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Overview

1 Two lightning-fast notation slides.

2 Proof techniques, with some straightforward examples.

3 Basic definitions from analysis.

4 Example proofs.
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Logic

Notation:

¬A not A

A ∨ B A or B

A ∧ B A and B

A⇒ B A implies B

A ⇐⇒ B A if and only if B

Logical equivalences:

• A⇒ B ≡ ¬A ∨ B

• A⇒ B ≡ ¬B ⇒ ¬A

A B A⇒ B

False False True
False True True
True False False
True True True
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Sets

Notation:

x ∈ A x is an element of A.

{x ∈ A | P(x)} Set of elements of A satisfying predicate P.

A Complement of A: {x | x /∈ A}
A ∪ B Union of A and B: {x | (x ∈ A) ∨ (x ∈ B)}.
A ∩ B Intersection of A and B: {x | (x ∈ A) ∧ (x ∈ B)}.
A\B Set difference: {x ∈ A | x /∈ B}.

A× B Cross product: {(x , y) | (x ∈ A) ∧ (y ∈ B)}.
P(A) Power set: {B | B ⊆ A}.
|A| Cardinality; number of elements of A.2

2For finite A.
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Direct proof

• Most theorems can be stated as an implication:
1 The sum of two rational numbers is rational.

a, b ∈ Q ⇒ a + b ∈ Q

2 Every odd integer is the difference of two perfect squares:

i = 2j + 1 for j ∈ Z⇒ ∃a, b ∈ N : i = a2 − b2

• If we assume that the LHS is true and can then show the RHS
is true, then the implication must be true.

Proof.
Assume that i = 2j + 1. We can write that as

i = 2j + 1

= j2 − j2 + 2j + 1

= (j + 1)2 − j2.
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Proof by contrapositive

Like a direct proof, but we first use the equivalence
A⇒ B ≡ ¬B ⇒ ¬A.
So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if 3n + 2 is even then n is even.

Instead we will show that if n is not even, then 3n + 2 is not even.
I.e., if n is odd then 3n + 2 is odd.

Proof.

Assume that n is odd. That is, n = 2j + 1 for some j ∈ N.

3n + 2 = 3(2j + 1) + 2

= 6j + 5

= 2(3j + 2) + 1,

hence 3n + 2 is odd.
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Proof by induction

We want to prove an infinite number of statements A0,A1,A2, . . ..

• Prove that An ⇒ An+1 for any n (the inductive case).

• Prove A0 (the base case).

• Like dominoes, A0 ⇒ A1 ⇒ A2 ⇒ . . ..
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Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2n.

Proof.

Base case: The set with 0 elements, ∅ has exactly 20 = 1 subset.
Inductive case: Assume that all sets of size k have 2k subsets.
Choose an arbitrary set B of size k + 1.
Choose an element x ∈ B and let A = B\{x}. So B = A ∪ {x}.
P(B) = P(A) ∪ {A′ ∪ {x} | A′ ∈ P(A)}, so we have:

|P(B)| = |P(A)|+ |{A′ ∪ {x} | A′ ∈ P(A)}|
= |P(A)|+ |P(A)|
= 2|P(A)|
= 2 · 2k (by induction)

= 2k+1.
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General induction

We want to prove an infinite number of statements A0,A1,A2, . . .

• Prove that A0 ∧ A1 ∧ . . . ∧ An ⇒ An+1 for any n (the
inductive case).

• Prove A0 (the base case).

• Like dominoes,

A0 ⇒ A1

A0 ∧ A1 ⇒ A2

A0 ∧ A1 ∧ A2 ⇒ A3

. . .
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General induction

Example

Prove that for any n ∈ N, n = p1p2 . . . pk ,
where pi is prime for all 1 ≤ i ≤ k .

Proof.
Base case: n = 2, k = 1, p1 = 2.

Inductive case: Assume w = p1p2 . . . pk for all w < n.
Case 1: n is prime. Then p1 = n and we’re done.
Case 2: n is composite. So n = ab for a, b ∈ N and a, b > 1.
By induction, a = p1p2 . . . pk and b = p′1p

′
2 . . . p

′
k ′ .

Hence n = p1p2 . . . pkp
′
1p
′
2 . . . p

′
k ′ .
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Proof by contradiction

We want to prove some statement A.
Instead, we assume ¬A and show that it leads to some
contradiction.
Everything was consistent without ¬A, so it must have been ¬A
that caused the inconsistency/contradiction.
Therefore, ¬¬A ≡ A must be true.

Example

Prove that ab + 1 6= ac for any a, b, c ∈ N where a, b, c > 1.

Proof.
Assume instead that ac = ab + 1.
Then by rearrangement we have c = b + 1

a .
But since a > 1, b + 1

a /∈ N, a contradiction.
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Infimum and supremum

Consider a set T ordered by relation ≤ and a subset S ⊆ T .

• The infimum is the greatest lower bound.

• The supremum is the least upper bound.

These bounds are the tightest possible on S , but they need not be
in S .

• Hence they differ from min and max.

• For T 6= R, they need not even exist.

Example

Let T = R and S = {x ∈ R | x2 < 2}.
Then sup(S) =

√
2, but

√
2 /∈ S .

So max(S) does not exist.
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Miscellaneous notation: arg min and arg max

Definition
The arg min of an expression f (x) is the set of values of x for
which the expression attains its minimum. That is,

arg min
x∈X

f (x) = {x ∈ X | f (x) ≥ f (x ′) ∀x ′ ∈ X}.

The arg max is defined analogously for the maximum.

Example

arg min
x∈R

x2 + 5 = {0}.

arg min
x∈{−2,5,2}

log|x | = {−2, 2}.

arg min
x∈R

log|x | does not exist.
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Limits

Definition
A function has a limit

lim
x→x0

f (x) = L

if for every ε > 0 there exists δ > 0 such that

|f (x)− L| < ε if |x − x0| < δ.

Definition
For limits tending to infinity,

lim
x→∞

f (x) = L

if for every ε > 0 there exists a bound M > 0 such that

|f (x)− L| < ε if x > M.
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Limits

Example

Show that limx→∞
2x−1
x−3 = 2.

Proof.
Using the definition, we can write

|f (x)− L| =
2x − 1

x − 3
− 2

=
2x − 1

x − 3
− 2x − 6

x − 3

=
5

x − 3
.

We can see that if x > 3 + 5
ε ⇒ |f (x)− L| < ε (provided that

x > 3).
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Continuity

Definition
f (x) is continuous at x0 if limx→x0 f (x) = f (x0). f (x) is
continuous on [a, b] if this holds for all x0 ∈ [a, b].

Theorem (Intermediate value theorem)

If f (x) is continuous on [a, b], then f takes on every value between
f (a) and f (b).
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Cardinality of R

Theorem
The real numbers are uncountable. That is, no enumeration exists
that assigns to every element of R a unique element of N.

Proof (by contradiction).

Assume, on the contrary, that [0, 1] is countable, and thus we can
construct an infinite list containing all the reals in this range:

0 0.0
1 0.14159 . . .
2 0.7182817 . . .
...

Let kn be the nth digit of the nth number.

Now construct w whose nth digit is 2 if kn = 1, or 1 otherwise.
Note that w cannot appear on our list, because it differs from the
nth number in the list in the nth digit. Therefore the list does not
contain all the reals in [0, 1] after all, a contradiction.
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Cardinality of Q

Guesses about the cardinality of Q?
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Cardinality of Q

Example

The rational numbers are countable: There exists an enumeration
that assigns to every element of Q a unique element of N.

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing
an enumeration. Create a table with numerators across the top
and denominators down the sides:
Q 1 2 3. . .

1 1/1 2/1 3/1. . .
2 1/2 2/2 3/2. . .
3 1/3 2/3 3/3. . .
...

Start at the top-left and zig-zag across
the table, counting fully-reduced
fractions as you go:
{

(1, 11), (2, 21), (3, 12), (4, 32), (5, 13)

, . . .

}.
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Density of Q in R

Theorem
For any a, b ∈ R where a < b, there is a q ∈ Q such that
a < q < b.

Proof (direct by construction).

Let n = 1
b−a + 1. Then nb − na > 1.

Let m be the largest integer such that m < na. Then it must be
that na < m + 1 < nb, since

• m + 1 < na would contradict m being the largest integer less
than na, and

• m + 1 > nb cannot be true since nb − na > 1.

Hence a < m+1
n < b.
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Density and continuous functions

Theorem
If f : R 7→ R and g : R 7→ R are both continuous and
f (q) = g(q) ∀q ∈ Q, then f (x) = g(x) ∀x ∈ R.

Proof.
Assume for contradiction that f (q) = g(q) ∀q ∈ Q, but there
exists a ∈ R such that f (a) 6= g(a). Let ε = |f (a)− g(a)|/2.

By continuity, there exist δ1, δ2 > 0 such that
|x − a| < δ1 guarantees |f (x)− f (a)| < ε, and
|x − a| < δ2 guarantees |g(x)− g(a)| < ε.
Choose q ∈ Q such that |q − a| < min{δ1, δ2}. (exists by density)

|f (a)− g(a)| ≤ |f (a)− f (q)|+ |f (q)− g(q)|+ |g(q)− g(a)|
< ε+ 0 + ε = |f (a)− g(a)|,

a contradiction.
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Density and continuous functions

Theorem
If f : R 7→ R and g : R 7→ R are both continuous and f (q) = g(q)
∀q ∈ D for any dense subset D ⊆ R, then f (x) = g(x) ∀x ∈ R.

Proof.
Previous proof only used density of Q, no other properties of Q.
So result goes through for any dense subset of R.
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No largest prime

Theorem
There is no largest prime.

Lemma
If n = a · b + 1, then neither a nor b divides n.

Lemma
Any n ∈ N, r > 1 can be written as p1 · p2 · . . . · pk , where each pi
is prime for 1 ≤ i ≤ k.

Proof of theorem (by contradiction).

Suppose that there is a finite sequence of all primes p1, p2, . . . , pk .

Let q = p1 · p2 · . . . · pk + 1.
Then pi does not evenly divide q for all i = 1, . . . , k (first lemma).
But then it is impossible to write q as the product of primes,
contradicting the second lemma.
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Thanks!
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Additional examples

• Every tree with n vertices has exactly n − 1 edges.

• Sum of vertex degrees in any undirected graph is even.
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