RD: A Scalable Peer-to-Peer
ookup Service for Internet
pplications

lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan

MIT Laboratory for Computer Science

Adopted for Presented in 527-07 UBC

L
i(v

ground

ord

7/ Naming

7 Searching

7 Storing data

7 Node Join

7 Node Leave

7 Fault Tolerance
7 Load Balancing
imulation and Experimental Results

mmar
Y

: i ""'-._
R, '

P2P Background

3ry participating node acts as both a

ent and a server (“servent”)

*Every node “pays” its participation by

providing access to (some of) its
resources

No central coordination
No central database

No peer has a global view of the system.
Global behavior emerges from local
interactions

* All existing data and services are
accessible from any peer

/ Dynamic
" Peers and connections are unreliable

Properties: O

oplications

sharing & storage Systems

deer Information retrieval and P2P web
- search

" 7/ Peer data management, Peer query
reformulation

Network Requirements

Icient data location & Routing \
calability) |
r/ Adaptable to changes (data and query) .

Self-Organizing, Ad hoc participation
Robust and fault tolerant

lon: How to find the data?

efficient index mechanism: DHT

7 Hash Table

¢/ data structure that maps “keys” to “buckets”
7 essential building block in software systems

7 Distributed Hash Table (DHT)

7 similar, but spread across the Internet
| 7 Rely on the hashing to achieve load balancing
‘! 7 Interface--Every DHT node supports operation:

7 lookup(key)--Given key as input; route messages toward
node holding key

7 Insert(key, value)

Local routing decision: Greedy. Nodes 3
Incrementally calculate a path to the target

7 Load balance: distributed hash function,
spreading keys evenly over nodes

7 Robustness: Operational even In partial
failure

2 Avallability: Can automatically adjusts its
Internal tables to ensure that the node
onsible for a key can always be four&;

Example DHT: Chord

.
\

A

Istent Hashing

scheme that provides hash table functionality
a way that the addition or removal of one
bucket does not significantly change the
mapping of keys to buckets

=/ A consistent hashing function:

Map both the buckets and keys into a range. The
consistent hash of a key is defined as the bucket
whose image Is closest* to the key’s.

7 When buckets join or leave, only nearby buckets are
affected

7 CHORD Is a distributed consistent hashinﬁble

-
J
!

-

Node identifier = SHA-1(IP address)
7 Both are uniformly distributed

S~

(Circular 7-bit
ID space

e identifier
@ node

X| key
1]

successor(l) =1

identifier
circle

successor(2) =3

D Search: Basic lookup

N120 '.
- — N1O | “Where is key 8

\

N32

“N90 has K80”

dde maintains

outing table with (at
ost) m entries called
the finger table

¢ Start: (n + 2"1) mod
2m

Z Interval:
[finger[i].start,
finger[i+1].start)

Successive node
(finger): First node
>= finger[i].start

A successor: the next

- node on the identifier

ring, i.e. finger[1].succ

A predecessor: the
evious node on the
ifier ring.

finger table keys
start | int. |finger 6
1 |[1,2)| 1
2 |[[2,4)]| 3
4 |[4,00| O

finger table

start | int.

2 [2,3)

3 [3,5)

5 [5,1)
finger table
start | int.

4 |[4,5)

5 |[5.7)

7 |[7.3)

/5 :
CHQRD Search: Acceleration of

on about only a
mber of other nodes, finger table keys
nows more about start | int. |finger 6

odes closely following it 1 1.2 1

than about nodes farther i {i;g‘; 3
away
A node’s finger table finger table
generally does not contain start | int.
enough information to 2 ([2,3)
determine the successor of 3 |I[3.5)
an arbitrary key k. 5[5
P E.g. Node 3 looks up key 1
Repetitive queries to nodes
that immediately precede the finger table
iven key will lead to the start | int.
's successor eventually 4 1[4.9)
5 |[5,7)
7 1[7.3)

/4

—

_afigalgorithm

A ask node n to find id’s successor
n.find_successor(id)
n' = find_predecessor(id):

return 'i".l.'F SHOCCESSOF,

/ ask node n to find 1d s predecessor
n.find_predecessor(id)
n' = n;
while (id ¢ (n',n’.successor])
n' = n'.closest_preceding_finger(id):
return n';

A return closest finger preceding id
n.closest_preceding finger(id)
for : = m downto 1
if (finger|[i].node € (n, id))
return finger|i|.node;
return 7

iy !

oy

D Search: An example

ger table
start | int. |finger

19 belongs to (
20], so N10O is th
predecessor of ke

13 [13,21) 20 19
N110 N K19
N20
N99
"
. |finger N32 LOOkUp(Klg)
finger table
5 start | int. |finger
) 60
N8O 96 [96,32) 99

%~nﬁﬁerspace

N60

e key
» /7 Insert the key Into that node

W

Node Joins

ts to join Each node keeps a predecessor pointer
ze fingers and predecessor:

gZN) finger table keys
start | int. |finger 6
ransferring keys: O(1) 1 o] 1
. . 1 2 |[24)| 3
pdating fingers of existing 4 |[40)| 6

odes: O(log?N)
| Cost: O(log?N)

finger table

start | int. |finger
2 1[2,3)| 3
3 |[3,5)]| 3
5 |[5,1)| 6

finger table

finger table
start | int.

update all nodes whose finger
i/ tables should refer to n
n.update_others()
fori: = 1tom
Y find last node p whose ith finger might be n
p = find_predecessor(n — Ei_l'};
p.updatefingertable(n,1);

i if s is it finger of n, update n’s finger table with s
n.update_finger_table(s, 1)
if (s € [n,finger(i].node))
finger|i].node = s;
P = predecassor; // get first node preceding n
p.update_finger_table(s,1);

W

O(1)
emove the node: O(1)

pdating fingers and

inger table keys
tart | int. |succ. 6

7

D Node Departures

finger table keys
start | int. |succ.
1 |[1,2)| 3
2 [[2,4)] 3
4 |[4,0)| 6

redecessor of affected nodes:

finger table

start | int.
2 [2,3)
3 [3.5)
5 [5,1)
finger table
start | int.
4 4,5
5 |57k
7 |[7.3)]l

D: Fault Tolerance

7 Basic “stabilization” protocol is used to keep
nodes’ successor pointers up to date, which Is
sufficient to guarantee correctness of lookups

7 Every node runs stabilize periodically to find newly
~ Joined nodes

Also fix the fingers: find_successor(finger[i].start)

iy f

V4
I,-]S
&
[
7\
o
c
o’
o)
Q
|-
o Q C"’
3 1
I ||
A >
= cC W,
~ o
8 | o
= ~ a
Q -
o’
O
O
-
T
V4

D: Fault Tolerance --
ation after Join

njoins

predecessor = nil

nacquires ng as successor via some
n

nnotifies ng being the new
predecessor

4 ngacquires n as its predecessor

n, runs stabilize

7
4
4
4

all predecessor and successor
pointers are now correct

n, asks nq for its predecessor (now n)
n, acquires n as its successor

n, notifies n

n will acquire n, as its predecessor

2D: Fault Tolerance —
Ire Recovery

step in failure recovery is maintaining correct successor pointers
e worst case as in the simple lookup)

To help achieve this, each node maintains a successor-list of its r
nearest successors on the ring

If node n notices that its successor has failed, it replaces it with the first
live entry in the list

stabilize will correct finger table entries and successor-list entries
pointing to failed node

4 Performance is sensitive to the frequency of node joins and leaves
- versus the frequency at which the stabilization protocol is invoked

RD: Fault Tolerance —
lication

associated with a key at the k nodes
succeeding the key

7 (+) Increase data availability
7 () larger size of the <key, value>
~ database

Z#Even hashing Is used, the number of keys
stored on each node may vary a lot. 3

7 This Is because the node identifiers do not
uniformly cover the entire identifier space.
7 Solution:
7 Associate keys with a number of virtual nodes

¢ Map multiple (e.g. logN as suggested In the
consistent hashing paper) virtual nodes to

each real node
7 Doesn’t affect worst case performance: G
g(NlogN)) = O(logN)

. e

500

1st and B9th percentiles H—
450 +

am0 b
350 |
300 |
250 |

200

Number of keys peér noce

150 |

100 |

ED' 1
]

0 20 40 G ao 100
Total number of keys (x 10.000)

N

he mean and 1st and 99th

the number of keys stored per
node network.

L)

450

Number of keys per real node
3
s

Figure 2: The 1st and the 99th percentile
of keys per node as a function of virtual
to a real node. z

mental Results—Load balan

ber of Nodes: N= 104
mber of Keys: K= 10>~ 10°

8

T
15t and 28h percentiles re—

10

Mumber of virtwa' nodes per real node

- pY
3)
- N
H ..-I_...

| _gEXperimental Results— Path Lengtt
| ber of Nodes: N= 2k :

mber of Keys: K= 100 * 2k
from 3 to 14

12 T

Tstanad 89th percentiles H—

10

g F

P el L esbonipes. {Fraction of Total

i
.
i Sl i
i ' A |
- '
P, .
I F
#
t r
A

ental Results— Sim
atlures

ber of Nodes: N= 104
lumber of Keys: K= 10>~ 10°

043 [

=]

=
i

95% confidence imerval —e—i

Falled Wodes [Fracion of Total)

1 1
[B o:2

.

ultan

Search O(Log n) w.h.p.

* Update requires search, thus O(Log n) w.h.p.

Construction: O(Log”2 n) if a new node joins

Robustness

-/ Replication might be used by storing replicas at successor nodes

' Global knowledge
Mapping of IP addresses and data keys to key common key space

Autonomy

Storage and routing: none

Nodes have by virtue of their IP address a specific role

Search types
Only equality

