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P2P Background 



What is P2P?
An application-level Internet on top of the 
Internet
Every participating node acts as both a 
client and a server (“servent”)
•Every node “pays” its participation by 
providing access to (some of) its 
resources
Properties:

No central coordination
No central database
No peer has a global view of the system. 
Global behavior emerges from local 
interactions
All existing data and services are 
accessible from any peer
Dynamic
Peers and connections are unreliable



P2P applications
File sharing & storage Systems
Peer information retrieval and P2P web 
search
Peer data management, Peer query 
reformulation



P2P Network Requirements

Efficient data location & Routing 
(Scalability)
Adaptable to changes (data and query)
Self-Organizing, Ad hoc participation
Robust and fault tolerant



Question: How to find the data?
An efficient index mechanism: DHT

Hash Table
data structure that maps “keys” to “buckets”
essential building block in software systems

Distributed Hash Table (DHT) 
similar, but spread across the Internet
Rely on the hashing to achieve load balancing

Interface--Every DHT node supports operation:
lookup(key)--Given key as input; route messages toward 
node holding key
insert(key, value)



DHT Design Goals
Low diameter: Theoretical search bound 
Low degree: Limited number of neighbours
Local routing decision: Greedy. Nodes 
incrementally calculate a path to the target
Load balance: distributed hash function, 
spreading keys evenly over nodes
Robustness: Operational even in partial 
failure
Availability: Can automatically adjusts its 
internal tables to ensure that the node 
responsible for a key can always be found



An Example DHT: Chord



Consistent Hashing
A scheme that provides hash table functionality 
in a way that the addition or removal of one 
bucket does not significantly change the 
mapping of keys to buckets 
A consistent hashing function:

Map both the buckets and keys into a range. The 
consistent hash of a key is defined as the bucket 
whose image is closest* to the key’s.
When buckets join or leave, only nearby buckets are 
affected

CHORD is a distributed consistent hashing table.



Chord Naming

Key identifier = SHA-1(key)
Node identifier = SHA-1(IP address)
Both are uniformly distributed
Both exist in the same ID space
How to map key IDs to node IDs?
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successor(1) = 1
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A key is stored at its 
successor: node with 
the same id or next 
higher ID

Note: successor(key) is different from successor(node)!



CHORD Search: Basic lookup
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“Where is key 80?”

“N90 has K80”



CHORD Search: Acceleration of 
Lookups
Each node maintains 

a routing table with (at 
most) m entries called 
the finger table

Start: (n + 2i-1) mod 
2m

Interval: 
[finger[i].start, 
finger[i+1].start )
Successive node 
(finger): First node 
>= finger[i].start

A successor: the next 
node on the identifier 
ring, i.e. finger[1].succ
A predecessor: the 
previous node on the 
identifier ring.

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. finger

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. finger

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

finger table
start int. finger

keys
6



CHORD Search: Acceleration of 
Lookups
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Each node stores 
information about only a 
small number of other nodes, 
and knows more about 
nodes closely following it 
than about nodes farther
away
A node’s finger table 
generally does not contain 
enough information to 
determine the successor of 
an arbitrary key k. 
E.g. Node 3 looks up key 1
Repetitive queries to nodes 
that immediately precede the 
given key will lead to the 
key’s successor eventually



The algorithm



CHORD Search: An example

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

7bit identifier space

Lookups take O(log(N)) hops
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CHORD: Storing Data
Search the node responsible for holding 
the key
Insert the key into that node



CHORD Node Joins
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Node 6 wants to join

1. Initialize fingers and predecessor: 
O(log2N)

2. Transferring keys:    O(1)

3. Updating fingers of existing 
nodes: O(log2N)

Total Cost: O(log2N)

Each node keeps a predecessor pointer





CHORD Node Departures
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Node 1 wants to leave

1. Transferring keys:    O(1)

2.   Remove the node:    O(1)

3.  Updating fingers and 
predecessor of affected nodes: 
O(log2N)

Total Cost: O(log2N)



CHORD: Fault Tolerance

Basic “stabilization” protocol is used to keep 
nodes’ successor pointers up to date, which is 
sufficient to guarantee correctness of lookups

Every node runs stabilize periodically to find newly 
joined nodes

Also fix the fingers：find_successor(finger[i].start)



CHORD: Fault Tolerance --
Stabilization after Join
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CHORD: Fault Tolerance –
Failure Recovery

Key step in failure recovery is maintaining correct successor pointers 
(The worst case as in the simple lookup)

To help achieve this, each node maintains a successor-list of its r
nearest successors on the ring

If node n notices that its successor has failed, it replaces it with the first 
live entry in the list

stabilize will correct finger table entries and successor-list entries 
pointing to failed node

Performance is sensitive to the frequency of node joins and leaves 
versus the frequency at which the stabilization protocol is invoked



CHORD: Fault Tolerance –
Replication

Chord can store replicas of the data 
associated with a key at the k nodes 
succeeding the key
(+) Increase data availability
(–) larger size of the <key, value> 
database



CHORD: Load Balancing
Even hashing is used, the number of keys 
stored on each node may vary a lot. 
This is because the node identifiers do not 
uniformly cover the entire identifier space.
Solution:

Associate keys with a number of virtual nodes
Map multiple (e.g. logN as suggested in the 
consistent hashing paper) virtual nodes to 
each real node
Doesn’t affect worst case performance:
O(log(NlogN)) = O(logN)



Experimental Results—Load balance

Figure 2: The 1st and the 99th percentiles of the number 
of keys per node as a function of virtual nodes mapped 
to a real node. 

Figure 1: The mean and 1st and 99th 
percentiles of the number of keys stored per 
node in a  10^4 node network.

Number of Nodes: N= 104

Number of Keys: K= 105 ~ 106



Experimental Results– Path Length
Number of Nodes: N= 2k

Number of Keys: K= 100 * 2k

K from 3 to 14



Experimental Results– Simultaneous 
Node Failures

Number of Nodes: N= 104

Number of Keys: K= 105 ~ 106



CHORD Summaries
Scalability

Search O(Log n) w.h.p.
Update requires search, thus O(Log n) w.h.p.
Construction: O(Log^2 n) if a new node joins

Robustness
Replication might be used by storing replicas at successor nodes

Global knowledge
Mapping of IP addresses and data keys to key common key space

Autonomy
Storage and routing: none
Nodes have by virtue of their IP address a specific role

Search types
Only equality



Q & A


