Algorithms

Grad Refresher Course 2011 University of British Columbia

Ron Maharik
maharik@cs.ubc.ca

About this talk

- For those incoming grad students who
- Do not have a CS background, or
- Have a CS background from a long time ago
- Discuss some fundamental concepts from algorithms and CS theory
- Ease the transition into any grad-level CS course
- Based on the 2009 version by Brad Bingham
- Some slides used from MIT OpenCourseWare

UBC CS Theory Courses (UGrad)

- CPSC 320: Intermediate Algorithm Design and Analysis
- Required for CS undergrads
- Offered in term 1 (Belleville) and term 2 (Meyer)
- CPSC 421: Intro to Theory of Computing
- Offered in term 1 (Friedman)
- CSPC 420: Advanced Alg. Design \& Analysis
- Offered in term 2 (Kirkpatrick)

Outline

- Asymptotic Notation and Analysis
- Graphs and algorithms
- NP-Completeness \& undecidability
- Resources to Learn More

Pseudocode

- How do we analyze algorithms? Start with a pseudocode description!
- Specifies an algorithm mathematically
- Independent of hardware details, programming languages, etc.
- Reason about scalability in a mathematical way

Insertion sort

$$
\text { "pseudocode" }\left\{\begin{array}{c}
\text { Insertion-Sort }(A, n) \quad \triangleright A[1 \ldots n] \\
\text { for } j \leftarrow 2 \text { to } n \\
\text { do } \text { key } \leftarrow A[j] \\
i \leftarrow j-1 \\
\text { while } i>0 \text { and } A[i]>k e y \\
\text { do } A[i+1] \leftarrow A[i] \\
i \leftarrow i-1 \\
A[i+1]=\text { key }
\end{array}\right.
$$

Example of insertion sort

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 Introduction to Algorithms

Example of insertion sort

September 7, 2005
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson Introduction to Algorithms

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 Introduction to Algorithms

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 Introduction to Algorithms

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 Introduction to Algorithms

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

Example of insertion sort

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson

How to Analyze?

- Count operations in the Random Access Machine (RAM) model:
- Single processor
- Infinite memory, constant time reads/writes
- "Reasonable" instruction set
www8.cs.umu.se/kurser/TDBAfI/VT06/algorithms/BOOK/BOOK/NODE12.HTM
- Asymptotically (Big-O)
- Scenarios: worst case, average case
- What to analyze: time complexity, space complexity

Big-O Notation

$\mathrm{O}(\mathrm{f}(\mathrm{n}))$ is a set of functions

$$
\begin{aligned}
& g(n) \in O(f(n)) \Leftrightarrow \text { there exist constants } c, n_{0} \text { such that } \\
& \quad g(n) \leqslant c \cdot f(n) \text { for all } n \geqslant n_{0}
\end{aligned}
$$

- In words:
"for sufficiently large inputs, the function $g(n)$ is dominated by a scaled f(n)"
- An upper bound, in an asymptotic sense
- Usually, $g(n)$ is a complicated expression and $f(n)$ is simple

Big-O: IIlustration

Big-O Example

Show that $\frac{1}{2} n^{2}+3 n$ is $O\left(n^{2}\right)$
i.e., find constants c and n_{0} where
$\frac{1}{2} n^{2}+3 n \leqslant c \cdot n^{2}, \forall n \geqslant n_{0}$
Solution: choose $\mathrm{c}=1$, solve for n :
$\frac{1}{2} n^{2}+3 n \leqslant n^{2} \Rightarrow 6 \leqslant n \Rightarrow n_{0}=6$
In general, ignore constants and drop lower order terms. For example:

$$
2 n^{4}+6 n^{3}+100 n-27 \text { is } O\left(n^{4}\right)
$$

Big-Omega, Big-Theta

$g(n) \in \Omega(f(n)) \Leftrightarrow$ there exist constants c, n_{0} such that

$$
g(n) \geqslant c \cdot f(n) \text { for all } n \geqslant n_{0}
$$

- In words:
"for sufficiently large inputs, the function $g(n)$ dominates a scaled f(n)"
- A lower bound, in an asymptotic sense
$g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$
- A "tight" asymptotic bound

Complexity "Food Chain"

Name	Expression
Constant	$\mathrm{O}(1)$
Logarithmic	$\mathrm{O}(\log (\mathrm{n}))$
Linear	$\mathrm{O}(\mathrm{n})$
Linearithmic	$\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$
Quadratic	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Polynomial	$\mathrm{O}\left(\mathrm{n}^{\mathrm{p}}\right)$
Exponential	$\mathrm{O}\left(2^{\mathrm{n}}\right)$

Insertion sort

- In general, all sorting algorithms* are in $\Omega\left(n_{\log }(n)\right)$
*(in the comparison model)

Graphs

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of - a set V of vertices (singular: vertex),

- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(V^{2}\right)$ storage \Rightarrow dense representation.

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.
If all edge weights $w(u, v)$ are nonnegative, all shortest-path weights must exist.

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.
If all edge weights $w(u, v)$ are nonnegative, all shortest-path weights must exist.

Idea: Greedy.

1. Maintain a set S of vertices whose shortestpath distances from s are known.
2. At each step add to S the vertex $v \in V-S=Q$ whose distance estimate from s is minimal.
3. Update the distance estimates of vertices adjacent to v.

ALGORITHMS
 4
 …"
 Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

ALGORITHMS
 Example of Dijkstra's algorithm

Initialize:

Q:	A	B	C	D	E
0	∞	∞	∞	∞	

S: $\}$

Example of Dijkstra's algorithm

ALGORITHMS
 คทา
 Example of Dijkstra's algorithm

Relax all edges leaving A :

$$
Q: \begin{array}{ccccc}
A & B & C & D & E \\
\hline \hline 0 & \infty & \infty & \infty & \infty \\
& 10 & 3 & \infty & \infty
\end{array}
$$

algorithm

$$
S:\{A, C\}
$$

ALGORITHMS

 Example of Dijkstra's algorithm

Relax all edges leaving C :
,

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5

Q:

$$
S:\{A, C\}
$$

$" E " \leftarrow \operatorname{Extract}-\operatorname{Min}(Q)$:

$$
\text { Q: } \begin{array}{ccccc}
A & B & C & D & E \\
\hline 0 & \infty & \infty & \infty & \infty \\
& 10 & 3 & \infty & \infty \\
& 7 & & 11 & 5
\end{array}
$$

Example of Dijkstra's algorithm

Relax all edges leaving E :

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Relax all edges leaving B :

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5
	7		11	
			9	

$$
S:\{A, C, E, B\}
$$

9

Example of Dijkstra's algorithm

Traveling Salesman Problem (TSP)

- The run time of Dijkstra's algorithm in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ with naïve data structures. This is polynomial, so we say the shortest-path problem can be solved in "polynomial time".
-What about the following (similar) problem?
- Given a directed graph with edge weights, find a path that

1) Visits all vertices, and
2) Minimizes the path weight (sum of edges)

- There is no known algorithm for solving this in polynomial time. Why? TSP is NP-complete.

Knapsack Problem

NP-Completeness

- NP-complete problems are a class of problems for which there is no known algorithm that run in $\mathrm{O}\left(\mathrm{n}^{k}\right)$ time, for any constant k
- Equivalently, all known algorithms for solving NPcomplete problems are likely to be unacceptably slow
- If such an algorithm is found, or proven to not to exist, this solves the famous "P=NP?" question (such a proof is worth \$1 Million USD)
- NP-complete problems are verifiable in polynomial time
- NP-hard: problems that are "at least as hard as NPcomplete"

NP-Completeness

- How do I prove that problem X is NP-complete?
- Show that candidate solutions for X can be checked in polynomial time;
- Show that there exists an NP-complete problem Y such that an algorithm that solves X can also solve Y. This is called a reduction.
- A reduction establishes that a fast solution for X would also give a fast solution for Y .
- The first established NP-complete problem was boolean satisfiability, or SAT. This is called Cook's Theorem (1971).
- If your problem is NP-complete, you can safely give up looking for an efficient, exact algorithm.

Graph Coloring

- Given an undirected graph, color each vertex such that no two vertices of the same color share an edge. What is the fewest number of colors that can be used?
- Checking "Is a graph colorable using 2 colors?" is easy, and solvable in polynomial time.
- Checking "Is a graph colorable using 3 colors?" is NP-complete.

Example: 2-colorable Graph

Example: 2-colorable Graph

Example: 3-colorable Graph

Example: 3-colorable Graph

Undecidability

- Even worse than NP-complete, undecidable problems are those for which no algorithm can exist that is guaranteed to always solve it correctly.
- Example 1: the halting problem: "Will my problem ever stop executing?"
- Example 2: Kolmogorov complexity: "What is the simplest program that can generate a given string?"
- Problems can be shown to be undecidable by using similar reductions as for NPcompleteness proofs.

Graph Traversal - BFS and DFS

http://eecourses.technion.ac.il/044268/

To learn more...

Books:

- Harel "Algorithmics" (2004)
- accessible and easy to read
- Cormen et al. "Introduction to Algorithms" (2001)
- The comprehensive algorithms "bible"
- Often abbreviated as CLR or CLRS
- Garey and Johnson "Computers and Intractability: A Guide to the Theory of NPCompleteness (1979)

To learn more...

Courses: CPSC 320, 421, 500, 506
People: BETA Lab
These slides:
http: //www.cs.ubc.ca/
~ankgupta/refresher2011.html

