, and to restart the simulator in this case.

Sequential psCRN Pseudocode. Following earlier work [4-6,16], we describe a
psCRN program as a sequence of instructions, ordered consecutively starting at
1. Because one instruction must finish before moving on to the next, we call these
sequential psCRNs. Corresponding to each instruction number 7 is a molecular
“program counter” species L; € Y. One copy of L; is initially present, and no
other Ly for i’ # i is initially present.

The instructions inc(c) and dec(o) of Tablel increase and decrease the
length of a o-polymer by 1, respectively, making it possible to use the polymers
as counters. We assume that always a sufficient number of blanks are in the
system in order for the inc() instruction to proceed. In order to ensure that
the push and pop reactions happen only within the inc() and dec() reactions,
the inc(o) operation generates the active query A,, which is converted into
an inactive variant I, € X — X(™) before the instruction execution completes,
and the dec(o) instruction reactivates A, in order to reduce the length of a
o-polymer by 1. If a psCRN executes only instructions of Table 1, starting from
an initial configuration in which there is no polymer of length greater than 0,
then we have the following invariant:

Invariant: Upon completion of any instruction, the count of I, equals the
sum of the lengths of o-polymers.

The jump-if-empty instruction is useful when there is a leader o-polymer.
This o-polymer is empty (has length 0) if and only if a stub L, is in the sys-
tem. Assuming that our invariant holds, the leader o-polymer is not empty if

204 A. Tai and A. Condon

and only if at least one I, molecule is in the system. Either way, the instruc-
tion ensures that the program counter advances properly. When the o-polymer
is empty, the dec(o) cannot proceed and causes an algorithm to stall. The
jump-if-empty(c, k) instruction provides a way to first check whether the
o-polymer is empty, and if not, dec(o) can safely be used. The create and
destroy instructions provide a way to create and destroy copies of a species. For
clarity, we also include create-polymer(o) and destroy-polymer(o) instruc-
tions, which create and destroy the stub L., respectively. While more than one
reaction is needed to implement one instruction, all will have completed when
the instruction has completed and the program counter is set to the number of
the next instruction to be executed in the pseudocode.

Table 1. Instruction abstractions of psCRN reactions. The decrement dec(o) instruc-
tion can complete only if some o-polymer has length is at least 1.

2: inc (o) Li+B—L;+o

o+ [le...] = As +[Lls...0]
L;+Ag ‘)Li+1+[o’

i: dec (o) Li+1, — L} + A,
Ac+[Llo...ol=—0+[Ls..]
Lf+0—>L¢+1+B

i: jump-if Li+1ly — Ly + 1,
—empty (o, k) Li+ 1y — Liy1 + 1,
i: goto(k) Li+B— Ly + B
i: create (o) Li+B — Liy1+o0
i: destroy (o) Li+0c—Liy1+B
i: create-polymer(o) |L; + B — Lit1 + Lo
i: destroy-polymer(c)|L; + Lo — Lit1 + B
4: halt Li+B—Ly+B

Pseudocode instructions may also be function calls, where a function is itself
a sequence of instructions expressed as pseudocode. Suppose again that there
is a leader o-polymer and also a leader o’-polymer in the system. Then the
copy(o,o’) function (using a temporary T-polymer) extends the length of the
o’-polymer by the length of the o-polymer. Another useful function is flush(o)
which decrements the (leader) o-polymer until its length is 0. A third function,
release-output(o), is useful to “release” molecules on a (leader) o-polymer as
Y molecules into the solution. This function uses an additional special leader
Y’-polymer which is empty in the initial configuration, and whose length at the
end of the function equals the number of released Y molecules. The Y’ molecule
will be useful later, when we address how a psCRN can be restarted (and should
not be used elsewhere in the code).

Stable Computation with Polymers 205

i: copy(o,0o’)|i: goto(i.1)
i.1: create-polymer(T)
1.2: jump-if-empty(o,:.7)

2.3: dec (o)
7.4 inc(o’)
7.5: inc (1)

1.6: goto(:.2)

1.7: jump-if-empty(7,:.11)
1.8: dec(7)

1.9: inc (o)

1.10: goto(4.7)

i.11: destroy-polymer(T)
1.12: goto(i + 1)

1: flush (o) |i: goto(:.1)

i.1: jump-if-empty (o, + 1)
1.2 dec(o)

1.3: goto(i.1)

i: release-output (0)|i: goto(i.1)

‘ i.1 jump-if-empty(c,i+ 1)
‘ 0.2 dec(o)

‘ .3 inc(Y’)

‘ i.4 create(Y)

‘ i.5 goto(i.1)

Numbering of Function Instructions. For clarity, we use i.1,47.2, and so on to
label the lines of a function called from line i of the main program. Upon such
a function call, the CRN’s program counter first changes from L; to L; . The
program counter is restored to L;1; upon completion of the function’s instruc-
tions, e.g., via a goto(i+1) instruction or a jump-if-empty(o, i+ 1) instruction.
If one function fp is called from line a.b of another function fa, the program
counter labels would be a.b.1, a.b.2 and so on, and so the label “” in the func-
tion description should be interpreted as “a.b”. In this case, when the function
fB completes, control is passed back to line a.(b + 1) of function f4; that is,
the “goto(i+ 1)” statement should be interpreted as “goto(a.(b+1))”. Also for
clarify, we use special labeling of instructions in a few special places, such as the
restart function below, in which instructions are labeled s1,s2 and so on.

psCRNs with Pre-loaded Inputs. As noted in the introduction, a challenge in
achieving stable computation with psCRNs is detecting the absence of inputs.
To build up to our methods for addressing this challenge, we first work with a
more convenient convention, that of pre-loaded inputs. By this we mean that if
the input contains n; molecules of a given species X;, then in the initial config-
uration there is a unique X;-polymer of length n; (the “pre-loaded” polymer).
Furthermore, there are n,; copies of the inactive query molecule Ik, in the sys-
tem. Intuitively, the pre-loaded initial configuration is one that would be reached

206 A. Tai and A. Condon

if n; inc(X;) operations were performed from an initial configuration with no
inputs and an empty X;-polymer, for every input species X;.

A Committing, Sequential psCRN with Pre-loaded Inputs for Square. Our
psCRN for the Square function f(n) = n? has one input species X and one out-
put species Y. In the pre-loaded initial configuration, the input is represented
as the length n of a leader X-polymer, and the count of Ix is n. The number
of blanks in the initial configuration must be greater than n?, since blanks are
used to produce the n? output molecules. The only other molecule in the initial
configuration is the leader program counter L;. The psCRN has a loop (imple-
mented using jump-if-empty and goto) that executes n times, adding n to an
intermediate Y;,:-polymer each time. When the loop completes, the output is
released from the Yj,;-polymer in the form of Y, so that the number of Y’s in
solution is n?, and the psCRN halts. The halting state is in effect a committing
state, since no transition is possible from Ly .

Algorithm 1. Sequential-n?-psCRN, with input n pre-loaded on X-polymer.

: create-polymer(X')
: create-polymer(Yin:)
: copy (X, X")
jump-if-empty(X’,8)

dec(X")

copy (X, Yine)

goto(4)
release-output (Yin:)
halt

© 0D wy

Committing Turing-Universal Computation by psCRNs with Pre-loaded Inputs.
Turing-universal computation is possible with register machines (RMs). To sim-
ulate a halting register machine that computes function f : N¥ — N with » > k
unary registers, a psCRN has r unary counters R, Rs, ..., R,, the first k of
which initially contain the input counts nq,ns,...,ng, while the others are ini-
tially 0. Throughout the simulation of the register machine, the psCRN has
exactly one R;-polymer for each register R;, 1 <1 < r. In addition, there is one
additional polymer, a Y’-polymer, which is initially empty and is used by the
release-output function. A register machine program is a sequence of instruc-
tions, where instructions can increment a register; decrement a non-empty reg-
ister; test if a register is empty (0) and jump to a new instruction if so; or halt.
Table 1 already shows how all four of these instructions can be implemented
using a psCRN. We assume in what follows that these are the only instructions
used by the psCRN simulator; in particular, no additional registers (polymers)
are ever created or destroyed. If register R, is used to store the output, then the
output is released into solution, using release-output(R,), once the machine
being simulated reaches its halt state. We assume that release-output(R,) is
the only function call of the RM simulator.

Stable Computation with Polymers 207

Stable, Turing-Universal Computation by psCRNs. We now handle the case that
the input is represented as counts of molecules, rather than pre-loaded poly-
mers. That is, in the initial configuration of the psCRN all polymers of types
Ry, Ra, ..., R, are empty, and instead, for each input n;, 1 <1 < k, there are n;
copies of molecule R; in solution. Our scheme uses the R;-push reaction to load
inputs. We add CRNs to detect input-loading and to restart the simulator in
this case. Once all inputs are loaded, the system is never subsequently restarted.
Overall our simulation has four components:

— Input loading: This is done as R;-push, which can happen at any time until

all inputs are loaded. Recall that the R;-push reactions are

[J—Rl]+Rl — [LRl ...Rl]—l—ARl,l <I<k.
Each such reaction generates an active query molecule Ag, which, as
explained below, triggers input detection.

— Register machine (RM) simulation: Algorithm 2 shows the simulator in
the case of three input registers. This psCRN program has a “prelude” phase
that starts by creating three new polymers R}, R, and R} (lines P1, P2, and
P3), and then copies the input register polymers Ry, Ry, and R3 to polymers

', RS, and Rj, respectively (lines P4, P5, and P6). Then starting from line
numbered 1, the simulation uses register R; rather than R;, 1 <[< 3, as well
as the remaining initially empty registers Ry, ..., R,. Upon completion of the
computation, the output is released from register R,., and the simulator halts
(produces the Ly species).

Algorithm 2. Sequential-RM-psCRN, k = 3 input registers, r registers in total.

Pl: create-polymer(R})

P2: create-polymer(R5)

P3: create-polymer(Rj3)

P4: copy(R1, R})

P5: copy(R2, R5)

P6: copy(Rs, R3)

1: // Rest of psCRN simulation pseudocode here, with
2: // Ri, Rs and Rj3 replaced by R}, Ry and Rj

: // ending with release-output(R,) function and halt instruction.

— Input detection: This is triggered by the presence of an active query
molecule Ap,. For each value i of the main program counter after the prelude
phase (i.e., after lines p1 through p6) and for Ly we have the following reac-
tions, where s1 is the first number of the restart pseudocode (see below).
The reactions convert the active Ag, molecule into its inactive counterpart,
IR,, since the input molecule is now loaded, and also changes the program
counter to Lg;, which triggers restart.

L7,+ARL _>LSl+IR171Sl§k7
LH"'ARZ ———>L51—|—IR“1§Z§]€.

208 A. Tai and A. Condon
Ly is no longer a committing species, since it may change to Lg;.

No input detection is done in prelude lines p1, P2, and P3. Line P4 is a
function call to copy(Ri1, R}), which executes instructions numbered p4.1
through p4.11 of copy. Input detection is only done at line p4.2, the first
jump-if-empty instruction:

Lpyo+ Ar, — Lpso+ Ip,.

It does not trigger a restart, but simply converts the active query molecule
AR, to Ig,. Similarly, for lines p5 and p6, we add the reactions

Leso+ Ar, — Lpso + IR, and
Lego + Ary, — Lpgo + IR,

— Restart: Restart happens a number of times that is at most the total input
length n1 + ny + ...ng, since each input molecule is loaded into a register
exactly once, generating one active query molecule. For k = 3, the registers

', R, and Rj, as well as the registers Ry, . .., R, are flushed, and any outputs
that have been released in solution are destroyed, assuming that the number
of outputs released into the solution was tracked by some Y’ register, as
before. Then the program counter is set to line P4 of the simulator (leader
molecule Lpy). Algorithm 3 shows the restart pseudocode.

Algorithm 3. Restart

s1: flush(R})
s2: flush(R5)
$3: flush(R%)
Ss4: flush(Ry)

Sr: flush(R,.)
S(r 4+ 1): destroy-output()
S(r 4 2): goto(p4)

i: destroy-output () i: goto(i.1)

‘ i.1: jump-if-empty(Y”,i.5)
‘ 1.2: dec(Y”)

‘ i.3: destroy(Y)

‘ i.4: goto(i.1)

‘ i.5: goto(i + 1)

Correctness of Algorithm 2: Sequential-RM-psCRN. We claim that our register
machine simulator without pre-loaded inputs stably computes the same function
as the register machine, assuming that sufficiently many blank molecules B are

Stable Computation with Polymers 209

present to ensure that reactions with B as a reactant can always proceed. (We
note that no “fairness” assumption regarding the order in which reactions happen
is necessary to show stability, since stability is a “reachability” requirement.)

The first three instructions, lines p1, p2, and p3), simply create polymers R},
RY, and RY. The delicate part of the simulation lies in the next three instructions
on lines P4, P5, and P6, which copy input registers Ry, Ry, and R3 to R}, RS and
RY, respectively. For concreteness, consider the instruction copy(R;, R}) in line
P4. (The argument is the same for line 5, with Ry, R} substituted for Ry, R,
and is also the same for line 6, with Rs, R} substituted for Ri, R}.)

The R;-push reaction used in input loading can cause a violation of our earlier
invariant that upon completion of each instruction, the count of I, equals the
length of the (leader) Ry-polymer. Instead, we have that Ig, is less than or equal
to the length of the R;-polymer. This can cause the jump-if-empty instruction
numbered P4.2 in the copy function to stall, when there is no I, and also no
L g, (since the Rq-polymer is not empty due to input loading). In this case, the
input detection reaction (introduced above)

Lpyo+ Ar, — Lpyo + IR,

will convert Ag, to Igr,. This averts stalling, since jump-if-empty can proceed
using Ig,. The subsequent lines of the copy(R;, R}) code can then proceed.

Once lines P4, P5, and P6 have completed, the correctness of the psCRN
simulation of the register machine, using the copies R}, R} and Rj, is not affected
by input loading. Input loading and input detection can also proceed. These
are the only viable reactions from the “halting” state Ly, and so eventually
(since the RM machine being simulated is a halting machine), on any sufficiently
long computation path, all inputs must be loaded and detected. Input detection
after the prelude phase produces a “missing” I, molecule and triggers a restart.
The restart flushes all registers used by the simulator, and also, using the Y-
polymer, destroys any outputs in solution. (Since restart is triggered only when
the program counter is at a line of the main program, restart does not interrupt
execution of the release-output function.) A new simulation is then started at
line P4, ensuring that any inputs that have been loaded since the last detect are
copied to the simulator’s input registers R}, R, and Rj.

Once all inputs have been detected, the invariant is restored and the simulator
proceeds correctly, producing the correct output. This correct output is never
subsequently changed, and so the computation is stable.

Bottleneck Reactions. In our sequential psCRNs, both inc(o) and dec(o) contain
bottleneck reactions, and so copy(o,0’) has ©(|o|) bottleneck reactions. Thus
the psCRN for Square has ©(n?) bottleneck reactions. In the next section we
show how to compute a close variant of the Square function with fewer bottleneck
reactions, using anonymous polymers rather than leader polymers.

210 A. Tai and A. Condon

4 Faster Computation of Square by Threaded psCRNs
with Anonymous Polymers

To avoid the bottleneck reactions of our sequential psCRN, we enable the inc(o)
and dec(o) instructions to operate on many functionally-identical “anonymous”
o-polymers, rather than just a single leader polymer. Here we describe how this
can work, using the function f(n) = n2l87) as an example, and focusing only
on the pre-loaded input model. Error detection and correction can be layered
on, in a manner similar to Sect. 3.

We start with a single Y-polymer of length n, and we wish to create a total
of 287 Y_polymers, whose lengths sum to n2$™. Algorithm 4 proceeds in
|lgn] rounds (lines 6-9), doubling the number of Y’s on each round. To keep
track of the Y molecules, we introduce a distributed o-counter data structure,
and use it with ¢ = Y. The data structure consists of o-polymers that we call
o-thread-polymers, plus a thread-polymer counter T, which is a leader polymer
whose length, |T,|, is the number of o-thread-polymers. The value of this dis-
tributed counter is the total length of all o-thread-polymers. We explain below
how operations on this distributed counter work.

Algorithm 4. Threaded-n2lt°9"]_psCRN.
: create-polymer(H)
: copy (X, H)
create-distributed-counter(Y)
add-thread-polymer(Y,1)
: copy(X,Y)
: halve(H)
jump-if-empty(H,10)

double(Y)

goto(6)
: halt

QL XPAD I W

—_

Algorithm 4 counts the number of rounds using a leader H-polymer, whose
length is halved on each round. The halve function is fairly straightforward to
implement, using the instructions and functions already introduced in Sect. 3.

i: halve(H) i: goto(i.1)

i.1: create-polymer(H’)
1.2: copy(H, H')

i.3: jump-if-empty(H’, i.9)
i.4: dec(H')

i.5: dec(H)

1.6: jump-if-empty(H’, i.9)
1.7 dec(H')

1.8: goto(i.3)

i.9: destroy-polymer(H’)
.10: goto(i + 1)

Stable Computation with Polymers 211

The double(o) function of Algorithm 4 is where we leverage our distributed
Y-counter (with ¢ = Y). Recall that a distributed o-counter data structure
consists of a set of anonymous o-polymers, which we call o-thread-polymers,
plus a thread-polymer counter T,, which is a leader polymer whose length is
the number of o-thread-polymers. The double function first creates two other
distributed counters 7 and 7’ (lines 4.1 and 4.2), and gives each the same number
of thread-polymers as o, namely |T,| thread-polymers (lines i.3 and i.4), all
of which are empty. The heart of double (line ¢.5) transfers the contents of
the distributed o-counter to 7 and 7/, emptying and destroying all o-thread-
polymers in the process. It then creates double the original number of (empty)
o-thread-polymers (lines .6 and .7; note that the number of threads of 7 is the
original value of |T,|). It finally transfers the 7 and 7’ polymers back to o (lines
1.8 and 4.9), thereby doubling o.

i: double(c)|i.1 create-distributed-counter(r)
i.2 create-distributed-counter(7’)

1.3 add-thread-polymers(7, T,)

i.4 add-thread-polymers(7’, T,)

i.5 transfer(o, 7, 7')

i.6 add-thread-polymers(o, T;)

i.7 add-thread-polymers(o, T;/)

1.8 transfer(r, o)

i.9 transfer(7’, o)

.10 destroy-distributed-counter(r)

i.11 destroy-distributed-counter(7’)

.12 goto(i + 1)

Next are details of instructions used to create an empty distributed counter, and
to add empty threads to the counter. Again, these are all straightforward sequential
implementations (no threads), using leader polymers to keep track of counts.

1: create-distributed-counter(o) i: goto(i.l)

// Creates an empty counter 1.1 create-polymer(7,)
// with zero polymers i.2 goto(i + 1)
1 add-thread-polymers(o,T) 1 goto(i.1)
// Adds |T| empty i.1: create-polymer(Temp)
// thread-polymers to the i.2: copy(T,Temp)
// distributed o-counter, i.3: jump-if-empty(Temp, i.8)
// where T is a counter i.4: dec(Temp)
1.5 create-polymer (o)

1.6: inc(7Ty)

1.7 goto(i.3)

i.8: destroy-polymer(Temp)
i.9: goto(i + 1)

¢ add-thread-polymer(c, 1) 1 goto(i.l)
// Adds one empty i.1: create-polymer(o)
// thread-polymer to the .2: inc(Ty)

// distributed o-counter .3: goto(i + 1)

212 A. Tai and A. Condon

The transfer function transfers the value of a distributed o-counter to two
other distributed counters called 7 and 7'. In line .2 of transfer, function
create-threads creates T, identical “thread” program counters, L;. Once again
this is straightforward, using a leader polymer to keep track of counts. All of
the thread program counters execute the thread-transfer function in line .4
of transfer, thereby reducing bottleneck reactions (details below). The “main”
program counter, now at line .4 of the transfer function, can detect when all
threads have completed, because each decrements Thread-Count exactly once,
and so Thread-Count has length zero exactly when all threads have completed.
At that point, the main program counter progresses to line .5, destroying the
thread program counters using the destroy-threads function (not shown, but
uses the destroy function to destroy each single thread).

i: transfer(o,7,7’) i: goto(i.1)

// transfer o to i.1: create-polymer(Thread-Count)

// both 7 and 7/ |i.2: create-threads(T,, L;)

1.3: copy(Ty,, Thread-Count)

1.4: loop-until-empty(Thread-Count, i.5)
thread-transfer(o, 7, 7/, Thread-Count)

i.5: destroy-threads(L;)

i.6: destroy-polymer(Thread-Count)

1.7: goto(i + 1)

The function transfer(o, 7), not shown but used in double, is the same as
transfer(o, 7, 7'), except the call to thread-transfer does not include 7’ and
the “inc(7’)” line is removed in the implementation of thread-transfer.

i: create-threads(7,, L:) |i: goto(i.1)

// create T, thread i.1: create-polymer(Temp)
// program counters, L; i.2: copy(T,,, Temp)

1.3: jump-if-empty(Temp, i.7)
1.4 dec(Temp)

.5 create(L;)

1.6 goto(i.3)

i.7: destroy-polymer(Temp)
1.8: goto(i + 1)

1 : loop-until-empty(o,k)|L; + L, — L+ L,

Finally, we describe how threads work in thread-transfer. The threadon()
function executes |T,,| times, one per copy of L., thereby creating |T,| Ly,
program counters that execute computation “threads”. Using the function
dec-until-destroy-polymer, each thread repeatedly (zero or more times)
decrements one of the o-thread-polymers and then increments both 7 and 7'.
This continues until the thread finds an empty o-thread-polymer, i.e., the stub
1,, in which case it destroys the stub and moves to line ¢.5. The dec(c) and
inc(o) functions of Sect.3 work exactly as specified, even when applied to dis-
tributed counters. A key point is that the threads work “anonymously” with

Stable Computation with Polymers 213

the thread-polymers; it is not the case that each thread “owns” a single thread-
polymer. Accordingly, one thread may do more work than another, but in the
end all thread-polymers are empty.

A thread exits the dec-until-destroy-polymer loop by destroying exactly
one o-polymer. Since at the start of thread-transfer the number of o-thread-
polymers equals the number of thread program counters, all thread program
counters eventually reach line ¢.5, and there are no o-thread-polymers once all
threads have reached line t.5 of the code. At line ¢.5, each thread decrements
Thread-Count, and then stalls at line ¢.6. Moreover, once all threads have reached
line ¢.6, polymer ThreadCount is empty. At this point, the program counter for
transfer changes from line .4 to line 7.5, and all thread program counters are
destroyed.

1: thread-transfer
(o,7,7",Thread-Count)|i: threadon()

t.1: dec-until-destroy-polymer(o, t.5)

t.2: inc(7)

t.3: inc(7')

t.4: goto(t.1)

t.5: dec(Thread-Count)

t.6:

i threadon(): Li+Li — L;+ L4

i: dec-until-destroy
-polymer(o,k) |L;+1, — LI+ A,

Ay +[Lls...o)l=0+[Ls..]

Li+0c—L;11 +B

Li+1, — L*+B

L¥ 4 In, — L™ + Ar,
ATG+[J—T0---T0] ;\Tg+[LTG...]
Ly +T1, — L, +B

Correctness. We claim that on any input n > 0, pre-loaded on a leader X-
polymer, Algorithm 4: Threaded-n2!'8")-psCRN eventually halts with the value
of the distributed-Y-counter being f(n) = n2llesn),

The algorithm creates and initializes H to be a polymer of length n (lines
1-2), and the Y-distributed-counter to have a single polymer-thread of length n
(lines 3-5). When n = 0, H is empty, so from line 6 the algorithm jumps to line
10 and halts, with the value of Y being f(0) = 0 as claimed.

Suppose that n > 0. Reasoning about the halve function is straightforward,
since it is fully sequential. We claim that in each round of the algorithm (lines 6
9), lines 7 and 8 complete successfully, with |H| halving (that is, |H| — ||H|/2])
in line 7, and with both the value of Y and |Ty|, the number of Y-thread-
polymers, doubling in line 8. As a result, |[H| = 0 after |lgn]| rounds and the
algorithm halts with value(Y) = f(n).

214 A. Tai and A. Condon

Correctness of the double function is also straightforward to show, if we show
that the transfer(o,7,7’) (and the transfer(o,) variant) works correctly.

Line 7.4 is the core of transfer. We show that line ¢.4 does complete, that is,
Thread-Count does become empty, that execution of line .4 increases the values
of distributed counters 7 and 7’ by the value of o (while leaving the number of 7-
and 7/-thread-polymers unchanged), and also changes value(o) and the number
of o-thread-polymers to 0.

The loop-if-empty instruction ensures that the main program counter must
stay at line .4 of function transfer until Thread-Count is empty. Meanwhile,
this main program counter can also activate threads using the threadon() func-
tion, that is, change the thread program counters from L; to L; ;. From line 7.2
of transfer, the number of such thread program counters is |T,|.

Each of these program counters independently executes thread-transfer.
At line t.1, either (i) a dec(o) is performed (first three reactions of
dec-until-destroy-polymer), or (ii) a o-polymer-thread is destroyed and the
polymer-thread-count T, is decremented (last four reactions). In case (i), both
7 and 7’ are incremented (lines ¢.2 and ¢.3), and the thread goes back to the
dec-until-destroy-polymer instruction. In case (ii), the thread moves to line
t.4, decrements Thread-Count exactly once, and moves to line ¢.5.

Because the number of threads equals the value of Thread-Count at the
start of the loop-until-empty (line .4), and because the main program counter
can’t proceed beyond line i.4 of the transfer function until Thread-Count is
zero, all threads must eventually be turned on each of these threads must reach
line t.4 and must decrement Thread-Count. Only then can the main program
counter proceed to line i.5 of transfer. This in turn means that each thread
must destroy a o-polymer-thread. Since the number of o-polymer-threads, |T,|,
equals Thread-Count, all threads are destroyed (and the T,-polymer is empty)
upon completion of thread-transfer.

Bottleneck Reactions. In each round, the halve (o) function decreases the length
of the H-polymer by a factor of 2, starting from n initially. Each decrement or
increment of the H-polymer includes a bottleneck reaction, so there are O(n)
bottleneck reactions in total, over all rounds. The double function creates 2!
thread-polymers in round I, for a total of ©(n) thread-polymers over all rounds.
The transfer function creates 2! threads in round ! and similarly destroys 2!
threads, and copies a polymer of length 2!, so again has ©(n) bottleneck reactions
over all rounds. The reactions in thread-transfer are not bottleneck reactions
(except in round 1); we analyze these in the next section.

5 psCRN Time Complexity Analysis and Simulation

We follow the stochastic model of Soloveichik et al. [6] for well-mixed, closed
systems with fixed volume V. We assume that all reactions have rate constant
1. When in configuration ¢, the propensity of reaction R : v +7' — p + p’ is
c(r)c(r’)/V ifr # ', and is (C(QT))/V ifr = 1’. Let A(c) be the sum of all reaction

Stable Computation with Polymers 215

propensities, when in configuration c. When a reaction occurs in configuration c,
the probability that it is reaction R is the propensity of R divided by A(c), and
the expected time for a reaction is 1/A(c). When the only applicable reaction
is a bottleneck reaction, and the volume V is ©(n?), the expected time for
this bottleneck reaction is ©(n?). Soloveichik et al. [6] consider CRNs without
polymers, but the same stochastic model is used by Lakin et al. [12] and Qian
et al. [5], where the reactants r or r’ (as well as the products) may be polymers.

Ezxpected time complezity of Algorithm 1: Sequential-n®-psCRN. This psCRN has
n rounds, with ©(n) instructions per round; for example, the copy of length n in
each round has n inc instructions. So the total number of instructions executed,
over all rounds is ©(n?); moreover, there are ©(n?) inc(o) instruction overall.
The program’s instructions execute sequentially, that is, the ith instruction com-
pletes before the (i+41)st instruction starts, so the total expected time is the sum
of the expected times of the individual instructions. Each instruction involves
a constant number of reactions. Some instructions involve bottleneck reactions;
for example, the push reaction of the inc instruction is a bottleneck reaction. So
an execution of the program involves ©(n?) bottleneck reactions. Each of these
takes ©(n?) time, so the overall expected time is ©(n?).

Ezpected time complexity of Algorithm 4: Threaded-n2"9™ -psCRN. We noted
earlier that Algorithm 4 has ©(n) non-threaded instructions, and in fact ©(n)
bottleneck instructions. These take expected time ©(n?) overall, since the time
for each is O(V) = O(n?).

Now, consider the threaded function, thread-transfer. In round [,1 <[<
|lgn|, thread-transfer has 2! threads, and pushes n2! Y monomers on to
2! anonymous Y-polymers. Since each Y-push reaction is independent and is
equally likely to increment each of the 2! Y-polymers, the expected number of
molecules per polymer is n. Using a Chernoff tail bound, we can show that
all polymers have length in the range [n/2,2n] with all but negligibly small
probability. In what follows, we assume that this is the case.

During the first > n/2 of the thread-transfer decrements in round [, the
count of each of the reactants is 2': one program counter per thread and 2!
polymers in total. So the expected time for these decrements is ©(V/2%). Pes-
simistically, if all of the decrements happen to the same polymer, whose length
could be as little as n/2 by our assumption above, there are 2! — 1 polymers and
threads available for the next decrements, 2! — 2 polymers and threads available
for the next n decrements after that once a second polymer is depleted, and so

on. So the total expected time is O(Vn Zf;l(l/f)) = O(nV'). Multiplying by
|lgn], the number of rounds, and noting that V' = O(n?), we have that the total
expected time for the thread-transfer over all rounds is O(n®Ign).

Simulator. To test the correctness of our protocols, we developed a custom CRN
simulator designed to support anonymous polymers, though we only show the
results of our sequential protocol here in this paper. The simulator uses a slightly
modified version of Gibson and Bruck’s next reaction method [17], which itself
is an extension of Gillespie’s algorithm [18]. We redefine what a single “species”

216 A. Tai and A. Condon

10000 1 — output in solution
~—— output on stack

10000 { —— output in solution
—— output on stack

8000 8000

6000

6000

4000 4000

output count (molecules)
output count (molecules)

2000 2000

0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 10 15 2.0 25 3.0
number of interactions lel4 number of interactions leld

(a) (b)

Fig.1. (a) Simulation of f(n) = n? starting with pre-loaded input, n = 100. (b)
Simulation of f(n) = n? with input detection and restart, n = 100. Each coloured line
in the plots shows the count of the outputs as a function of the number of interactions,
with the blue line being the count of output species Y finally released into solution,
while the red line shows the size of the Yi,: polymer. By interaction, we mean a
collision of two molecular species in the system, which may or may not result in a
reaction. (Color figure online)

10000 . 10000 .
8000 L4 8000 °
6000

6000

4000 4000

output count (molecules)
°

output count (molecules)
°

2000 2000

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25
number of interactions le14 number of interactions leld

(a) (b)

Fig. 2. (a) Simulations of f(n) = n? starting with pre-loaded input, covering a range
of n. (b) Simulations of f(n) = n? with input detection and restart, covering a range
of n. Each blue circle plots a single simulation, showing the final count of the output
species Y against the number of interactions it took to complete. (Color figure online)

is from the algorithm’s point of view, classifying all o-polymers as one species,
and track polymer lengths separately.

Interestingly, simulation of our stable, error-corrected sequential psCRN for
Square usually takes little extra time compared to the committing, pre-loaded
sequential psCRN (see both Figs. 1 and 2). This is because each of the n error
detection steps, and subsequent restart, is expected to happen in O(n?) time,
which is negligible compared to the time for the ©(n*) expected running time
of the psCRN with fully loaded input.

Stable Computation with Polymers 217

6 Conclusions and Future Work

In this work, we’ve expanded the computing model of stochastic chemical reac-
tion networks with polymers, by considering inputs that are represented as
monomers in solution, as well as anonymous polymers that facilitate distributed
data structures and threaded computation. We’ve shown that stable, error-free
Turing-universal computation is possible in the monomer input model, by intro-
ducing an error-correction scheme that takes advantage of the ability to check
for empty polymers. We’ve illustrated how programming with anonymous poly-
mers can provide speed-ups, compared with using leader polymers only, and
how leader polymers can be used for synchronization purposes by CRNs with
anonymous polymers.

There are many interesting directions for future work. First, we have shown
how to use anonymous polymers to get a speed-up for the Square problem, but
we have not shown that such a speed-up is not possible without the use of anony-
mous polymers. Is it possible to show lower bounds on the time complexity of
problems when only leader polymers are available? Or, could bottleneck reac-
tions be reduced or avoided by a psCRN computing Square? Second, our faster
psCRN for Square with anonymous polymers still uses leader polymers for syn-
chronization. Is the speed-up possible even without the use of leader polymers?
More generally, how can synchronization be achieved in leaderless psCRNs? Are
there faster psCRNs, with or without leader polymers? It would be very inter-
esting to know what problems have stable psCRNS that use no leaders, but can
use anonymous polymers. Finally, it would be valuable to have more realistic
models of reaction propensities for psCRN models.

References

1. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615633 (2008)

2. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Nat. Comput. 13, 517-534 (2014)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2006, New York, pp. 292-299. ACM Press (2006)

4. Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical
reaction networks. Nat. Comput. 15(2), 245-261 (2014)

5. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp.
123-140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-
812

6. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7, 615-633 (2008)

7. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525-532
(1973)

8. Bennett, C.: The thermodynamics of computation - a review. Int. J. Theor. Phys.
21(12), 905-940 (1981)

https://doi.org/10.1007/978-3-642-18305-8_12
https://doi.org/10.1007/978-3-642-18305-8_12

218

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Tai and A. Condon

Johnson, R., Winfree, E.: Verifying polymer reaction networks using bisimulation
(2014)

Cardelli, L., Zavattaro, G.: Turing universality of the biochemical ground form.
Math. Struct. Comput. Sci. 20, 45-73 (2010)

Jiang, H., Riedel, M., Parhi, K.: Synchronous sequential computation with molec-
ular reactions. In: Proceedings of the 48th Design Automation Conference, DAC
2011, New York, pp. 836-841. ACM (2011)

Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful
strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 2011. LNCS,
vol. 6937, pp. 130-144. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23638-9_12

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235-253
(2006)

Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Pas-
sively mobile communicating machines that use restricted space. In: Proceedings
of the 7th ACM ACM SIGACT/SIGMOBILE International Workshop on Foun-
dations of Mobile Computing, FOMC 2011, New York, pp. 6-15. ACM (2011)
Chen, H.-L., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation
by chemical reaction networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784,
pp- 16-30. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-
82

Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61-75. Springer,
Heidelberg (2006). https://doi.org/10.1007/11864219_5

Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104(9), 1876-1889 (2000)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 23402361 (1977)

https://doi.org/10.1007/978-3-642-23638-9_12
https://doi.org/10.1007/978-3-642-23638-9_12
https://doi.org/10.1007/978-3-662-45174-8_2
https://doi.org/10.1007/978-3-662-45174-8_2
https://doi.org/10.1007/11864219_5

	Error-Free Stable Computation with Polymer-Supplemented Chemical Reaction Networks*-10pt
	1 Introduction
	1.1 Contributions and Highlights
	1.2 Related Work

	2 Polymer-Supplemented Chemical Reaction Networks
	3 Stable, Turing-Universal Computation by Sequential PsCRNs with Leader Polymers
	4 Faster Computation of Square by Threaded psCRNs with Anonymous Polymers
	5 psCRN Time Complexity Analysis and Simulation
	6 Conclusions and Future Work
	References

