
Algorithms

Grad Refresher Course 2011
University of British Columbia

Ron Maharik
maharik@cs.ubc.ca

About this talk

● For those incoming grad students who
● Do not have a CS background, or
● Have a CS background from a long time ago

● Discuss some fundamental concepts from
algorithms and CS theory

● Ease the transition into any grad-level CS
course

● Based on the 2009 version by Brad Bingham
● Some slides used from MIT OpenCourseWare

UBC CS Theory Courses (UGrad)

● CPSC 320: Intermediate Algorithm Design
and Analysis

● Required for CS undergrads
● Offered in term 1 (Belleville) and term 2 (Meyer)

● CPSC 421: Intro to Theory of Computing
● Offered in term 1 (Friedman)

● CSPC 420: Advanced Alg. Design & Analysis
● Offered in term 2 (Kirkpatrick)

Outline

● Asymptotic Notation and Analysis
● Graphs and algorithms
● NP-Completeness & undecidability
● Resources to Learn More

Pseudocode

● How do we analyze algorithms? Start with a
pseudocode description!

● Specifies an algorithm mathematically
● Independent of hardware details,

programming languages, etc.
● Reason about scalability in a mathematical

way

How to Analyze?

● Count operations in the Random Access
Machine (RAM) model:

● Single processor
● Infinite memory, constant time reads/writes
● “Reasonable” instruction set

www8.cs.umu.se/kurser/TDBAfl/VT06/algorithms/BOOK/BOOK/NODE12.HTM

● Asymptotically (Big-O)
● Scenarios: worst case, average case
● What to analyze: time complexity, space

complexity

Big-O Notation
O(f(n)) is a set of functions

● In words:
“for sufficiently large inputs, the function g(n) is
dominated by a scaled f(n)”

● An upper bound, in an asymptotic sense
● Usually, g(n) is a complicated expression and

f(n) is simple

g n∈O  f n⇔ there exist constants c , n0 such that
g nc⋅ f n for all nn0

Big-O: Illustration

Big-O Example
Show that is

i.e., find constants c and n
0
 where

Solution: choose c=1, solve for n:

In general, ignore constants and drop lower order
terms. For example:
 is

1
2
n23n O n2

1
2
n23nc⋅n2 ,∀ nn0

1
2
n23nn2⇒6n⇒n0=6

2n46n3100n−27 O n4

Big-Omega, Big-Theta

● In words:
“for sufficiently large inputs, the function g(n)
dominates a scaled f(n)”

● A lower bound, in an asymptotic sense

 if and
● A “tight” asymptotic bound

g n∈ f n⇔there exist constants c , n0 such that

g nc⋅ f n for all nn0

g n∈ f n g n∈O  f n g n∈ f n

Complexity “Food Chain”

Name Expression
Constant O(1)

Logarithmic O(log(n))

Linear O(n)

Linearithmic O(n log(n))

Quadratic O(n2)
Polynomial O(np)

Exponential O(2n)

Traveling Salesman Problem (TSP)
● The run time of Dijkstra's algorithm in O(n2) with

naïve data structures. This is polynomial, so we say
the shortest-path problem can be solved in
“polynomial time”.

● What about the following (similar) problem?
● Given a directed graph with edge weights, find a

path that
1) Visits all vertices, and
2) Minimizes the path weight (sum of edges)

● There is no known algorithm for solving this in
polynomial time. Why? TSP is NP-complete.

Knapsack Problem

NP-Completeness
● NP-complete problems are a class of problems for

which there is no known algorithm that run in O(nk)
time, for any constant k

● Equivalently, all known algorithms for solving NP-
complete problems are likely to be unacceptably
slow

● If such an algorithm is found, or proven to not to
exist, this solves the famous “P=NP?” question
(such a proof is worth $1 Million USD)

● NP-complete problems are verifiable in polynomial
time

● NP-hard: problems that are “at least as hard as NP-
complete”

NP-Completeness
● How do I prove that problem X is NP-complete?

● Show that candidate solutions for X can be
checked in polynomial time;

● Show that there exists an NP-complete problem Y
such that an algorithm that solves X can also solve
Y. This is called a reduction.

● A reduction establishes that a fast solution for X
would also give a fast solution for Y.

● The first established NP-complete problem was
boolean satisfiability, or SAT. This is called Cook's
Theorem (1971).

● If your problem is NP-complete, you can safely give
up looking for an efficient, exact algorithm.

Graph Coloring
● Given an undirected graph, color each vertex

such that no two vertices of the same color
share an edge. What is the fewest number of
colors that can be used?

● Checking “Is a graph colorable using 2
colors?” is easy, and solvable in polynomial
time.

● Checking “Is a graph colorable using 3
colors?” is NP-complete.

Undecidability
● Even worse than NP-complete, undecidable

problems are those for which no algorithm can
exist that is guaranteed to always solve it
correctly.

● Example 1: the halting problem: “Will my
problem ever stop executing?”

● Example 2: Kolmogorov complexity: “What is
the simplest program that can generate a
given string?”

● Problems can be shown to be undecidable by
using similar reductions as for NP-
completeness proofs.

Graph Traversal – BFS and DFS

http://eecourses.technion.ac.il/044268/

To learn more...
Books:

● Harel “Algorithmics” (2004)
● accessible and easy to read

● Cormen et al. “Introduction to Algorithms”
(2001)

● The comprehensive algorithms “bible”
● Often abbreviated as CLR or CLRS

● Garey and Johnson “Computers and
Intractability: A Guide to the Theory of NP-
Completeness (1979)

To learn more...
Courses: CPSC 320, 421, 500, 506

People: BETA Lab

These slides:

http://www.cs.ubc.ca/
 ~ankgupta/refresher2011.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

