Binary Density Estimation
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2
University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan—Apr 2025)

1/20

https://cs.ubc.ca/~dsuth/440/24w2

Motivation: COVID-19 prevalence

@ What percentage of UBC students have COVID-19 right now?

e “Brute force” approach (census):
o Line up every single student, test them all, count the portion that test positive

@ Statistical approach (survey):

o Grab an “independent and identically distributed” (iid) sample of students
e Estimate the proportion that have it, based on the sample

2/20

General problem: binary density estimation

@ This is a special case of density estimation with binary data:
o Input: n iid samples of binary values (1), z®) .. z(") ¢ {0,1}
o Output: a probability model for a random variable X: here, just Pr(X = 1)
@ As a picture: X € R™*! contains our sample data
X is a random variable over {0, 1} from the distribution

density estimator
—>

Pr(X =1)=04

e
Il
o~ oo

e We'll start by discussing major concepts for this very simple case

o We'll slowly build to more complicated cases
e Beyond binary data, more than one variable, conditional versions, deep versions, etc

3/20

Other applications of binary density estimation

@ Some other questions we might ask:

@ What's the probability this medical treatment works?
@ What's the probability that if you plant 10 seeds, at least one will germinate?
© How many lottery tickets should you expect to buy before you win?

@ In the first example, we're computing Pr(X = 1) like before
@ For the other two, we're using the model to compute some other quantity
o We call all three “inference” with this model

4/20

Model definition: Bernoulli distribution

@ We're going to start by using a parameterized probability model
e i.e. a model with some parameters we can learn

@ For binary variables, we usually use the Bernoulli distribution
e x is Bernoulli with parameter 6, or z ~ Bern(6), if Pr(X =1|60) =6
o In the COVID example, if § = 0.08, we think 8% of the population has COVID

@ Require that 0 < # < 1 for a valid probability distribution

Pr(z =0) =0.92

Pr(z =1)=0.08

5/20

Digression: “inference” in statistics vs. ML bonus!

@ In machine learning, the usual terminology is:

e “Learning” is the task of going from data X to parameters 6
e ‘“Inference” is the task of using the parameters 6 to infer/predict something

@ Statisticians sometimes use a “reverse’ terminology:

e Given data, you can “infer" parameters 6
e Given parameters 6, you can predict something

@ This is partly influenced by the history of the two communities:

e Statisticians often assume there's a “true” parameter we can infer things about
e ML hackers often focus on making predictions

@ Some people use “inference” in both ways!

o We'll use the ML terminology

6/20

Inference task: computing probabilities

@ An inference task: given 6, compute Pr(X =0 | 0)
e We'll also sometimes write this as p(0 | 0), pp(0), or just p(0)
e Be careful you know what we're abbreviating! “Explicit is better than implicit”

@ Recall that probabilities add up to 1: since X € {0, 1},

Pr(X=0]0)+Pr(X=1]6)=1

Since Pr(X = 1| 0) = 6 by definition, this gives us

Pr(X=0]60)+0=1

and so if X ~ Bern(#), we know Pr(X =0[60)=1-6

First inference task down!

7/20

Bernoulli distribution notation

@ It's sometimes helpful to combine the Bernoulli distribution into one expression:

p(ﬂ? ‘ 0) — 01(1 - g)l—r _ 91(:p:1)(1 - 0)1(3::0)

e 1 is an “indicator function”: 1(E) is 1 if the condition E is true, and 0 if it's not

8/20

Aside: p for probability masses bonus!

o If you're like me, you might be bothered by using a lowercase p in p(0 | 6)
o It's a probability mass, not a density!

@ This is really really common among ML people, but when | first taught this class |
started trying to change them all to P — or even to change everything to Pr

@ ...it got really really messy (why this is really really common among ML people)

o If you're like me, this might be reassuring:

e p actually is a probability density for the Bernoulli distribution
o It's just the Radon-Nikodym derivative wrt u(A) =1(0 € A) + 1(1 € A)

@ If you haven't seen measure-theoretic probability, don't worry — it's not actually
relevant to this course

o But it justifies “mixing” masses and densities willy-nilly

9/20

Outline

© Bernoulli inference tasks

10/20

Inference task: computing dataset probabilities

@ Inference task: given @ and an iid sample, compute p(z™), 2, ... z(™ | 0)
o Also called the “likelihood": Pr (X®) =21, X?) = (), X(") =z | 9)

e Many ways to estimate/learn 6 need this, e.g. maximum |Ike|lh00d estimation
o Also helpful in comparing models on validation/test data

o Assuming the X are independent given 6, we have
p (1,‘(1),1‘(2), ON 9) = Hp (az(i) | 9)
i=1

o We'll talk more explicitly about conditional independence a little later in the course

11/20

Inference task: computing dataset probabilities
@ Using the independence property, for example, p(1,0,1,1 | 8) is

D (a:(l),...,w(4) | 6’) = ﬁp (x(i) | 6’)
=1
—p (wm | 9) D (x@) | 9> P (x(:%) | 9) » <x<4) | 9>

=0 (1-20) 6 0
=60°(1-10)
@ More generally, we can write
p(X | 6) = 92i=1 Ti(] — g)zz’:l(lf:}ci)
= g2z L@i=1) (1 _ g) iz, 1(=:i=0)
=0"(1-6)"

12/20

Inference task: computing dataset probabilities

n_1=20
n0=20 Better version:
for i in range(n): n_1 = X.sum()
if X[i] == 1: n_0 = X.shapel[0] - n_1
ni+=1 log_p = n_1 * np.log(theta) \
else: # binary data + 1n_0 * np.loglp(-theta)
n_0 +=1

p = theta #**x n_1 * (1 - theta) ** n_0

e Computational complexity (of either): O(n)

e Look at each element once, doing a singe addition each time, then a constant
number of operations for final value

@ Operating in "log space” is very practically helpful:
If n is huge and/or 6 is very close to 0 or 1, the probability is tiny
Calculation might underflow and return zero / be very inaccurate
Logarithms give you much bigger range of effective floating point computation
np.loglp(t) is log(l + ¢), but floats are much more accurate near 0 than 1!

13/20

Inference task: finding the mode (“decoding”)

@ Inference task: given 6, find the x that maximizes p(z | 6)
e “What's most likely to happen?”

@ For Bernoulli models:
@ If 0 < 0.5, the mode isx =0

e If 6 =0.03, it's more likely that a random person does not have COVID-19
@ If § > 0.5, the mode is x =1

o If 6 =0.6, it's more likely that a random person does have COVID-19 (uh-oh)
o If § =0.5, both z =0 and z = 1 are valid modes

@ This process isn't very exciting for Bernoulli models

e For more complex models, it can be pretty hard (and important)
o We'll see later that classification can be viewed as finding a (conditional) mode

14 /20

Inference task: finding the most likely dataset

@ Inference task: given 6, find the X that maximizes p(X | 6)
o “What set of training example are we most likely to observe?”

@ Recall for Bernoullis, p(X |) = 6™ (1 — §)™°

e If 6 < 0.5, the most likely dataset is X = (0,0,0,0,...)

o p(X | 6) is maximized if ng is as big as possible, and 1y small
o If 6 = 0.3, the "most likely” sample has zero positives!

@ The modal dataset almost never represents “typical” behaviour
o If # = 0.3, we expect about 30% of samples to be 1, not 0%!
o The modal X has the highest probability, but that probability might be really low
@ There are many datasets with some 1s in them

o Each one is lower-probability than the (single) all-zero dataset
@ As a whole they're overwhelmingly more likely

15/20

Inference task: sampling
@ Inference task: given 6, generate X according to p(X |)

o Called sampling from the distribution

@ Sampling is the “opposite” of density estimation:

sampling
EEm—

SO = O O =

@ Given the model, your job is to generate IID examples

@ Often write code to generate one sample, and call it many times

16 /20

Why sample? bonus!

@ Sampling isn't especially interesting for Bernoulli distributions
e Knowing 6 tells you everything about the distribution

@ But sampling will let us do neat things in more-complicated density models:
e thispersondoesnotexist.com, DALL-E, ChatGPT, ...

@ Sampling often helps us check whether the model is reasonable
e If samples look nothing like the data, the model isn't very good

17/20

https://thispersondoesnotexist.com

Inference task: sampling

Basic ingredient of typical sampling methods:

We assume we can sample uniformly on [0, 1]

In practice, we use a “pseudo-random” number generator

e rng = np.random.default_rng(); t = rng.random()
o We won't talk about how this works; see CPSC 436R / Nick’s book

Consider sampling from Bern(0.9)

e 90% of the time, we should produce a 1
e 10% of the time, we should produce a 0

@ How can we do that with a sample from U ~ Unif([0, 1])?
o If U <0.9, return 1; otherwise, return 0.

return 1

18/20

https://www.cs.ubc.ca/~nickhar/Book1.pdf

Inference task: sampling

e Sampling from Bern(0):
o Generate U ~ Unif([0, 1]). If U < 0, return 1; otherwise, return 0

u = rng.random()

8 UL SS 11:heta: or x = 1 if rng.random() <= theta else 0
° X =
olse: or x = (rng.random(t) <= theta).astype(int)
x=0

@ Assuming the uniform RNG costs O(1), generates a single sample in O(1) time
@ To generate t samples, nothing smarter to do than just call it ¢ times; O(t) cost

19/20

Summary

Binary density estimation: models Pr(X = 1) given iid samples z(), ... z("

Bernoulli distribution over binary variables
o Parameterized by 6 € [0,1] with Pr(X =1|6) =40

Inference: computing things from models, like finding modes and sampling

Next time: the exciting world of priors

20/20

	Bernoulli distributions
	Bernoulli inference tasks

