
Binary Density Estimation
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 20

https://cs.ubc.ca/~dsuth/440/24w2

Motivation: COVID-19 prevalence

What percentage of UBC students have COVID-19 right now?

“Brute force” approach (census):

Line up every single student, test them all, count the portion that test positive

Statistical approach (survey):

Grab an “independent and identically distributed” (iid) sample of students
Estimate the proportion that have it, based on the sample

2 / 20

General problem: binary density estimation

This is a special case of density estimation with binary data:

Input: n iid samples of binary values x(1), x(2), . . . , x(n) ∈ {0, 1}
Output: a probability model for a random variable X: here, just Pr(X = 1)

As a picture: X ∈ Rn×1 contains our sample data
X is a random variable over {0, 1} from the distribution

X =


1
0
0
1
0

 density estimator−−−−−−−−−−→ Pr(X = 1) = 0.4

We’ll start by discussing major concepts for this very simple case

We’ll slowly build to more complicated cases
Beyond binary data, more than one variable, conditional versions, deep versions, etc

3 / 20

Other applications of binary density estimation

Some other questions we might ask:
1 What’s the probability this medical treatment works?
2 What’s the probability that if you plant 10 seeds, at least one will germinate?
3 How many lottery tickets should you expect to buy before you win?

In the first example, we’re computing Pr(X = 1) like before

For the other two, we’re using the model to compute some other quantity

We call all three “inference” with this model

4 / 20

Model definition: Bernoulli distribution
We’re going to start by using a parameterized probability model

i.e. a model with some parameters we can learn

For binary variables, we usually use the Bernoulli distribution

x is Bernoulli with parameter θ, or x ∼ Bern(θ), if Pr(X = 1 | θ) = θ
In the COVID example, if θ = 0.08, we think 8% of the population has COVID

Require that 0 ≤ θ ≤ 1 for a valid probability distribution

Pr(x = 0) = 0.92

Pr(x = 1) = 0.08

5 / 20

Digression: “inference” in statistics vs. ML

In machine learning, the usual terminology is:

“Learning” is the task of going from data X to parameters θ
“Inference” is the task of using the parameters θ to infer/predict something

Statisticians sometimes use a “reverse” terminology:

Given data, you can “infer” parameters θ
Given parameters θ, you can predict something

This is partly influenced by the history of the two communities:

Statisticians often assume there’s a “true” parameter we can infer things about
ML hackers often focus on making predictions

Some people use “inference” in both ways!

We’ll use the ML terminology

6 / 20

Inference task: computing probabilities

An inference task: given θ, compute Pr(X = 0 | θ)
We’ll also sometimes write this as p(0 | θ), pθ(0), or just p(0)

Be careful you know what we’re abbreviating! “Explicit is better than implicit”

Recall that probabilities add up to 1: since X ∈ {0, 1},

Pr(X = 0 | θ) + Pr(X = 1 | θ) = 1

Since Pr(X = 1 | θ) = θ by definition, this gives us

Pr(X = 0 | θ) + θ = 1

and so if X ∼ Bern(θ), we know Pr(X = 0 | θ) = 1− θ

First inference task down!

7 / 20

Bernoulli distribution notation

It’s sometimes helpful to combine the Bernoulli distribution into one expression:

p(x | θ) = θx(1− θ)1−x = θ1(x=1)(1− θ)1(x=0)

1 is an “indicator function”: 1(E) is 1 if the condition E is true, and 0 if it’s not

8 / 20

Aside: p for probability masses

If you’re like me, you might be bothered by using a lowercase p in p(0 | θ)
It’s a probability mass, not a density!

This is really really common among ML people, but when I first taught this class I
started trying to change them all to P – or even to change everything to Pr

. . . it got really really messy (why this is really really common among ML people)

If you’re like me, this might be reassuring:

p actually is a probability density for the Bernoulli distribution
It’s just the Radon-Nikodym derivative wrt µ(A) = 1(0 ∈ A) + 1(1 ∈ A)

If you haven’t seen measure-theoretic probability, don’t worry – it’s not actually
relevant to this course

But it justifies “mixing” masses and densities willy-nilly

9 / 20

Outline

1 Bernoulli distributions

2 Bernoulli inference tasks

10 / 20

Inference task: computing dataset probabilities

Inference task: given θ and an iid sample, compute p(x(1), x(2), . . . , x(n) | θ)
Also called the “likelihood”: Pr

(
X(1) = x(1), X(2) = x(2), . . . , X(n) = x(n) | θ

)
Many ways to estimate/learn θ need this, e.g. maximum likelihood estimation
Also helpful in comparing models on validation/test data

Assuming the X(i) are independent given θ, we have

p
(
x(1), x(2), . . . , x(n) | θ

)
=

n∏
i=1

p
(
x(i) | θ

)

We’ll talk more explicitly about conditional independence a little later in the course

11 / 20

Inference task: computing dataset probabilities
Using the independence property, for example, p(1, 0, 1, 1 | θ) is

p
(
x(1), . . . , x(4) | θ

)
=

4∏
i=1

p
(
x(i) | θ

)
= p

(
x(1) | θ

)
p
(
x(2) | θ

)
p
(
x(3) | θ

)
p
(
x(4) | θ

)
= θ (1− θ) θ θ

= θ3(1− θ)

More generally, we can write

p(X | θ) = θ
∑n

i=1 xi(1− θ)
∑n

i=1(1−xi)

= θ
∑n

i=1 1(xi=1)(1− θ)
∑n

i=1 1(xi=0)

= θn1(1− θ)n0

12 / 20

Inference task: computing dataset probabilities

n_1 = 0

n_0 = 0

for i in range(n):

if X[i] == 1:

n_1 += 1

else: # binary data

n_0 += 1

p = theta ** n_1 * (1 - theta) ** n_0

Better version:

n_1 = X.sum()

n_0 = X.shape[0] - n_1

log_p = n_1 * np.log(theta) \

+ n_0 * np.log1p(-theta)

Computational complexity (of either): O(n)
Look at each element once, doing a singe addition each time, then a constant
number of operations for final value

Operating in “log space” is very practically helpful:
If n is huge and/or θ is very close to 0 or 1, the probability is tiny
Calculation might underflow and return zero / be very inaccurate
Logarithms give you much bigger range of effective floating point computation
np.log1p(t) is log(1 + t), but floats are much more accurate near 0 than 1!

13 / 20

Inference task: finding the mode (“decoding”)

Inference task: given θ, find the x that maximizes p(x | θ)
“What’s most likely to happen?”

For Bernoulli models:

If θ < 0.5, the mode is x = 0

If θ = 0.03, it’s more likely that a random person does not have COVID-19

If θ > 0.5, the mode is x = 1

If θ = 0.6, it’s more likely that a random person does have COVID-19 (uh-oh)

If θ = 0.5, both x = 0 and x = 1 are valid modes

This process isn’t very exciting for Bernoulli models

For more complex models, it can be pretty hard (and important)
We’ll see later that classification can be viewed as finding a (conditional) mode

14 / 20

Inference task: finding the most likely dataset

Inference task: given θ, find the X that maximizes p(X | θ)
“What set of training example are we most likely to observe?”

Recall for Bernoullis, p(X | θ) = θn1(1− θ)n0

If θ < 0.5, the most likely dataset is X = (0, 0, 0, 0, . . .)

p(X | θ) is maximized if n0 is as big as possible, and n1 small
If θ = 0.3, the “most likely” sample has zero positives!

The modal dataset almost never represents “typical” behaviour

If θ = 0.3, we expect about 30% of samples to be 1, not 0%!
The modal X has the highest probability, but that probability might be really low

There are many datasets with some 1s in them
Each one is lower-probability than the (single) all-zero dataset
As a whole they’re overwhelmingly more likely

15 / 20

Inference task: sampling

Inference task: given θ, generate X according to p(X | θ)
Called sampling from the distribution

Sampling is the “opposite” of density estimation:

Pr(X = 1) = 0.4
sampling−−−−−→ X =


1
0
0
1
0



Given the model, your job is to generate IID examples

Often write code to generate one sample, and call it many times

16 / 20

Why sample?

Sampling isn’t especially interesting for Bernoulli distributions

Knowing θ tells you everything about the distribution

But sampling will let us do neat things in more-complicated density models:

thispersondoesnotexist.com, DALL-E, ChatGPT, . . .

Sampling often helps us check whether the model is reasonable

If samples look nothing like the data, the model isn’t very good

17 / 20

https://thispersondoesnotexist.com

Inference task: sampling

Basic ingredient of typical sampling methods:

We assume we can sample uniformly on [0, 1]

In practice, we use a “pseudo-random” number generator

rng = np.random.default_rng(); t = rng.random()

We won’t talk about how this works; see CPSC 436R / Nick’s book

Consider sampling from Bern(0.9)

90% of the time, we should produce a 1
10% of the time, we should produce a 0

How can we do that with a sample from U ∼ Unif([0, 1])?

If U ≤ 0.9, return 1; otherwise, return 0.

0 0.9 1

return 1 return 0

18 / 20

https://www.cs.ubc.ca/~nickhar/Book1.pdf

Inference task: sampling

Sampling from Bern(θ):

Generate U ∼ Unif([0, 1]). If U ≤ θ, return 1; otherwise, return 0

u = rng.random()

if u <= theta:

x = 1

else:

x = 0

or x = 1 if rng.random() <= theta else 0

or x = (rng.random(t) <= theta).astype(int)

Assuming the uniform RNG costs O(1), generates a single sample in O(1) time

To generate t samples, nothing smarter to do than just call it t times; O(t) cost

19 / 20

Summary

Binary density estimation: models Pr(X = 1) given iid samples x(1), . . . , x(n)

Bernoulli distribution over binary variables

Parameterized by θ ∈ [0, 1] with Pr(X = 1 | θ) = θ

Inference: computing things from models, like finding modes and sampling

Next time: the exciting world of priors

20 / 20

	Bernoulli distributions
	Bernoulli inference tasks

