Binary Density Estimation

CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan-Apr 2025)

Motivation: COVID-19 prevalence

- What percentage of UBC students have COVID-19 right now?
- "Brute force" approach (census):
 - Line up every single student, test them all, count the portion that test positive
- Statistical approach (survey):
 - Grab an "independent and identically distributed" (iid) sample of students
 - Estimate the proportion that have it, based on the sample

General problem: binary density estimation

- This is a special case of density estimation with binary data:
 - Input: n iid samples of binary values $x^{(1)}, x^{(2)}, \dots, x^{(n)} \in \{0, 1\}$
 - Output: a probability model for a random variable X: here, just Pr(X=1)
- As a picture:

 $\mathbf{X} \in \mathbb{R}^{n imes 1}$ contains our sample data

X is a random variable over $\{0,1\}$ from the distribution

$$\mathbf{X} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \xrightarrow{\text{density estimator}} \quad \Pr(X = 1) = 0.4$$

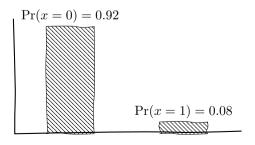
- We'll start by discussing major concepts for this very simple case
 - We'll slowly build to more complicated cases
 - Beyond binary data, more than one variable, conditional versions, deep versions, etc

Other applications of binary density estimation

- Some other questions we might ask:
 - What's the probability this medical treatment works?
 - What's the probability that if you plant 10 seeds, at least one will germinate?
 - Output
 How many lottery tickets should you expect to buy before you win?
- ullet In the first example, we're computing $\Pr(X=1)$ like before
- For the other two, we're using the model to compute some other quantity
 - We call all three "inference" with this model

Model definition: Bernoulli distribution

- We're going to start by using a parameterized probability model
 - i.e. a model with some parameters we can learn
- For binary variables, we usually use the Bernoulli distribution
- x is Bernoulli with parameter θ , or $x \sim \text{Bern}(\theta)$, if $\Pr(X = 1 \mid \theta) = \theta$
 - In the COVID example, if $\theta=0.08$, we think 8% of the population has COVID
- Require that $0 \le \theta \le 1$ for a valid probability distribution



Digression: "inference" in statistics vs. ML

- In machine learning, the usual terminology is:
 - ullet "Learning" is the task of going from data ${f X}$ to parameters heta
 - "Inference" is the task of using the parameters θ to infer/predict something
- Statisticians sometimes use a "reverse" terminology:
 - ullet Given data, you can "infer" parameters heta
 - Given parameters θ , you can predict something
- This is partly influenced by the history of the two communities:
 - Statisticians often assume there's a "true" parameter we can infer things about
 - ML hackers often focus on making predictions
- Some people use "inference" in both ways!
- We'll use the ML terminology

Inference task: computing probabilities

- An inference task: given θ , compute $\Pr(X = 0 \mid \theta)$
- We'll also sometimes write this as $p(0 \mid \theta)$, $p_{\theta}(0)$, or just p(0)
 - Be careful you know what we're abbreviating! "Explicit is better than implicit"
- Recall that probabilities add up to 1: since $X \in \{0, 1\}$,

$$Pr(X = 0 \mid \theta) + Pr(X = 1 \mid \theta) = 1$$

• Since $Pr(X = 1 \mid \theta) = \theta$ by definition, this gives us

$$\Pr(X = 0 \mid \theta) + \theta = 1$$

- and so if $X \sim \mathrm{Bern}(\theta)$, we know $\Pr(X = 0 \mid \theta) = 1 \theta$
- First inference task down!

Bernoulli distribution notation

• It's sometimes helpful to combine the Bernoulli distribution into one expression:

$$p(x \mid \theta) = \theta^x (1 - \theta)^{1-x} = \theta^{\mathbb{1}(x=1)} (1 - \theta)^{\mathbb{1}(x=0)}$$

• 1 is an "indicator function": 1(E) is 1 if the condition E is true, and 0 if it's not

Aside: p for probability masses

- If you're like me, you might be bothered by using a lowercase p in $p(0 \mid \theta)$
 - It's a probability mass, not a density!
- ullet This is really really common among ML people, but when I first taught this class I started trying to change them all to P or even to change everything to \Pr
- ...it got really really messy (why this is really really common among ML people)
- If you're like me, this might be reassuring:
 - $\bullet \ p$ actually is a probability density for the Bernoulli distribution
 - It's just the Radon-Nikodym derivative wrt $\mu(A) = \mathbb{1}(0 \in A) + \mathbb{1}(1 \in A)$
- If you haven't seen measure-theoretic probability, don't worry it's not actually relevant to this course
- But it justifies "mixing" masses and densities willy-nilly

Outline

- Bernoulli distributions
- 2 Bernoulli inference tasks

Inference task: computing dataset probabilities

- Inference task: given θ and an iid sample, compute $p(x^{(1)}, x^{(2)}, \dots, x^{(n)} \mid \theta)$
- Also called the "likelihood": $\Pr\left(X^{(1)} = x^{(1)}, X^{(2)} = x^{(2)}, \dots, X^{(n)} = x^{(n)} \mid \theta\right)$
 - Many ways to estimate/learn θ need this, e.g. maximum likelihood estimation
 - Also helpful in comparing models on validation/test data
- ullet Assuming the $X^{(i)}$ are independent given heta, we have

$$p(x^{(1)}, x^{(2)}, \dots, x^{(n)} \mid \theta) = \prod_{i=1}^{n} p(x^{(i)} \mid \theta)$$

We'll talk more explicitly about conditional independence a little later in the course

Inference task: computing dataset probabilities

ullet Using the independence property, for example, $p(1,0,1,1\mid heta)$ is

$$p\left(x^{(1)}, \dots, x^{(4)} \mid \theta\right) = \prod_{i=1}^{4} p\left(x^{(i)} \mid \theta\right)$$

$$= p\left(x^{(1)} \mid \theta\right) \qquad p\left(x^{(2)} \mid \theta\right) \quad p\left(x^{(3)} \mid \theta\right) \quad p\left(x^{(4)} \mid \theta\right)$$

$$= \theta \qquad (1 - \theta) \qquad \theta \qquad \theta$$

$$= \theta^{3}(1 - \theta)$$

More generally, we can write

$$p(\mathbf{X} \mid \theta) = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{\sum_{i=1}^{n} (1 - x_i)}$$

= $\theta^{\sum_{i=1}^{n} \mathbb{1}(x_i = 1)} (1 - \theta)^{\sum_{i=1}^{n} \mathbb{1}(x_i = 0)}$
= $\theta^{n_1} (1 - \theta)^{n_0}$

Inference task: computing dataset probabilities

- ullet Computational complexity (of either): $\mathcal{O}(n)$
 - Look at each element once, doing a singe addition each time, then a constant number of operations for final value
- Operating in "log space" is very practically helpful:
 - If n is huge and/or θ is very close to 0 or 1, the probability is tiny
 - Calculation might underflow and return zero / be very inaccurate
 - Logarithms give you much bigger range of effective floating point computation
 - np.log1p(t) is $\log(1+t)$, but floats are much more accurate near 0 than 1!

Inference task: finding the mode ("decoding")

- Inference task: given θ , find the x that maximizes $p(x \mid \theta)$
 - "What's most likely to happen?"
- For Bernoulli models:
- If $\theta < 0.5$, the mode is x = 0
 - ullet If heta=0.03, it's more likely that a random person does not have COVID-19
- If $\theta > 0.5$, the mode is x = 1
 - If $\theta = 0.6$, it's more likely that a random person **does** have COVID-19 (uh-oh)
- If $\theta = 0.5$, both x = 0 and x = 1 are valid modes
- This process isn't very exciting for Bernoulli models
 - For more complex models, it can be pretty hard (and important)
 - We'll see later that classification can be viewed as finding a (conditional) mode

Inference task: finding the most likely dataset

- Inference task: given θ , find the X that maximizes $p(X \mid \theta)$
 - "What set of training example are we most likely to observe?"
- Recall for Bernoullis, $p(\mathbf{X} \mid \theta) = \theta^{n_1} (1 \theta)^{n_0}$
- ullet If heta < 0.5, the most likely dataset is ${f X} = (0,0,0,0,\dots)$
 - $p(\mathbf{X} \mid \theta)$ is maximized if n_0 is as big as possible, and n_1 small
 - If $\theta = 0.3$, the "most likely" sample has zero positives!
- The modal dataset almost never represents "typical" behaviour
 - If $\theta = 0.3$, we expect about 30% of samples to be 1, not 0%!
 - ullet The modal ${f X}$ has the highest probability, but that probability might be really low
 - There are many datasets with some 1s in them
 - Each one is lower-probability than the (single) all-zero dataset
 - As a whole they're overwhelmingly more likely

Inference task: sampling

- Inference task: given θ , generate X according to $p(X \mid \theta)$
 - Called sampling from the distribution
- Sampling is the "opposite" of density estimation:

$$\Pr(X=1) = 0.4 \quad \xrightarrow{\text{sampling}} \quad \mathbf{X} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- Given the model, your job is to generate IID examples
- Often write code to generate one sample, and call it many times

Why sample?

- Sampling isn't especially interesting for Bernoulli distributions
 - ullet Knowing heta tells you everything about the distribution
- But sampling will let us do neat things in more-complicated density models:
 - thispersondoesnotexist.com, DALL-E, ChatGPT, ...

- Sampling often helps us check whether the model is reasonable
 - If samples look nothing like the data, the model isn't very good

Inference task: sampling

- Basic ingredient of typical sampling methods:
- We assume we can sample uniformly on [0,1]
- In practice, we use a "pseudo-random" number generator
 - rng = np.random.default_rng(); t = rng.random()
 - We won't talk about how this works; see CPSC 436R / Nick's book
- Consider sampling from Bern(0.9)
 - 90% of the time, we should produce a 1
 - 10% of the time, we should produce a 0
- How can we do that with a sample from $U \sim \text{Unif}([0,1])$?
 - If $U \leq 0.9$, return 1; otherwise, return 0.

	return 1	return 0
0		0.9 1

Inference task: sampling

- Sampling from $Bern(\theta)$:
 - Generate $U \sim \text{Unif}([0,1])$. If $U \leq \theta$, return 1; otherwise, return 0

```
u = rng.random()
if u <= theta:
    x = 1
else:
    x = 0</pre>
or x = 1 if rng.random() <= theta else 0
or x = (rng.random(t) <= theta).astype(int)
```

- ullet Assuming the uniform RNG costs $\mathcal{O}(1)$, generates a single sample in $\mathcal{O}(1)$ time
- ullet To generate t samples, nothing smarter to do than just call it t times; $\mathcal{O}(t)$ cost

Summary

- Binary density estimation: models $\Pr(X=1)$ given iid samples $x^{(1)}, \ldots, x^{(n)}$
- Bernoulli distribution over binary variables
 - Parameterized by $\theta \in [0,1]$ with $\Pr(X=1 \mid \theta) = \theta$
- Inference: computing things from models, like finding modes and sampling

Next time: the exciting world of priors