Proofs and Analysis

James Wright ${ }^{1}$

September 23, 2011
${ }^{1}$ Based on (almost identical to) Matt Hoffman's 2009 refresher.

Overview

(1) Two lightning-fast notation slides.
(2) Proof techniques, with some straightforward examples.
(3) Basic definitions from analysis.
(4) Example proofs.

Notation:

$$
\begin{gathered}
\neg A \text { not } A \\
A \vee B A \text { or } B \\
A \wedge B A \text { and } B \\
A \Rightarrow B A \text { implies } B \\
A \Longleftrightarrow B A \text { if and only if } B
\end{gathered}
$$

A	B	$A \Rightarrow B$
False	False	True
False	True	True
True	False	False
True	True	True

Logical equivalences:

- $A \Rightarrow B \equiv \neg A \vee B$
- $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Sets

Notation:
$x \in A x$ is an element of A.
$\{x \in A \mid P(x)\}$ Set of elements of A satisfying predicate P.
\bar{A} Complement of $A:\{x \mid x \notin A\}$
$A \cup B$ Union of A and $B:\{x \mid(x \in A) \vee(x \in B)\}$.
$A \cap B$ Intersection of A and $B:\{x \mid(x \in A) \wedge(x \in B)\}$.
$A \backslash B$ Set difference: $\{x \in A \mid x \notin B\}$.
$A \times B$ Cross product: $\{(x, y) \mid(x \in A) \wedge(y \in B)\}$.
$\mathcal{P}(A)$ Power set: $\{B \mid B \subseteq A\}$.
$|A|$ Cardinality; number of elements of $A .^{2}$

Direct proof

- Most theorems can be stated as an implication:
(1) The sum of two rational numbers is rational.

$$
a, b \in Q \Rightarrow a+b \in Q
$$

(2) Every odd integer is the difference of two perfect squares:

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N}: i=a^{2}-b^{2}
$$

- If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Direct proof

- Most theorems can be stated as an implication:
(1) The sum of two rational numbers is rational.

$$
a, b \in Q \Rightarrow a+b \in Q
$$

(2) Every odd integer is the difference of two perfect squares:

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N}: i=a^{2}-b^{2}
$$

- If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.
Assume that $i=2 j+1$. We can write that as

$$
i=2 j+1
$$

Direct proof

- Most theorems can be stated as an implication:
(1) The sum of two rational numbers is rational.

$$
a, b \in Q \Rightarrow a+b \in Q
$$

(2) Every odd integer is the difference of two perfect squares:

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N}: i=a^{2}-b^{2}
$$

- If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.
Assume that $i=2 j+1$. We can write that as

$$
\begin{aligned}
i & =2 j+1 \\
& =j^{2}-j^{2}+2 j+1
\end{aligned}
$$

Direct proof

- Most theorems can be stated as an implication:
(1) The sum of two rational numbers is rational.

$$
a, b \in Q \Rightarrow a+b \in Q
$$

(2) Every odd integer is the difference of two perfect squares:

$$
i=2 j+1 \text { for } j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N}: i=a^{2}-b^{2}
$$

- If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.
Assume that $i=2 j+1$. We can write that as

$$
\begin{aligned}
i & =2 j+1 \\
& =j^{2}-j^{2}+2 j+1 \\
& =(j+1)^{2}-j^{2} .
\end{aligned}
$$

Proof by contrapositive

Like a direct proof, but we first use the equivalence $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$.
So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if $3 n+2$ is even then n is even.

Proof by contrapositive

Like a direct proof, but we first use the equivalence $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$.
So, assume the RHS is false, and then show that the LHS is also.
Example
Show that if $3 n+2$ is even then n is even.
Instead we will show that if n is not even, then $3 n+2$ is not even. l.e., if n is odd then $3 n+2$ is odd.

Proof by contrapositive

Like a direct proof, but we first use the equivalence $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$.
So, assume the RHS is false, and then show that the LHS is also.
Example
Show that if $3 n+2$ is even then n is even.
Instead we will show that if n is not even, then $3 n+2$ is not even.
I.e., if n is odd then $3 n+2$ is odd.

Proof.
Assume that n is odd. That is, $n=2 j+1$ for some $j \in \mathbb{N}$.

$$
3 n+2=3(2 j+1)+2
$$

Proof by contrapositive

Like a direct proof, but we first use the equivalence $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$.
So, assume the RHS is false, and then show that the LHS is also.
Example
Show that if $3 n+2$ is even then n is even.
Instead we will show that if n is not even, then $3 n+2$ is not even. I.e., if n is odd then $3 n+2$ is odd.

Proof.
Assume that n is odd. That is, $n=2 j+1$ for some $j \in \mathbb{N}$.

$$
\begin{aligned}
3 n+2 & =3(2 j+1)+2 \\
& =6 j+5
\end{aligned}
$$

Proof by contrapositive

Like a direct proof, but we first use the equivalence $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$.
So, assume the RHS is false, and then show that the LHS is also.
Example
Show that if $3 n+2$ is even then n is even.
Instead we will show that if n is not even, then $3 n+2$ is not even. l.e., if n is odd then $3 n+2$ is odd.

Proof.
Assume that n is odd. That is, $n=2 j+1$ for some $j \in \mathbb{N}$.

$$
\begin{aligned}
3 n+2 & =3(2 j+1)+2 \\
& =6 j+5 \\
& =2(3 j+2)+1,
\end{aligned}
$$

hence $3 n+2$ is odd.

Proof by induction

We want to prove an infinite number of statements $A_{0}, A_{1}, A_{2}, \ldots$.

- Prove that $A_{n} \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_{0} (the base case).

Proof by induction

We want to prove an infinite number of statements $A_{0}, A_{1}, A_{2}, \ldots$.

- Prove that $A_{n} \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_{0} (the base case).
- Like dominoes, $A_{0} \Rightarrow A_{1} \Rightarrow A_{2} \Rightarrow \ldots$

Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2^{n}.

Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2^{n}.
Proof.
Base case: The set with 0 elements, \varnothing has exactly $2^{0}=1$ subset.

Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2^{n}.
Proof.
Base case: The set with 0 elements, \varnothing has exactly $2^{0}=1$ subset. Inductive case: Assume that all sets of size k have 2^{k} subsets.
Choose an arbitrary set B of size $k+1$.
Choose an element $x \in B$ and let $A=B \backslash\{x\}$. So $B=A \cup\{x\}$.

Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2^{n}.
Proof.
Base case: The set with 0 elements, \varnothing has exactly $2^{0}=1$ subset. Inductive case: Assume that all sets of size k have 2^{k} subsets.
Choose an arbitrary set B of size $k+1$.
Choose an element $x \in B$ and let $A=B \backslash\{x\}$. So $B=A \cup\{x\}$. $\mathcal{P}(B)=\mathcal{P}(A) \cup\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}$, so we have:

Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2^{n}.
Proof.
Base case: The set with 0 elements, \varnothing has exactly $2^{0}=1$ subset. Inductive case: Assume that all sets of size k have 2^{k} subsets.
Choose an arbitrary set B of size $k+1$.
Choose an element $x \in B$ and let $A=B \backslash\{x\}$. So $B=A \cup\{x\}$. $\mathcal{P}(B)=\mathcal{P}(A) \cup\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}$, so we have:

$$
|\mathcal{P}(B)|=|\mathcal{P}(A)|+\left|\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}\right|
$$

because $\mathcal{P}(A)$ and $\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}$ are disjoint

Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2^{n}.
Proof.
Base case: The set with 0 elements, \varnothing has exactly $2^{0}=1$ subset. Inductive case: Assume that all sets of size k have 2^{k} subsets.
Choose an arbitrary set B of size $k+1$.
Choose an element $x \in B$ and let $A=B \backslash\{x\}$. So $B=A \cup\{x\}$. $\mathcal{P}(B)=\mathcal{P}(A) \cup\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}$, so we have:

$$
\begin{aligned}
|\mathcal{P}(B)| & =|\mathcal{P}(A)|+\left|\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}\right| \\
& =|\mathcal{P}(A)|+|\mathcal{P}(A)|
\end{aligned}
$$

Proof by induction

Example

Prove that the number of subsets of a set with n elements is 2^{n}.
Proof.
Base case: The set with 0 elements, \varnothing has exactly $2^{0}=1$ subset. Inductive case: Assume that all sets of size k have 2^{k} subsets.
Choose an arbitrary set B of size $k+1$.
Choose an element $x \in B$ and let $A=B \backslash\{x\}$. So $B=A \cup\{x\}$. $\mathcal{P}(B)=\mathcal{P}(A) \cup\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}$, so we have:

$$
\begin{aligned}
|\mathcal{P}(B)| & =|\mathcal{P}(A)|+\left|\left\{A^{\prime} \cup\{x\} \mid A^{\prime} \in \mathcal{P}(A)\right\}\right| \\
& =|\mathcal{P}(A)|+|\mathcal{P}(A)| \\
& =2|\mathcal{P}(A)| \\
& =2 \cdot 2^{k} \text { (by induction) } \\
& =2^{k+1} .
\end{aligned}
$$

General induction

We want to prove an infinite number of statements $A_{0}, A_{1}, A_{2}, \ldots$

- Prove that $A_{0} \wedge A_{1} \wedge \ldots \wedge A_{n} \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_{0} (the base case).

General induction

We want to prove an infinite number of statements $A_{0}, A_{1}, A_{2}, \ldots$

- Prove that $A_{0} \wedge A_{1} \wedge \ldots \wedge A_{n} \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_{0} (the base case).
- Like dominoes,

$$
\begin{aligned}
A_{0} & \Rightarrow A_{1} \\
A_{0} \wedge A_{1} & \Rightarrow A_{2} \\
A_{0} \wedge A_{1} \wedge A_{2} & \Rightarrow A_{3}
\end{aligned}
$$

General induction

Example

Prove that for any $n \in \mathbb{N}, n=p_{1} p_{2} \ldots p_{k}$, where p_{i} is prime for all $1 \leq i \leq k$.

General induction

Example

Prove that for any $n \in \mathbb{N}, n=p_{1} p_{2} \ldots p_{k}$, where p_{i} is prime for all $1 \leq i \leq k$.

Proof.
Base case: $n=2, k=1, p_{1}=2$.

General induction

Example

Prove that for any $n \in \mathbb{N}, n=p_{1} p_{2} \ldots p_{k}$, where p_{i} is prime for all $1 \leq i \leq k$.

Proof.
Base case: $n=2, k=1, p_{1}=2$.
Inductive case: Assume $w=p_{1} p_{2} \ldots p_{k}$ for all $w<n$.
Case 1: n is prime. Then $p_{1}=n$ and we're done.

General induction

Example

Prove that for any $n \in \mathbb{N}, n=p_{1} p_{2} \ldots p_{k}$,
where p_{i} is prime for all $1 \leq i \leq k$.
Proof.
Base case: $n=2, k=1, p_{1}=2$.
Inductive case: Assume $w=p_{1} p_{2} \ldots p_{k}$ for all $w<n$.
Case 1: n is prime. Then $p_{1}=n$ and we're done.
Case 2: n is composite. So $n=a b$ for $a, b \in \mathbb{N}$ and $a, b>1$.

General induction

Example

Prove that for any $n \in \mathbb{N}, n=p_{1} p_{2} \ldots p_{k}$,
where p_{i} is prime for all $1 \leq i \leq k$.
Proof.
Base case: $n=2, k=1, p_{1}=2$.
Inductive case: Assume $w=p_{1} p_{2} \ldots p_{k}$ for all $w<n$.
Case 1: n is prime. Then $p_{1}=n$ and we're done.
Case 2: n is composite. So $n=a b$ for $a, b \in \mathbb{N}$ and $a, b>1$. By induction, $a=p_{1} p_{2} \ldots p_{k}$ and $b=p_{1}^{\prime} p_{2}^{\prime} \ldots p_{k^{\prime}}^{\prime}$. Hence $n=p_{1} p_{2} \ldots p_{k} p_{1}^{\prime} p_{2}^{\prime} \ldots p_{k^{\prime}}^{\prime}$.

Proof by contradiction

We want to prove some statement A.
Instead, we assume $\neg A$ and show that it leads to some contradiction.
Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction.
Therefore, $\neg \neg A \equiv A$ must be true.

Proof by contradiction

We want to prove some statement A.
Instead, we assume $\neg A$ and show that it leads to some contradiction.
Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction.
Therefore, $\neg \neg A \equiv A$ must be true.

Example

Prove that $a b+1 \neq a c$ for any $a, b, c \in \mathbb{N}$ where $a, b, c>1$.

Proof by contradiction

We want to prove some statement A.
Instead, we assume $\neg A$ and show that it leads to some contradiction.
Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction.
Therefore, $\neg \neg A \equiv A$ must be true.

Example

Prove that $a b+1 \neq a c$ for any $a, b, c \in \mathbb{N}$ where $a, b, c>1$.
Proof.
Assume instead that $a c=a b+1$.
Then by rearrangement we have $c=b+\frac{1}{a}$.
But since $a>1, b+\frac{1}{a} \notin \mathbb{N}$, a contradiction.

Infimum and supremum

Consider a set T ordered by relation \leq and a subset $S \subseteq T$.

- The infimum is the greatest lower bound.
- The supremum is the least upper bound.

These bounds are the tightest possible on S, but they need not be in S.

- Hence they differ from min and max.
- For $T \neq \mathbb{R}$, they need not even exist.

Infimum and supremum

Consider a set T ordered by relation \leq and a subset $S \subseteq T$.

- The infimum is the greatest lower bound.
- The supremum is the least upper bound.

These bounds are the tightest possible on S, but they need not be in S.

- Hence they differ from min and max.
- For $T \neq \mathbb{R}$, they need not even exist.

Example
Let $T=\mathbb{R}$ and $S=\left\{x \in \mathbb{R} \mid x^{2}<2\right\}$.
Then $\sup (S)=\sqrt{2}$, but $\sqrt{2} \notin S$.
So $\max (S)$ does not exist.

Miscellaneous notation: arg min and arg max

Definition

The arg min of an expression $f(x)$ is the set of values of x for which the expression attains its minimum. That is,

$$
\underset{x \in X}{\arg \min } f(x)=\left\{x \in X \mid f(x) \geq f\left(x^{\prime}\right) \quad \forall x^{\prime} \in X\right\}
$$

The arg max is defined analogously for the maximum.
Example

$$
\begin{gathered}
\underset{x \in \mathbb{R}}{\arg \min } x^{2}+5=\{0\} . \\
\underset{x \in\{-2,5,2\}}{\arg \min } \log |x|=\{-2,2\} . \\
\underset{x \in \mathbb{R}}{\arg \min } \log |x| \text { does not exist. }
\end{gathered}
$$

Limits

Definition
A function has a limit

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-L|<\epsilon \text { if }\left|x-x_{0}\right|<\delta
$$

Definition
For limits tending to infinity,

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if for every $\epsilon>0$ there exists a bound $M>0$ such that

$$
|f(x)-L|<\epsilon \text { if } x>M
$$

Limits

Example

Show that $\lim _{x \rightarrow \infty} \frac{2 x-1}{x-3}=2$.
Proof.
Using the definition, we can write

$$
\begin{aligned}
|f(x)-L| & =\frac{2 x-1}{x-3}-2 \\
& =\frac{2 x-1}{x-3}-\frac{2 x-6}{x-3} \\
& =\frac{5}{x-3}
\end{aligned}
$$

We can see that if $x>3+\frac{5}{\epsilon} \Rightarrow|f(x)-L|<\epsilon$ (provided that $x>3$).

Continuity

Definition
$f(x)$ is continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) . f(x)$ is
continuous on $[a, b]$ if this holds for all $x_{0} \in[a, b]$.
Theorem (Intermediate value theorem)
If $f(x)$ is continuous on $[a, b]$, then f takes on every value between $f(a)$ and $f(b)$.

Cardinality of \mathbb{R}

Theorem
The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N}.

Cardinality of \mathbb{R}

Theorem
The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N}.

Proof (by contradiction).
Assume, on the contrary, that $[0,1]$ is countable, and thus we can construct an infinite list containing all the reals in this range:

0	0.0
1	$0.14159 \ldots$
2	$0.7182817 \ldots$
\vdots	

Cardinality of \mathbb{R}

Theorem
The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N}.

Proof (by contradiction).
Assume, on the contrary, that $[0,1]$ is countable, and thus we can construct an infinite list containing all the reals in this range:

0
1
2
\vdots

Now construct w whose nth digit is 2 if $k_{n}=1$, or 1 otherwise.

Cardinality of \mathbb{R}

Theorem

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N}.

Proof (by contradiction).
Assume, on the contrary, that $[0,1]$ is countable, and thus we can construct an infinite list containing all the reals in this range:

0	0.0

1 0.14159...
2 0.7182817...
Let k_{n} be the nth digit of the nth number.

Now construct w whose nth digit is 2 if $k_{n}=1$, or 1 otherwise. Note that w cannot appear on our list, because it differs from the nth number in the list in the nth digit. Therefore the list does not contain all the reals in $[0,1]$ after all, a contradiction.

Cardinality of \mathbb{Q}

Guesses about the cardinality of \mathbb{Q} ?

Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).
We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:
$\left.\begin{array}{l|lllll}\mathbb{Q} & 1 & 2 & 3 \ldots & & \\ \hline & & & & \text { Start at the top-left and zig-zag across } \\ 1 & 1 / 1 & 2 / 1 & 3 / 1 \ldots & \text { the table, counting fully-reduced } \\ 2 & 1 / 2 & 2 / 2 & 3 / 2 \ldots & \text { fractions as you go: } \\ 3 & 1 / 3 & 2 / 3 & 3 / 3 \ldots & \\ \vdots & & & & \end{array}\right\}$.

Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).
We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\mathbb{Q}	1	2	$3 \ldots$		
				Start at the top-left and zig-zag across	
1	$1 / 1$	$2 / 1$	$3 / 1 \ldots$	the table, counting fully-reduced	
2	$1 / 2$	$2 / 2$	$3 / 2 \ldots$	fractions as you go:	
3	$1 / 3$	$2 / 3$	$3 / 3 \ldots$	$\left\{\left(1, \frac{1}{1}\right)\right.$,	
\vdots					

Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).
We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:
$\begin{array}{l|lllll}\mathbb{Q} & 1 & 2 & 3 \ldots & & \\$\cline { 1 - 2 } \& \& \& \& Start at the top-left and zig-zag across
 1 \& $\left.1 / 1 & 2 / 1 & 3 / 1 \ldots & \text { the table, counting fully-reduced } \\ 2 & 1 / 2 & 2 / 2 & 3 / 2 \ldots & \text { fractions as you go: } \\ 3 & 1 / 3 & 2 / 3 & 3 / 3 \ldots & \left\{\left(1, \frac{1}{1}\right),\left(2, \frac{2}{1}\right),\right. \\ \vdots & & & & \end{array}\right\}$.

Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).
We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:
$\left.\begin{array}{l|lllll}\mathbb{Q} & 1 & 2 & 3 \ldots & & \\ & & & & \text { Start at the top-left and zig-zag across } \\ 1 & 1 / 1 & 2 / 1 & 3 / 1 \ldots & \text { the table, counting fully-reduced } \\ 2 & 1 / 2 & 2 / 2 & 3 / 2 \ldots & \text { fractions as you go: } \\ 3 & 1 / 3 & 2 / 3 & 3 / 3 \ldots & \left\{\left(1, \frac{1}{1}\right),\left(2, \frac{2}{1}\right),\left(3, \frac{1}{2}\right),\right. \\ \vdots & & & & \end{array}\right\}$.

Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).
We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:
$\begin{array}{l|lllll}\mathbb{Q} & 1 & 2 & 3 \ldots & & \\$\cline { 1 - 2 } \& \& \& \& Start at the top-left and zig-zag across
 1 \& $\left.1 / 1 & 2 / 1 & 3 / 1 \ldots & \text { the table, counting fully-reduced } \\ 2 & 1 / 2 & 2 / 2 & 3 / 2 \ldots & \text { fractions as you go: } \\ 3 & 1 / 3 & 2 / 3 & 3 / 3 \ldots & \left\{\left(1, \frac{1}{1}\right),\left(2, \frac{2}{1}\right),\left(3, \frac{1}{2}\right),\left(4, \frac{3}{2}\right),\right.\end{array}\right\}$.

Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).
We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\mathbb{Q}	1	2	$3 \ldots$		
				Start at the top-left and zig-zag across	
1	$1 / 1$	$2 / 1$	$3 / 1 \ldots$	the table, counting fully-reduced	
2	$1 / 2$	$2 / 2$	$3 / 2 \ldots$	fractions as you go:	
3	$1 / 3$	$2 / 3$	$3 / 3 \ldots$	$\left\{\left(1, \frac{1}{1}\right),\left(2, \frac{2}{1}\right),\left(3, \frac{1}{2}\right),\left(4, \frac{3}{2}\right),\left(5, \frac{1}{3}\right) \quad\right\}$.	

Cardinality of \mathbb{Q}

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N}.

Proof (direct by construction).
We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\mathbb{Q}	1	2	$3 \ldots$	
				Start at the top-left and zig-zag across
1	$1 / 1$	$2 / 1$	$3 / 1 \ldots$	the table, counting fully-reduced
2	$1 / 2$	$2 / 2$	$3 / 2 \ldots$	fractions as you go:
3	$1 / 3$	$2 / 3$	$3 / 3 \ldots$	$\left\{\left(1, \frac{1}{1}\right),\left(2, \frac{2}{1}\right),\left(3, \frac{1}{2}\right),\left(4, \frac{3}{2}\right),\left(5, \frac{1}{3}\right), \ldots\right\}$.

Density of \mathbb{Q} in \mathbb{R}

Theorem
For any $a, b \in \mathbb{R}$ where $a<b$, there is a $q \in \mathbb{Q}$ such that $a<q<b$.

Proof (direct by construction).
Let $n=\frac{1}{b-a}+1$. Then $n b-n a>1$.
Let m be the largest integer such that $m<n a$. Then it must be that $n a<m+1<n b$, since

- $m+1<n a$ would contradict m being the largest integer less than na, and
- $m+1>n b$ cannot be true since $n b-n a>1$.

Hence $a<\frac{m+1}{n}<b$.

Density and continuous functions

Theorem
If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and $f(q)=g(q) \forall q \in \mathbb{Q}$, then $f(x)=g(x) \forall x \in \mathbb{R}$.

Density and continuous functions

Theorem
If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and
$f(q)=g(q) \forall q \in \mathbb{Q}$, then $f(x)=g(x) \forall x \in \mathbb{R}$.
Proof.
Assume for contradiction that $f(q)=g(q) \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon=|f(a)-g(a)| / 2$.

Density and continuous functions

Theorem
If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and
$f(q)=g(q) \forall q \in \mathbb{Q}$, then $f(x)=g(x) \forall x \in \mathbb{R}$.
Proof.
Assume for contradiction that $f(q)=g(q) \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon=|f(a)-g(a)| / 2$.
By continuity, there exist $\delta_{1}, \delta_{2}>0$ such that
$|x-a|<\delta_{1}$ guarantees $|f(x)-f(a)|<\epsilon$, and
$|x-a|<\delta_{2}$ guarantees $|g(x)-g(a)|<\epsilon$.

Density and continuous functions

Theorem
If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and
$f(q)=g(q) \forall q \in \mathbb{Q}$, then $f(x)=g(x) \forall x \in \mathbb{R}$.
Proof.
Assume for contradiction that $f(q)=g(q) \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon=|f(a)-g(a)| / 2$.
By continuity, there exist $\delta_{1}, \delta_{2}>0$ such that
$|x-a|<\delta_{1}$ guarantees $|f(x)-f(a)|<\epsilon$, and
$|x-a|<\delta_{2}$ guarantees $|g(x)-g(a)|<\epsilon$.
Choose $q \in \mathbb{Q}$ such that $|q-a|<\min \left\{\delta_{1}, \delta_{2}\right\}$. (exists by density)

Density and continuous functions

Theorem
If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and
$f(q)=g(q) \forall q \in \mathbb{Q}$, then $f(x)=g(x) \forall x \in \mathbb{R}$.
Proof.
Assume for contradiction that $f(q)=g(q) \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon=|f(a)-g(a)| / 2$.
By continuity, there exist $\delta_{1}, \delta_{2}>0$ such that
$|x-a|<\delta_{1}$ guarantees $|f(x)-f(a)|<\epsilon$, and
$|x-a|<\delta_{2}$ guarantees $|g(x)-g(a)|<\epsilon$.
Choose $q \in \mathbb{Q}$ such that $|q-a|<\min \left\{\delta_{1}, \delta_{2}\right\}$. (exists by density)

$$
|f(a)-g(a)| \leq|f(a)-f(q)|+|f(q)-g(q)|+|g(q)-g(a)|
$$

Density and continuous functions

Theorem
If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and
$f(q)=g(q) \forall q \in \mathbb{Q}$, then $f(x)=g(x) \forall x \in \mathbb{R}$.
Proof.
Assume for contradiction that $f(q)=g(q) \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon=|f(a)-g(a)| / 2$.
By continuity, there exist $\delta_{1}, \delta_{2}>0$ such that
$|x-a|<\delta_{1}$ guarantees $|f(x)-f(a)|<\epsilon$, and
$|x-a|<\delta_{2}$ guarantees $|g(x)-g(a)|<\epsilon$.
Choose $q \in \mathbb{Q}$ such that $|q-a|<\min \left\{\delta_{1}, \delta_{2}\right\}$. (exists by density)

$$
\begin{aligned}
|f(a)-g(a)| & \leq|f(a)-f(q)|+|f(q)-g(q)|+|g(q)-g(a)| \\
& <\epsilon+0+\epsilon=|f(a)-g(a)|
\end{aligned}
$$

a contradiction.

Density and continuous functions

Theorem
If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and $f(q)=g(q)$
$\forall q \in D$ for any dense subset $D \subseteq \mathbb{R}$, then $f(x)=g(x) \forall x \in \mathbb{R}$.
Proof.
Previous proof only used density of \mathbb{Q}, no other properties of \mathbb{Q}.
So result goes through for any dense subset of \mathbb{R}.

No largest prime

Theorem
There is no largest prime.

No largest prime

Theorem
There is no largest prime.

Lemma

If $n=a \cdot b+1$, then neither a nor b divides n.

Lemma

Any $n \in \mathbb{N}, r>1$ can be written as $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$, where each p_{i} is prime for $1 \leq i \leq k$.

No largest prime

Theorem
There is no largest prime.
Lemma
If $n=a \cdot b+1$, then neither a nor b divides n.
Lemma
Any $n \in \mathbb{N}, r>1$ can be written as $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$, where each p_{i} is prime for $1 \leq i \leq k$.

Proof of theorem (by contradiction).
Suppose that there is a finite sequence of all primes $p_{1}, p_{2}, \ldots, p_{k}$. Let $q=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$.
Then p_{i} does not evenly divide q for all $i=1, \ldots, k$ (first lemma).

No largest prime

Theorem
There is no largest prime.
Lemma
If $n=a \cdot b+1$, then neither a nor b divides n.
Lemma
Any $n \in \mathbb{N}, r>1$ can be written as $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$, where each p_{i} is prime for $1 \leq i \leq k$.

Proof of theorem (by contradiction).
Suppose that there is a finite sequence of all primes $p_{1}, p_{2}, \ldots, p_{k}$. Let $q=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$.
Then p_{i} does not evenly divide q for all $i=1, \ldots, k$ (first lemma).
But then it is impossible to write q as the product of primes, contradicting the second lemma.

Thanks!

Additional examples

- Every tree with n vertices has exactly $n-1$ edges.
- Sum of vertex degrees in any undirected graph is even.

