
CHORD: A Scalable Peer-to-Peer
Lookup Service for Internet
Applications

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan

MIT Laboratory for Computer Science

Adopted for Presented in 527-07 UBC

Outline
Background
Chord

Naming
Searching
Storing data
Node Join
Node Leave
Fault Tolerance
Load Balancing
Simulation and Experimental Results

Summary

P2P Background

What is P2P?
An application-level Internet on top of the
Internet
Every participating node acts as both a
client and a server (“servent”)
•Every node “pays” its participation by
providing access to (some of) its
resources
Properties:

No central coordination
No central database
No peer has a global view of the system.
Global behavior emerges from local
interactions
All existing data and services are
accessible from any peer
Dynamic
Peers and connections are unreliable

P2P applications
File sharing & storage Systems
Peer information retrieval and P2P web
search
Peer data management, Peer query
reformulation

P2P Network Requirements

Efficient data location & Routing
(Scalability)
Adaptable to changes (data and query)
Self-Organizing, Ad hoc participation
Robust and fault tolerant

Question: How to find the data?
An efficient index mechanism: DHT

Hash Table
data structure that maps “keys” to “buckets”
essential building block in software systems

Distributed Hash Table (DHT)
similar, but spread across the Internet
Rely on the hashing to achieve load balancing

Interface--Every DHT node supports operation:
lookup(key)--Given key as input; route messages toward
node holding key
insert(key, value)

DHT Design Goals
Low diameter: Theoretical search bound
Low degree: Limited number of neighbours
Local routing decision: Greedy. Nodes
incrementally calculate a path to the target
Load balance: distributed hash function,
spreading keys evenly over nodes
Robustness: Operational even in partial
failure
Availability: Can automatically adjusts its
internal tables to ensure that the node
responsible for a key can always be found

An Example DHT: Chord

Consistent Hashing
A scheme that provides hash table functionality
in a way that the addition or removal of one
bucket does not significantly change the
mapping of keys to buckets
A consistent hashing function:

Map both the buckets and keys into a range. The
consistent hash of a key is defined as the bucket
whose image is closest* to the key’s.
When buckets join or leave, only nearby buckets are
affected

CHORD is a distributed consistent hashing table.

Chord Naming

Key identifier = SHA-1(key)
Node identifier = SHA-1(IP address)
Both are uniformly distributed
Both exist in the same ID space
How to map key IDs to node IDs?

N32

N90

N105 K20
K5

Circular 7-bit
ID space

Key 5Node 105

K80

6

1

2

6

0

4

26

5

1

3

7

2
identifier

circle

identifier

node

X key

Successor Nodes

successor(1) = 1

successor(2) = 3successor(6) = 0

A key is stored at its
successor: node with
the same id or next
higher ID

Note: successor(key) is different from successor(node)!

CHORD Search: Basic lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

CHORD Search: Acceleration of
Lookups
Each node maintains

a routing table with (at
most) m entries called
the finger table

Start: (n + 2i-1) mod
2m

Interval:
[finger[i].start,
finger[i+1].start)
Successive node
(finger): First node
>= finger[i].start

A successor: the next
node on the identifier
ring, i.e. finger[1].succ
A predecessor: the
previous node on the
identifier ring.

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. finger

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. finger

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

finger table
start int. finger

keys
6

CHORD Search: Acceleration of
Lookups

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. finger

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. finger

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

finger table
start int. finger

keys
6

Each node stores
information about only a
small number of other nodes,
and knows more about
nodes closely following it
than about nodes farther
away
A node’s finger table
generally does not contain
enough information to
determine the successor of
an arbitrary key k.
E.g. Node 3 looks up key 1
Repetitive queries to nodes
that immediately precede the
given key will lead to the
key’s successor eventually

The algorithm

CHORD Search: An example

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

7bit identifier space

Lookups take O(log(N)) hops

…
…
96

…
…

[96,32)

…
…
99

finger table
start int. finger

…
3
35

…
[3,35)
[35,99)

…
5
60

finger table
start int. finger

…
9
13

…
[9,13)
[13,21)

…
10
20

finger table
start int. finger 19 belongs to (10,

20], so N10 is the
predecessor of key
19

CHORD: Storing Data
Search the node responsible for holding
the key
Insert the key into that node

CHORD Node Joins

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. finger

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. finger

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

finger table
start int. finger

keys

finger table
start int. finger

keys

7
0
2

[7,0)
[0,2)
[2,6)

0
0
3

6

6

6
6

6

Node 6 wants to join

1. Initialize fingers and predecessor:
O(log2N)

2. Transferring keys: O(1)

3. Updating fingers of existing
nodes: O(log2N)

Total Cost: O(log2N)

Each node keeps a predecessor pointer

CHORD Node Departures

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. succ.

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. succ.

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

6
6
0

finger table
start int. succ.

keys

finger table
start int. succ.

keys

7
0
2

[7,0)
[0,2)
[2,6)

0
0
3

6

6

6

0

3

Node 1 wants to leave

1. Transferring keys: O(1)

2. Remove the node: O(1)

3. Updating fingers and
predecessor of affected nodes:
O(log2N)

Total Cost: O(log2N)

CHORD: Fault Tolerance

Basic “stabilization” protocol is used to keep
nodes’ successor pointers up to date, which is
sufficient to guarantee correctness of lookups

Every node runs stabilize periodically to find newly
joined nodes

Also fix the fingers：find_successor(finger[i].start)

CHORD: Fault Tolerance --
Stabilization after Join

np

su
cc

(n
p
)

=
 n

s

ns

n

p
re

d
(n

s)
 =

 n
p

n joins
predecessor = nil
n acquires ns as successor via some
n’
n notifies ns being the new
predecessor
ns acquires n as its predecessor

np runs stabilize
np asks ns for its predecessor (now n)
np acquires n as its successor
np notifies n
n will acquire np as its predecessor

all predecessor and successor
pointers are now correct

nil

p
re

d
(n

s)
 =

 n

su
cc

(n
p
)

=
 n

CHORD: Fault Tolerance –
Failure Recovery

Key step in failure recovery is maintaining correct successor pointers
(The worst case as in the simple lookup)

To help achieve this, each node maintains a successor-list of its r
nearest successors on the ring

If node n notices that its successor has failed, it replaces it with the first
live entry in the list

stabilize will correct finger table entries and successor-list entries
pointing to failed node

Performance is sensitive to the frequency of node joins and leaves
versus the frequency at which the stabilization protocol is invoked

CHORD: Fault Tolerance –
Replication

Chord can store replicas of the data
associated with a key at the k nodes
succeeding the key
(+) Increase data availability
(–) larger size of the <key, value>
database

CHORD: Load Balancing
Even hashing is used, the number of keys
stored on each node may vary a lot.
This is because the node identifiers do not
uniformly cover the entire identifier space.
Solution:

Associate keys with a number of virtual nodes
Map multiple (e.g. logN as suggested in the
consistent hashing paper) virtual nodes to
each real node
Doesn’t affect worst case performance:
O(log(NlogN)) = O(logN)

Experimental Results—Load balance

Figure 2: The 1st and the 99th percentiles of the number
of keys per node as a function of virtual nodes mapped
to a real node.

Figure 1: The mean and 1st and 99th
percentiles of the number of keys stored per
node in a 10^4 node network.

Number of Nodes: N= 104

Number of Keys: K= 105 ~ 106

Experimental Results– Path Length
Number of Nodes: N= 2k

Number of Keys: K= 100 * 2k

K from 3 to 14

Experimental Results– Simultaneous
Node Failures

Number of Nodes: N= 104

Number of Keys: K= 105 ~ 106

CHORD Summaries
Scalability

Search O(Log n) w.h.p.
Update requires search, thus O(Log n) w.h.p.
Construction: O(Log^2 n) if a new node joins

Robustness
Replication might be used by storing replicas at successor nodes

Global knowledge
Mapping of IP addresses and data keys to key common key space

Autonomy
Storage and routing: none
Nodes have by virtue of their IP address a specific role

Search types
Only equality

Q & A

