CPSC 440/550 Advanced Machine Learning (Jan-Apr 2025)
Assignment 3 — due Tuesday April 8th at 11:59pm, plus late days

The assignment instructions are the same as for the previous assignments. If you do the assignment with a
partner, please only hand in one copy for the group (using the appropriate Gradescope feature).



1 Graph Neural Networks [40 points|

While not nearly as common as tabular data, images, or natural language, another major modality of data
that’s seen a lot of interest particularly in the past five years or so is graph data. There are multiple related
problem setups, but here we wish to learn a function on graphs: similar to how in image classification we
might want to learn a function whose input is an image and output is a class label, here we want to learn
a function whose input is the molecular graph of a peptide, and whose output gives some aggregate 3D
properties of that molecule’s structure, such as its length, “sphericity,” and inertia.

First principle length

Third principle length

peptide sequence: “GLLGPLLKIAAKVGKNLL"
Length_a: -0.39817
Length_b: 0.15459

Second principle length Length_c: -0.27048

This is the Peptides-struct dataset from the Long-Range Graph Benchmark. Each node represents a
heavy atom in the peptide, and the (undirected) edges a molecular bond; nodes have pre-computed features
associated with them. (There are also edge features in this dataset, but we’re ignoring them.)

We’ve pre-processed the dataset to include eigendecompositions of the graph Laplacian, which will be useful
for constructing Laplacian positional encodings in the LapPENodeEncoder class in gnns.py. This gives some
notion of “location” within the graph to each node, similar to the trigonometric position features we discussed
for sequence Transformers. (We won’t use this for the GCN, though you could, and it would help.) You
don’t have to worry about this, but you can check out that class (and the code inside the if False block
in gnn_utils.py) if you're curious.

To work with graph data, you’ll want to install the Py Torch Geometric library, with pip install torch_geometric.
You won’t have to worry about any internals here, but some of its helpers will handle some of the grunt

work of working with this kind of data. The first time you run main.py gcn, it’ll download the dataset into

the data folder; it’s about 400 MB, so I didn’t put it in the zip.

This dataset is bigger than the datasets we’ve used before (ie MNIST); it’s still runnable on a decent laptop,
but it might be a little annoying, especially for the Transformer later. You might prefer to use a GPU
on Google Colab (which is free), or some other machine with a CUDA-capable GPU. To use Colab, go to
https://colab.research.google.com, and request a T4 GPU under Runtime — Change runtime type.
Then run !pip install torch geometric, and open the Files tab on the left (the folder icon) and upload
the contents of the code directory. Then, after import main, you can use either main.train gcn() or
main.run("gen"). Be careful with editing files on Colab, though; unless you save them to your Google
Drive or similar, they’ll just vanish on you! One thing you could do is write your code locally, make sure it
runs on a batch or two, then upload to Colab for a final run to make sure it trains okay.

If you have CUDA set up for your GPU in pytorch, e.g. on Colab, it should use that automatically. You


https://arxiv.org/abs/2206.08164
https://pytorch-geometric.readthedocs.io/en/stable/
https://colab.research.google.com

can use main.py use-cpu gcn, main.py use-mps gcn, or main.py use-cuda gen to force a device. MPS
is the GPU on recent Macs; on my machine, I get pretty mixed results with CPU usually faster on this
workload, but your mileage may vary. If you run into memory issues, try decreasing the batch size given to
the data loader; if you have plenty of free memory, you could try increasing it to see if that’s faster.

main.py gcn will run a Graph Convolutional Network on this data, using the torch geometric library’s
implementation. This model is, while not state of the art or anything, “pretty okay” on this dataset. This
dataset is pretty accessible by the standards of modern datasets; the code as-is runs an epoch in about ten
seconds on my laptop’s CPU (four on a Colab GPU). Here we only run three epochs out of laziness, but if
you train longer it’ll do better.

[1.1] [15 points] Implement your own graph convolution operation, rather than using PyTorch Geometric’s;
there’s scaffolding for you in MyGCNConv. (main.py my-gcn runs that for you; you shouldn’t need to
change anything in the GCN class.) A graph convolution is given by

1
GCN(x), = - -
uEneighb%;s(v)U{v} deg(v) deg(u)

where v and u are nodes in the graph with corresponding node feature vectors x, and z,. (Recall
that a neighbour of node v is any node with an edge from v; the degree of a node is its number of
neighbours.) The parameters of the matrix are the matrix W of shape [dim_out, dim_in] and the
bias vector b of shape [dim_out].

Wax, +0b,

While they implement it with a relatively complex message passing framework, do not use this in your
code. You may want to use a matrix multiplication framing (you probably don’t want to do explicit
looping). Your implementation will likely be slower than theirs, but run it for a few epochs to make
sure the prediction error is about the same; my straightforward matrix-multiplication implementation
takes about 90 seconds per epoch (instead of 10) on my laptop’s CPU, or about 7 seconds (instead of
4) on a Colab GPU. The accuracy might not be exactly the same (there’s a bunch of randomness, and
a few things will be slightly different); as long as it’s going down and not a huge amount higher than
the other implementation, it should be fine. Hand in your code.

Answer: TODO

[1.2] [25 points] While there are many variants of Transformers for graph data, the class gnns . GraphTransformer
implements a simple variant that does pairwise attention over all nodes in the graph. Similarly to how
the sequence order of a sentence is only available to a standard Transformer via positional encodings, in
this version of a graph Transformer, the structure of the graph is only available via the Laplacian posi-
tional encoding. While this can cause issues on some datasets, in this dataset it turns out to be pretty
okay. main.py graph-transformer runs this model using torch’s implementation of multi-headed
self-attention.

Because of the additional pairwise attention, this method is slower than GCNs, so if you don’t have
a decent GPU it’ll really be nicer to train on Colab (where an epoch takes 15 seconds, instead of
about 10 minutes on my CPU!). But you can develop locally, make sure your code runs for a couple
of batches, and then try training on Colab. (If you want, try training for longer to get a much better
predictive model!)

Finish the implementation of the gnns.MultiHeadSelfAttention.forward() method; you can run it
with main.py my-graph-transformer. My implementation is again slower than the pytorch imple-
mentation (which has had a lot of optimization effort put into it), but regression performance is the
same. Make sure it runs okay, and hand in your code.

Answer: TODO



	Graph Neural Networks [40 points]

