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About this talk

● For those incoming grad students who
● Do not have a CS background, or
● Have a CS background from a long time ago

● Discuss some fundamental concepts from 
algorithms and CS theory

● Ease the transition into any grad-level CS 
course

● Based on the 2009 version by Brad Bingham
● Some slides used from MIT OpenCourseWare



UBC CS Theory Courses (UGrad)

● CPSC 320: Intermediate Algorithm Design 
and Analysis

● Required for CS undergrads
● Offered in term 1 (Belleville) and term 2 (Meyer)

● CPSC 421: Intro to Theory of Computing
● Offered in term 1 (Friedman)

● CSPC 420: Advanced Alg. Design & Analysis
● Offered in term 2 (Kirkpatrick)



Outline

● Asymptotic Notation and Analysis
● Graphs and algorithms
● NP-Completeness & undecidability
● Resources to Learn More



Pseudocode

● How do we analyze algorithms? Start with a 
pseudocode description!

● Specifies an algorithm mathematically
● Independent of hardware details, 

programming languages, etc.
● Reason about scalability in a mathematical 

way





  



  



  



  



  



  



  



  



  



  



  



How to Analyze?

● Count operations in the Random Access 
Machine (RAM) model:

● Single processor
● Infinite memory, constant time reads/writes
● “Reasonable” instruction set

www8.cs.umu.se/kurser/TDBAfl/VT06/algorithms/BOOK/BOOK/NODE12.HTM

● Asymptotically (Big-O)
● Scenarios: worst case, average case
● What to analyze: time complexity, space 

complexity



Big-O Notation
O(f(n)) is a set of functions

● In words:
“for sufficiently large inputs, the function g(n) is 
dominated by a scaled f(n)”

● An upper bound, in an asymptotic sense
● Usually, g(n) is a complicated expression and 

f(n) is simple

g n∈O  f n⇔ there exist constants c , n0 such that
g nc⋅ f n for all nn0



Big-O: Illustration



Big-O Example
Show that        is 

i.e., find constants c and n
0
 where

Solution: choose c=1, solve for n:

In general, ignore constants and drop lower order 
terms. For example:
                                   is

1
2
n23n O n2

1
2
n23nc⋅n2 ,∀ nn0

1
2
n23nn2⇒6n⇒n0=6

2n46n3100n−27 O n4



Big-Omega, Big-Theta

● In words:
“for sufficiently large inputs, the function g(n) 
dominates a scaled f(n)”

● A lower bound, in an asymptotic sense

                         if                          and
● A “tight” asymptotic bound

g n∈ f n⇔there exist constants c , n0 such that

g nc⋅ f n for all nn0

g n∈ f n g n∈O  f n g n∈ f n





Complexity “Food Chain”

Name Expression
Constant O(1)

Logarithmic O(log(n))

Linear O(n)

Linearithmic O(n log(n))

Quadratic O(n2)
Polynomial O(np)

Exponential O(2n)



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



Traveling Salesman Problem (TSP)
● The run time of Dijkstra's algorithm in O(n2) with 

naïve data structures. This is polynomial, so we say 
the shortest-path problem can be solved in 
“polynomial time”.

● What about the following (similar) problem?
● Given a directed graph with edge weights, find a 

path that
1) Visits all vertices, and
2) Minimizes the path weight (sum of edges)

● There is no known algorithm for solving this in 
polynomial time. Why? TSP is NP-complete.



Knapsack Problem



NP-Completeness
● NP-complete problems are a class of problems for 

which there is no known algorithm that run in O(nk) 
time, for any constant k

● Equivalently, all known algorithms for solving NP-
complete problems are likely to be unacceptably 
slow

● If such an algorithm is found, or proven to not to 
exist, this solves the famous “P=NP?” question 
(such a proof is worth $1 Million USD)

● NP-complete problems are verifiable in polynomial 
time

● NP-hard: problems that are “at least as hard as NP-
complete”



NP-Completeness
● How do I prove that problem X is NP-complete?

● Show that candidate solutions for X can be 
checked in polynomial time;

● Show that there exists an NP-complete problem Y 
such that an algorithm that solves X can also solve 
Y. This is called a reduction.

● A reduction establishes that a fast solution for X 
would also give a fast solution for Y.

● The first established NP-complete problem was 
boolean satisfiability, or SAT. This is called Cook's 
Theorem (1971).

● If your problem is NP-complete, you can safely give 
up looking for an efficient, exact algorithm.



Graph Coloring
● Given an undirected graph, color each vertex 

such that no two vertices of the same color 
share an edge. What is the fewest number of 
colors that can be used?

● Checking “Is a graph colorable using 2 
colors?” is easy, and solvable in polynomial 
time.

● Checking “Is a graph colorable using 3 
colors?” is NP-complete.



  



  



  



  



Undecidability
● Even worse than NP-complete, undecidable 

problems are those for which no algorithm can 
exist that is guaranteed to always solve it 
correctly.

● Example 1: the halting problem: “Will my 
problem ever stop executing?”

● Example 2: Kolmogorov complexity: “What is 
the simplest program that can generate a 
given string?”

● Problems can be shown to be undecidable by 
using similar reductions as for NP-
completeness proofs.



Graph Traversal – BFS and DFS

http://eecourses.technion.ac.il/044268/



To learn more...
Books:

● Harel “Algorithmics” (2004)
● accessible and easy to read

● Cormen et al. “Introduction to Algorithms” 
(2001)

● The comprehensive algorithms “bible”
● Often abbreviated as CLR or CLRS

● Garey and Johnson “Computers and 
Intractability: A Guide to the Theory of NP-
Completeness (1979)



To learn more...
Courses: CPSC 320, 421, 500, 506

People: BETA Lab

These slides: 

http://www.cs.ubc.ca/
    ~ankgupta/refresher2011.html
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