Algorithms

Grad Refresher Course 2011 University of British Columbia

Ron Maharik maharik@cs.ubc.ca

About this talk

- For those incoming grad students who
 - Do not have a CS background, or
 - Have a CS background from a long time ago
- Discuss some fundamental concepts from algorithms and CS theory
- Ease the transition into any grad-level CS course
- Based on the 2009 version by Brad Bingham
- Some slides used from MIT OpenCourseWare

UBC CS Theory Courses (UGrad)

- CPSC 320: Intermediate Algorithm Design and Analysis
 - Required for CS undergrads
 - Offered in term 1 (Belleville) and term 2 (Meyer)
- CPSC 421: Intro to Theory of Computing
 - Offered in term 1 (Friedman)
- CSPC 420: Advanced Alg. Design & Analysis
 - Offered in term 2 (Kirkpatrick)

Outline

- Asymptotic Notation and Analysis
- Graphs and algorithms
- NP-Completeness & undecidability
- Resources to Learn More

Pseudocode

- How do we analyze algorithms? Start with a pseudocode description!
- Specifies an algorithm mathematically
- Independent of hardware details, programming languages, etc.
- Reason about scalability in a mathematical way

Insertion sort

"pseudocode"

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i - 1

A[i+1] = key
```


Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

How to Analyze?

- Count operations in the Random Access Machine (RAM) model:
 - Single processor
 - Infinite memory, constant time reads/writes
 - "Reasonable" instruction set

www8.cs.umu.se/kurser/TDBAfl/VT06/algorithms/BOOK/BOOK/NODE12.HTM

- Asymptotically (Big-O)
- Scenarios: worst case, average case
- What to analyze: time complexity, space complexity

Big-O Notation

O(f(n)) is a set of functions

$$g(n) \in O(f(n)) \Leftrightarrow \text{there exist constants } c, n_0 \text{ such that}$$

 $g(n) \leqslant c \cdot f(n) \text{ for all } n \geqslant n_0$

In words:

"for sufficiently large inputs, the function g(n) is dominated by a scaled f(n)"

- An upper bound, in an asymptotic sense
- Usually, g(n) is a complicated expression and f(n) is simple

Big-O: Illustration

Big-O Example

Show that
$$\frac{1}{2}n^2 + 3n$$
 is $O(n^2)$

i.e., find constants c and n_0 where

$$\frac{1}{2}n^2 + 3n \le c \cdot n^2, \forall n \ge n_0$$

Solution: choose c=1, solve for n:

$$\frac{1}{2}n^2 + 3n \le n^2 \Rightarrow 6 \le n \Rightarrow n_0 = 6$$

In general, ignore constants and drop lower order terms. For example:

$$2n^4 + 6n^3 + 100n - 27$$
 is $O(n^4)$

Big-Omega, Big-Theta

$$g(n) \in \Omega(f(n)) \Leftrightarrow there \ exist \ constants \ c$$
, $n_0 \ such \ that$
$$g(n) \geqslant c \cdot f(n) \ for \ all \ n \geqslant n_0$$

• In words:

"for sufficiently large inputs, the function g(n) dominates a scaled f(n)"

A lower bound, in an asymptotic sense

$$g(n) \in \Theta(f(n))$$
 if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

A "tight" asymptotic bound

Complexity "Food Chain"

Name	Expression
Constant	O(1)
Logarithmic	O(log(n))
Linear	O(n)
Linearithmic	O(n log(n))
Quadratic	O(n ²)
Polynomial	O(n ^p)
Exponential	O(2 ⁿ)

Insertion sort

Count the number of times these lines execute

for-loop runs for n-1 iterations

while-loop runs at most j-1 iterations (on worst-case input)

INSERTION-SORT (A, n) \triangleright A[1 ... n]for $j \leftarrow 2$ to ndo $key \leftarrow A[j]$ $i \leftarrow j - 1$ while i > 0 and A[i] > keydo $A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$ A[i+1] = key

- Runtime is $\sum_{j=2}^{n} (j-1) = n(n-1)/2 1 \in \Theta(n^2)$
- In general, all sorting algorithms* are in $\Omega(\boldsymbol{n} \log (\boldsymbol{n}))$
- *(in the comparison model)

Graphs

Definition. A directed graph (digraph)

G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set E consists of *unordered* pairs of vertices.

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

	1				
1	0 0 0	1	1	0	$\Theta(V^2)$ storage
2	0	0	1	0	\Rightarrow dense
3	0	0	0	0	representation.
4	0	0	1	0	

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step add to S the vertex $v \in V S = Q$ whose distance estimate from s is minimal.
- 3. Update the distance estimates of vertices adjacent to *v*.

Graph with nonnegative edge weights:

S: {}

 $S: \{A\}$

Traveling Salesman Problem (TSP)

- The run time of Dijkstra's algorithm in O(n²) with naïve data structures. This is polynomial, so we say the shortest-path problem can be solved in "polynomial time".
- What about the following (similar) problem?
- Given a directed graph with edge weights, find a path that
 - 1) Visits all vertices, and
 - 2) Minimizes the path weight (sum of edges)
- There is no known algorithm for solving this in polynomial time. Why? TSP is NP-complete.

Knapsack Problem

NP-Completeness

- NP-complete problems are a class of problems for which there is no known algorithm that run in O(n^k) time, for any constant k
- Equivalently, all known algorithms for solving NPcomplete problems are likely to be unacceptably slow
- If such an algorithm is found, or proven to not to exist, this solves the famous "P=NP?" question (such a proof is worth \$1 Million USD)
- NP-complete problems are verifiable in polynomial time
- NP-hard: problems that are "at least as hard as NP-complete"

NP-Completeness

- How do I prove that problem X is NP-complete?
 - Show that candidate solutions for X can be checked in polynomial time;
- Show that there exists an NP-complete problem Y such that an algorithm that solves X can also solve Y. This is called a reduction.
- A reduction establishes that a fast solution for X would also give a fast solution for Y.
- The first established NP-complete problem was boolean satisfiability, or SAT. This is called Cook's Theorem (1971).
- If your problem is NP-complete, you can safely give up looking for an efficient, exact algorithm.

Graph Coloring

- Given an undirected graph, color each vertex such that no two vertices of the same color share an edge. What is the fewest number of colors that can be used?
- Checking "Is a graph colorable using 2 colors?" is easy, and solvable in polynomial time.
- Checking "Is a graph colorable using 3 colors?" is NP-complete.

Example: 2-colorable Graph

Example: 2-colorable Graph

Example: 3-colorable Graph

Example: 3-colorable Graph

Undecidability

- Even worse than NP-complete, undecidable problems are those for which no algorithm can exist that is guaranteed to always solve it correctly.
- Example 1: the halting problem: "Will my problem ever stop executing?"
- Example 2: Kolmogorov complexity: "What is the simplest program that can generate a given string?"
- Problems can be shown to be undecidable by using similar reductions as for NPcompleteness proofs.

Graph Traversal – BFS and DFS

http://eecourses.technion.ac.il/044268/

To learn more...

Books:

- Harel "Algorithmics" (2004)
 - accessible and easy to read
- Cormen et al. "Introduction to Algorithms" (2001)
 - The comprehensive algorithms "bible"
 - Often abbreviated as CLR or CLRS
- Garey and Johnson "Computers and Intractability: A Guide to the Theory of NP-Completeness (1979)

To learn more...

Courses: CPSC 320, 421, 500, 506

People: BETA Lab

These slides:

```
http://www.cs.ubc.ca/
~ankgupta/refresher2011.html
```