Proofs and Analysis

James Wright¹

September 23, 2011

¹Based on (almost identical to) Matt Hoffman's 2009 refresher.

- 1 Two lightning-fast notation slides.
- 2 Proof techniques, with some straightforward examples.
- 3 Basic definitions from analysis.
- 4 Example proofs.

Notation:

$$\neg A$$
 not A
 $A \lor B$ A or B
 $A \land B$ A and B
 $A \Rightarrow B$ A implies B
 $A \iff B$ A if and only if B

Α	В	$A \Rightarrow B$
False	False	True
False	True	True
True	False	False
True	True	True

Logical equivalences:

- $A \Rightarrow B \equiv \neg A \lor B$
- $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Notation:

```
x \in A x is an element of A.
```

$$\{x \in A \mid P(x)\}\$$
 Set of elements of A satisfying predicate P .

$$\overline{A}$$
 Complement of A: $\{x \mid x \notin A\}$

$$A \cup B$$
 Union of A and B: $\{x \mid (x \in A) \lor (x \in B)\}.$

$$A \cap B$$
 Intersection of A and B: $\{x \mid (x \in A) \land (x \in B)\}.$

$$A \setminus B$$
 Set difference: $\{x \in A \mid x \notin B\}$.

$$A \times B$$
 Cross product: $\{(x,y) \mid (x \in A) \land (y \in B)\}.$

$$\mathcal{P}(A)$$
 Power set: $\{B \mid B \subseteq A\}$.

|A| Cardinality; number of elements of A.²

Introduction

- Most theorems can be stated as an implication:
 - 1 The sum of two rational numbers is rational.

$$a, b \in Q \Rightarrow a + b \in Q$$

$$i = 2j + 1$$
 for $j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N} : i = a^2 - b^2$

• If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

- Most theorems can be stated as an implication:
 - 1 The sum of two rational numbers is rational.

$$a, b \in Q \Rightarrow a + b \in Q$$

$$i = 2j + 1$$
 for $j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N} : i = a^2 - b^2$

 If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.

Assume that i = 2j + 1. We can write that as

$$i = 2j + 1$$

- Most theorems can be stated as an implication:
 - 1 The sum of two rational numbers is rational.

$$a, b \in Q \Rightarrow a + b \in Q$$

$$i = 2j + 1$$
 for $j \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N} : i = a^2 - b^2$

 If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.

Assume that i = 2j + 1. We can write that as

$$i = 2j + 1$$

= $j^2 - j^2 + 2j + 1$

- Most theorems can be stated as an implication:
 - 1 The sum of two rational numbers is rational.

$$a, b \in Q \Rightarrow a + b \in Q$$

$$i = 2i + 1$$
 for $i \in \mathbb{Z} \Rightarrow \exists a, b \in \mathbb{N} : i = a^2 - b^2$

 If we assume that the LHS is true and can then show the RHS is true, then the implication must be true.

Proof.

Assume that i = 2j + 1. We can write that as

$$i = 2j + 1$$

= $j^2 - j^2 + 2j + 1$
= $(j + 1)^2 - j^2$.

Like a direct proof, but we first use the equivalence

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$
.

So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if 3n + 2 is even then n is even.

Like a direct proof, but we first use the equivalence

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$
.

So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if 3n + 2 is even then n is even.

Instead we will show that if n is not even, then 3n + 2 is not even.

I.e., if n is odd then 3n + 2 is odd.

Like a direct proof, but we first use the equivalence

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$
.

So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if 3n + 2 is even then n is even.

Instead we will show that if n is not even, then 3n + 2 is not even. I.e., if n is odd then 3n + 2 is odd.

Proof.

Assume that n is odd. That is, n = 2j + 1 for some $j \in \mathbb{N}$.

$$3n + 2 = 3(2j + 1) + 2$$

Like a direct proof, but we first use the equivalence

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$
.

So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if 3n + 2 is even then n is even.

Instead we will show that if n is not even, then 3n + 2 is not even. I.e., if n is odd then 3n + 2 is odd.

Proof.

Assume that n is odd. That is, n = 2j + 1 for some $j \in \mathbb{N}$.

$$3n + 2 = 3(2j + 1) + 2$$
$$= 6j + 5$$

Like a direct proof, but we first use the equivalence

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$
.

So, assume the RHS is false, and then show that the LHS is also.

Example

Show that if 3n + 2 is even then n is even.

Instead we will show that if n is not even, then 3n + 2 is not even. I.e., if n is odd then 3n + 2 is odd.

Proof.

Assume that n is odd. That is, n = 2j + 1 for some $j \in \mathbb{N}$.

$$3n + 2 = 3(2j + 1) + 2$$

= $6j + 5$
= $2(3j + 2) + 1$,

hence 3n + 2 is odd.

We want to prove an infinite number of statements A_0, A_1, A_2, \ldots

- Prove that $A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).

We want to prove an infinite number of statements A_0, A_1, A_2, \ldots

- Prove that $A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).
- Like dominoes, $A_0 \Rightarrow A_1 \Rightarrow A_2 \Rightarrow \dots$

Example

Prove that the number of subsets of a set with n elements is 2^n .

Example

Prove that the number of subsets of a set with n elements is 2^n .

Proof.

Base case: The set with 0 elements, \varnothing has exactly $2^0 = 1$ subset.

Prove that the number of subsets of a set with n elements is 2^n .

Proof.

Base case: The set with 0 elements, \varnothing has exactly $2^0 = 1$ subset. Inductive case: Assume that all sets of size k have 2^k subsets.

Choose an arbitrary set B of size k + 1.

Choose an element $x \in B$ and let $A = B \setminus \{x\}$. So $B = A \cup \{x\}$.

Prove that the number of subsets of a set with n elements is 2^n .

Proof.

Base case: The set with 0 elements, \emptyset has exactly $2^0 = 1$ subset. Inductive case: Assume that all sets of size k have 2^k subsets.

Choose an arbitrary set B of size k + 1.

Choose an element $x \in B$ and let $A = B \setminus \{x\}$. So $B = A \cup \{x\}$.

 $\mathcal{P}(B) = \mathcal{P}(A) \cup \{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}$, so we have:

Prove that the number of subsets of a set with n elements is 2^n .

Proof.

Base case: The set with 0 elements, \varnothing has exactly $2^0 = 1$ subset. Inductive case: Assume that all sets of size k have 2^k subsets. Choose an arbitrary set B of size k + 1.

Choose an element $x \in B$ and let $A = B \setminus \{x\}$. So $B = A \cup \{x\}$.

$$\mathcal{P}(B) = \mathcal{P}(A) \cup \{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}$$
, so we have:

$$\begin{split} |\mathcal{P}(B)| &= |\mathcal{P}(A)| + |\{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}| \\ \text{because } \mathcal{P}(A) \text{ and } \{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\} \text{ are disjoint} \end{split}$$

Prove that the number of subsets of a set with n elements is 2^n .

Proof.

Base case: The set with 0 elements, \varnothing has exactly $2^0=1$ subset. Inductive case: Assume that all sets of size k have 2^k subsets. Choose an arbitrary set B of size k+1.

Choose an element $x \in B$ and let $A = B \setminus \{x\}$. So $B = A \cup \{x\}$.

$$\mathcal{P}(B) = \mathcal{P}(A) \cup \{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}$$
, so we have:

$$|\mathcal{P}(B)| = |\mathcal{P}(A)| + |\{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}|$$
$$= |\mathcal{P}(A)| + |\mathcal{P}(A)|$$

Prove that the number of subsets of a set with n elements is 2^n .

Proof.

Base case: The set with 0 elements, \varnothing has exactly $2^0=1$ subset. Inductive case: Assume that all sets of size k have 2^k subsets.

Choose an arbitrary set B of size k + 1.

Choose an element $x \in B$ and let $A = B \setminus \{x\}$. So $B = A \cup \{x\}$.

 $\mathcal{P}(B) = \mathcal{P}(A) \cup \{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}$, so we have:

$$|\mathcal{P}(B)| = |\mathcal{P}(A)| + |\{A' \cup \{x\} \mid A' \in \mathcal{P}(A)\}|$$

$$= |\mathcal{P}(A)| + |\mathcal{P}(A)|$$

$$= 2|\mathcal{P}(A)|$$

$$= 2 \cdot 2^{k} \text{ (by induction)}$$

$$= 2^{k+1}.$$

Introduction

Proofs

Analysis

Examples

We want to prove an infinite number of statements A_0, A_1, A_2, \dots

- Prove that $A_0 \wedge A_1 \wedge \ldots \wedge A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).

We want to prove an infinite number of statements A_0, A_1, A_2, \dots

- Prove that $A_0 \wedge A_1 \wedge \ldots \wedge A_n \Rightarrow A_{n+1}$ for any n (the inductive case).
- Prove A_0 (the base case).
- Like dominoes,

$$A_0 \Rightarrow A_1$$

$$A_0 \land A_1 \Rightarrow A_2$$

$$A_0 \land A_1 \land A_2 \Rightarrow A_3$$

10

Example

Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \dots p_k$, where p_i is prime for all $1 \le i \le k$.

10

Example

Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \dots p_k$, where p_i is prime for all $1 \le i \le k$.

Proof.

Base case: $n = 2, k = 1, p_1 = 2$.

10

Example

Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \dots p_k$, where p_i is prime for all $1 \le i \le k$.

Proof.

Base case: $n = 2, k = 1, p_1 = 2$.

Inductive case: Assume $w = p_1 p_2 \dots p_k$ for all w < n.

Case 1: n is prime. Then $p_1 = n$ and we're done.

Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \dots p_k$, where p_i is prime for all $1 \le i \le k$.

Proof.

Base case: $n = 2, k = 1, p_1 = 2$.

Inductive case: Assume $w = p_1 p_2 \dots p_k$ for all w < n.

Case 1: n is prime. Then $p_1 = n$ and we're done.

Case 2: n is composite. So n = ab for $a, b \in \mathbb{N}$ and a, b > 1.

Prove that for any $n \in \mathbb{N}$, $n = p_1 p_2 \dots p_k$, where p_i is prime for all $1 \le i \le k$.

Proof.

Base case: $n = 2, k = 1, p_1 = 2$.

Inductive case: Assume $w = p_1 p_2 \dots p_k$ for all w < n.

Case 1: n is prime. Then $p_1 = n$ and we're done.

Case 2: n is composite. So n=ab for $a,b\in\mathbb{N}$ and a,b>1.

By induction, $a = p_1 p_2 \dots p_k$ and $b = p'_1 p'_2 \dots p'_{k'}$.

Hence $n = p_1 p_2 \dots p_k p_1' p_2' \dots p_{k'}'$.

Introduction Proofs Analysis Examples

10

Proof by contradiction

11

We want to prove some statement A.

Instead, we assume $\neg A$ and show that it leads to some contradiction.

Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction.

Therefore, $\neg \neg A \equiv A$ must be true.

Proof by contradiction

11

We want to prove some statement A.

Instead, we assume $\neg A$ and show that it leads to some contradiction.

Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction.

Therefore, $\neg \neg A \equiv A$ must be true.

Example

Prove that $ab + 1 \neq ac$ for any $a, b, c \in \mathbb{N}$ where a, b, c > 1.

Proof by contradiction

We want to prove some statement A.

Instead, we assume $\neg A$ and show that it leads to some contradiction.

Everything was consistent without $\neg A$, so it must have been $\neg A$ that caused the inconsistency/contradiction.

Therefore, $\neg \neg A \equiv A$ must be true.

Example

Prove that $ab + 1 \neq ac$ for any $a, b, c \in \mathbb{N}$ where a, b, c > 1.

Proof.

Assume instead that ac = ab + 1.

Then by rearrangement we have $c = b + \frac{1}{a}$.

But since a > 1, $b + \frac{1}{a} \notin \mathbb{N}$, a contradiction.

Infimum and supremum

Consider a set T ordered by relation \leq and a subset $S \subseteq T$.

- The infimum is the greatest lower bound.
- The supremum is the least upper bound.

These bounds are the tightest possible on S, but they need not be in S.

- Hence they differ from min and max.
- For $T \neq \mathbb{R}$, they need not even exist.

Consider a set T ordered by relation \leq and a subset $S \subseteq T$.

- The infimum is the greatest lower bound.
- The supremum is the least upper bound.

These bounds are the tightest possible on S, but they need not be in S.

- Hence they differ from min and max.
- For $T \neq \mathbb{R}$, they need not even exist.

Example

Let $T = \mathbb{R}$ and $S = \{x \in \mathbb{R} \mid x^2 < 2\}$. Then $\sup(S) = \sqrt{2}$, but $\sqrt{2} \notin S$. So $\max(S)$ does not exist.

Miscellaneous notation: arg min and arg max

Definition

The arg min of an expression f(x) is the set of values of x for which the expression attains its minimum. That is,

$$\arg\min_{x\in X} f(x) = \{x\in X\mid f(x)\geq f(x')\quad \forall x'\in X\}.$$

The arg max is defined analogously for the maximum.

Example

$$\operatorname*{arg\,min}_{x\in\mathbb{R}} x^2 + 5 = \{0\}.$$

$$\operatorname*{arg\,min}_{x\in\{-2,5,2\}} \log |x| = \{-2,2\}.$$

$$\operatorname*{arg\,min}_{x\in\mathbb{R}} \log |x| \text{ does not exist.}$$

Introduction Proofs Analysis Examples

13

Definition

A function has a limit

$$\lim_{x\to x_0} f(x) = L$$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-L|<\epsilon \text{ if } |x-x_0|<\delta.$$

Definition

For limits tending to infinity,

$$\lim_{x \to \infty} f(x) = L$$

if for every $\epsilon > 0$ there exists a bound M > 0 such that

$$|f(x) - L| < \epsilon \text{ if } x > M.$$

Introduction Proofs Analysis

Example

Show that $\lim_{x\to\infty} \frac{2x-1}{x-3} = 2$.

Proof.

Using the definition, we can write

$$|f(x) - L| = \frac{2x - 1}{x - 3} - 2$$

$$= \frac{2x - 1}{x - 3} - \frac{2x - 6}{x - 3}$$

$$= \frac{5}{x - 3}.$$

We can see that if $x>3+\frac{5}{\epsilon}\Rightarrow |f(x)-L|<\epsilon$ (provided that x>3).

Definition

f(x) is continuous at x_0 if $\lim_{x\to x_0} f(x) = f(x_0)$. f(x) is continuous on [a,b] if this holds for all $x_0\in [a,b]$.

Theorem (Intermediate value theorem)

If f(x) is continuous on [a, b], then f takes on every value between f(a) and f(b).

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N} .

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N} .

Proof (by contradiction).

Assume, on the contrary, that [0,1] is countable, and thus we can construct an infinite list containing all the reals in this range:

```
0 | 0.0
1 | 0.14159...
2 | 0.7182817...
```

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N} .

Proof (by contradiction).

Assume, on the contrary, that [0,1] is countable, and thus we can construct an infinite list containing all the reals in this range:

```
0 | 0.0

1 | 0.14159...

2 | 0.7182817... Let k_n be the nth digit of the nth number.

\vdots
```

Now construct w whose nth digit is 2 if $k_n = 1$, or 1 otherwise.

Theorem

The real numbers are uncountable. That is, no enumeration exists that assigns to every element of \mathbb{R} a unique element of \mathbb{N} .

Proof (by contradiction).

Assume, on the contrary, that [0,1] is countable, and thus we can construct an infinite list containing all the reals in this range:

```
0 | 0.0

1 | 0.14159...

2 | 0.7182817... Let k_n be the nth digit of the nth number.

\vdots
```

Now construct w whose nth digit is 2 if $k_n = 1$, or 1 otherwise. Note that w cannot appear on our list, because it differs from the nth number in the list in the nth digit. Therefore the list does not contain all the reals in [0,1] after all, a contradiction.

Cardinality of $\mathbb Q$

18

Guesses about the cardinality of \mathbb{Q} ?

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N} .

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N} .

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\mathbb{Q}	1	2	3	
1 2 3	1/1 1/2 1/3	2/1 2/2 2/3	3/1 3/2 3/3	Start at the top-left and zig-zag across the table, counting fully-reduced fractions as you go: $\{(1,\frac{1}{1}), \}.$

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N} .

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N} .

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

$\mathbb Q$	1	2	3		
				Start at the top-left and zig-zag acros	S
1	1/1	2/1	3/1	the table, counting fully-reduced fractions as you go: $\{(1,\frac{1}{1}),(2,\frac{2}{1}),(3,\frac{1}{2}),$	
2	1/2	2/2	3/2	fractions as you go:	
3	1/3	2/3	3/3	$\{(1,\frac{1}{1}),(2,\frac{2}{1}),(3,\frac{1}{2}),$	} .
:					

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N} .

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\mathbb{Q}	1	2	3		
1 2	1/1 1/2	2/1 2/2	3/1 3/2	Start at the top-left and zig-zag acro the table, counting fully-reduced fractions as you go: $\{(1,\frac{1}{1}),(2,\frac{2}{1}),(3,\frac{1}{2}),(4,\frac{3}{2}),$	S
3	1/3	2/3	3/3	$\{(1,\frac{1}{1}),(2,\frac{2}{1}),(3,\frac{1}{2}),(4,\frac{3}{2}),\}$	}.

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N} .

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\mathbb{Q}	1	2	3		
1 2 3	1/1 1/2 1/3	2/1 2/2 2/3	3/1 3/2 3/3	Start at the top-left and zig-zag acrethe table, counting fully-reduced fractions as you go: $\{(1,\frac{1}{1}),(2,\frac{2}{1}),(3,\frac{1}{2}),(4,\frac{3}{2}),(5,\frac{1}{3})\}$	oss }.
:					

Example

The rational numbers are countable: There exists an enumeration that assigns to every element of \mathbb{Q} a unique element of \mathbb{N} .

Proof (direct by construction).

We demonstrate that the rationals are countable by constructing an enumeration. Create a table with numerators across the top and denominators down the sides:

\mathbb{Q}	1	2	3	
				Start at the top-left and zig-zag across
1	1/1	2/1	3/1	the table, counting fully-reduced
2	1/2	2/2	3/2	fractions as you go:
3	1/3	2/3	3/3	the table, counting fully-reduced fractions as you go: $\{(1, \frac{1}{1}), (2, \frac{2}{1}), (3, \frac{1}{2}), (4, \frac{3}{2}), (5, \frac{1}{3}), \dots\}$
:				

For any $a, b \in \mathbb{R}$ where a < b, there is a $q \in \mathbb{Q}$ such that a < q < b.

Proof (direct by construction).

Let $n = \frac{1}{b-a} + 1$. Then nb - na > 1.

Let m be the largest integer such that m < na. Then it must be that na < m+1 < nb, since

- m+1 < na would contradict m being the largest integer less than na, and
- m+1 > nb cannot be true since nb na > 1.

Hence
$$a < \frac{m+1}{n} < b$$
.

Theorem

If $f : \mathbb{R} \mapsto \mathbb{R}$ and $g : \mathbb{R} \mapsto \mathbb{R}$ are both continuous and $f(q) = g(q) \ \forall q \in \mathbb{Q}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Introduction Proofs Analysis Examples

Theorem

If $f : \mathbb{R} \mapsto \mathbb{R}$ and $g : \mathbb{R} \mapsto \mathbb{R}$ are both continuous and $f(q) = g(q) \ \forall q \in \mathbb{Q}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Proof.

Assume for contradiction that $f(q) = g(q) \ \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon = |f(a) - g(a)|/2$.

Introduction Proofs Analysis Examples

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both continuous and $f(q) = g(q) \ \forall q \in \mathbb{Q}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Proof.

Assume for contradiction that $f(q) = g(q) \ \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon = |f(a) - g(a)|/2$. By continuity, there exist $\delta_1, \delta_2 > 0$ such that $|x - a| < \delta_1$ guarantees $|f(x) - f(a)| < \epsilon$, and $|x - a| < \delta_2$ guarantees $|g(x) - g(a)| < \epsilon$.

Theorem

If $f: \mathbb{R} \mapsto \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$ are both continuous and $f(q) = g(q) \ \forall q \in \mathbb{Q}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Proof.

Assume for contradiction that $f(q) = g(q) \ \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon = |f(a) - g(a)|/2$. By continuity, there exist $\delta_1, \delta_2 > 0$ such that $|x-a|<\delta_1$ guarantees $|f(x)-f(a)|<\epsilon$, and $|x-a| < \delta_2$ guarantees $|g(x)-g(a)| < \epsilon$. Choose $q \in \mathbb{Q}$ such that $|q - a| < \min\{\delta_1, \delta_2\}$. (exists by density)

Introduction Analysis Examples

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both continuous and $f(q) = g(q) \ \forall q \in \mathbb{Q}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Proof.

Assume for contradiction that $f(q) = g(q) \ \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon = |f(a) - g(a)|/2$. By continuity, there exist $\delta_1, \delta_2 > 0$ such that $|x - a| < \delta_1$ guarantees $|f(x) - f(a)| < \epsilon$, and $|x - a| < \delta_2$ guarantees $|g(x) - g(a)| < \epsilon$.

Choose $q \in \mathbb{Q}$ such that $|q - a| < \min\{\delta_1, \delta_2\}$. (exists by density)

$$|f(a) - g(a)| \le |f(a) - f(q)| + |f(q) - g(q)| + |g(q) - g(a)|$$

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both continuous and $f(q) = g(q) \ \forall q \in \mathbb{Q}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Proof.

Assume for contradiction that $f(q) = g(q) \ \forall q \in \mathbb{Q}$, but there exists $a \in \mathbb{R}$ such that $f(a) \neq g(a)$. Let $\epsilon = |f(a) - g(a)|/2$. By continuity, there exist $\delta_1, \delta_2 > 0$ such that $|x - a| < \delta_1$ guarantees $|f(x) - f(a)| < \epsilon$, and $|x - a| < \delta_2$ guarantees $|g(x) - g(a)| < \epsilon$. Choose $q \in \mathbb{Q}$ such that $|q - a| < \min\{\delta_1, \delta_2\}$. (exists by density)

$$|f(a) - g(a)| \le |f(a) - f(q)| + |f(q) - g(q)| + |g(q) - g(a)|$$

 $< \epsilon + 0 + \epsilon = |f(a) - g(a)|,$

a contradiction.

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are both continuous and f(q) = g(q) $\forall q \in D$ for any dense subset $D \subseteq \mathbb{R}$, then $f(x) = g(x) \ \forall x \in \mathbb{R}$.

Proof.

Previous proof only used density of \mathbb{Q} , no other properties of \mathbb{Q} . So result goes through for any dense subset of \mathbb{R} .

No largest prime

Theorem

There is no largest prime.

There is no largest prime.

Lemma

If $n = a \cdot b + 1$, then neither a nor b divides n.

Lemma

Any $n \in \mathbb{N}$, r > 1 can be written as $p_1 \cdot p_2 \cdot \ldots \cdot p_k$, where each p_i is prime for $1 \le i \le k$.

There is no largest prime.

Lemma

If $n = a \cdot b + 1$, then neither a nor b divides n.

Lemma

Any $n \in \mathbb{N}$, r > 1 can be written as $p_1 \cdot p_2 \cdot \ldots \cdot p_k$, where each p_i is prime for $1 \le i \le k$.

Proof of theorem (by contradiction).

Suppose that there is a finite sequence of all primes p_1, p_2, \dots, p_k . Let $q = p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$.

Then p_i does not evenly divide q for all i = 1, ..., k (first lemma).

There is no largest prime.

Lemma

If $n = a \cdot b + 1$, then neither a nor b divides n.

Lemma

Any $n \in \mathbb{N}$, r > 1 can be written as $p_1 \cdot p_2 \cdot \ldots \cdot p_k$, where each p_i is prime for 1 < i < k.

Proof of theorem (by contradiction).

Suppose that there is a finite sequence of all primes p_1, p_2, \dots, p_k . Let $q = p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$.

Then p_i does not evenly divide q for all $i=1,\ldots,k$ (first lemma). But then it is impossible to write q as the product of primes, contradicting the second lemma.

Thanks!

Introduction Proofs Analysis Examples

Additional examples

- Every tree with n vertices has exactly n-1 edges.
- Sum of vertex degrees in any undirected graph is even.