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Previously: Density Estimation with Categorical /Gaussian Distributions

@ We have discussed density estimation with categorical and Gaussian distribution
o Bernoulli is a special case of categorical (up to notation changes)

@ These distributions have a lot of nice properties for learning/inference

o NLL is convex, and MLE has closed-form (statistics in training data)
e A conjugate prior exists, so posterior is prior with “updated hyper-parameters”

@ But these distributions make restrictive assumptions:

o Categorical assumes categories are unordered, non-hierarchical, and finite
o Gaussian assumes symmetry, full support, no outliers, uni-modal

e Many alternatives to categorical/Gaussian exist (examples later)
o Alternatives that are in the exponential family maintain nice properties
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Exponential Family: Definition

@ General form of exponential family likelihood for data x with parameters 8 is

h(@) exp(n(6) "s(x))
Z(0)

p(x | 0) =

The value s(z) is the vector of sufficient statistics
o s(x) tells us everything that is relevant to 6 about the data point

@ The parameter function 7 controls how parameters 6 interact with the statistics
o We'll focus on n(#) = 0, which is called the canonical form

The support function h contains terms that don't depend on 6
e Also called the base measure

The normalizing constant Z ensures it sums/integrates to 1 over z
e Also called the partition function
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Bernoulli as Exponential Family

@ Is Bernoulli in the exponential family for some parameters w?

? xI)ex T €T
Pl 0) = 6%(1 — )% 1(x € {0,1}) £ M) png)) F(z))

To introduce an exponential, also introduce a log so they cancel out:
p(z [0) =67(1—-0)'~" L(z € {0,1})
= exp(log(6*(1 — 6)7%)) 1(z € {0,1})
= exp(xlogf + (1 —z)log(1 —0)) 1(z € {0,1})

= (1-6)exp <1‘ log (11‘}9» I(z €{0,1})

The sufficient statistic is s(z) = x; normalizing constant is Z(6) = 1/(1 — 6)
The parameter function is 77(0) = log(0/(1 — 0)) (the log odds)
e Not in canonical form. Canonical form would use log odds directly as the parameter

The support function is h(z) = 1(z € {0,1}) — says if we're “in the support”
There are also other ways to write Bernoulli as an exponential family
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Gaussian as Exponential Family
@ One way to write univariate Gaussian as an exponential family:

exp (~(z — 10%/20°)

1
2
x| o) =
pa | o) =
1
= exp (—x2/202 + px/o? — ,u2/202)
2o

- ([ [2])

@ The sufficient statistics are = and z?, and parameters are ;1/0? and —1/20?
e The normalizing constant is o exp(p?/202), and support is 1/+/27

e Multivariate Gaussian looks roughly the same (with vec to flatten a matrix):

1 exp(—3p'Z ') S '] x
p(x | p )= (2)d/2 log |Z| eXp([vec(—§21)] |:V6C(XXT):|

h(x) 1/2(0) n(0) s(x)



Learning with Exponential Families

@ With n IID examples and canonical parameters 7, the likelihood is
T

) el s(a)
pX [ ) Hh Z0n)

_ 1 TN (z’)) T il
= ex s(z'\") h(z\")
(P ("7 1 I]

i= j=1
_exp(n's(X)) -
= 20 1;[

defining sufficient statistics s(X) = Y7, s(2(")
@ s(X) contains everything relevant for learning — can throw away the actual data

N

o For Gaussians, only knowledge of data we need is . | (¥ and 37" (2(¥))2
e No point in using SGD: just compute s on each example once
o Exponential families are the only class of distributions with a finite sufficient statistic
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Learning with Exponential Families

o With iid data, canonical params 5, NLL is f(n) = —n"s(X) + nlog Z(n) + const
@ The jth partial derivative of the NLL, divided by n, is

10 1 1 0
Eafmf(n) = _ESJ'(X) + m{?’?jz(n)
= —%sj (X) + Z(ln)% / h(z) exp (nTs(a;)) dz (use Z for discrete x)
_ls T exp(n's(z)) T w/ conditions
=)+ [0 IED @) ar (w/ conditions)
——5(X)+ [ pla | msj()da

=— E [s;(X)]+ E si(X
XNdata[ (X0l X ~model pn[ i(X)]
@ The stationary points where V f(n) = 0 correspond to moment matching:
e Set parameters so that expected sufficient statistics equal to statistics in data
e This is the source of the simple/intuitive closed-form MLEs we've seen so far
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Convexity and Entropy in Exponential Families bonus!

@ If you take the second derivative of the NLL you get
V2 f(n) = Cov[s(X)],

the covariance of the sufficient statistics
o Covariances are positive semi-definite, Cov[s(X)] = 0, so NLL is convex
o “Set the gradient to zero and solve" gives the MLE. .. for canonical params
o The NLL might not be convex in other parameterizations
@ e.g. multivariate Gaussians in terms of X
@ Higher-order derivatives give higher-order moments
o We call log(Z) the cumulant function

@ Can show MLE maximizes entropy over all distributions that match moments
e Entropy is a measure of “how random” a distribution is
e So Gaussian is “most random” distribution that fits means and covariance of data
e Or you can think of this as Gaussian makes “least assumptions”
o Details for special case of h(z) =1 in bonus slides
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Conjugate Priors in Exponential Family
@ Exponential families in canonical form are guaranteed to have conjugate priors
@ For example, we could choose a prior like

exX TC\(
plon | o) ox R

e «ais "pseudo-counts” for the sufficient statistics

o k modifies the strength of the prior (Z above is the likelihood's normalizer)

o Rewriting as exp(nTa — klog Z(n)) shows this is itself an exponential family:
canonical parameters («, k) and sufficient stats s(n) = (n, —log Z(n))

@ Then the posterior has the same form,

exp(nT(s(X) + «
p(n | X, o) p(nzgn()nj;r )

@ Prior's normalizing constant (some (i (), not Z(n)) useful for Bayesian inference:

o e.g. can derive, like before, that p(X | ) = (uyr(s(2) + ) /Cr(a) - [T, h(z™)
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Discriminative Models and the Exponential Family

@ Going from an exponential family to a discriminative supervised learning:
o Usual way is to set canonical parameter to w'x

o Gives a convex NLL, where MLE tries to match data/model’s conditional statistics
o Called generalized linear model (GLM) — see Stat 538A, Generalized Linear Models :)

@ For example, consider Gaussian with fixed variance for y
o Can write this with canonical parameter y; setting ju = w' 2 gives least squares

o If we start with Bernoulli for y, we get logistic regression

o Canonical parameter is log-odds, log(0)/log(1 — 6)
o Setting w'z = log(0/(1 — 6)) and solving for 6 gives 6 = o(wx)
o Gives a reason (sort of) for using the logistic sigmoid o(t) = 1/(1 + exp(—t))

@ You can obtain regression models for other settings using this kind of approach

e Set canonical parameters to fy(x), the output of a neural network
o Use a different exponential family to handle a different type of data
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Examples of Exponential Families bonus!

Bernoulli: distribution on {0,1}

Categorical: distribution on {1,2,..., k}
Multivariate Gaussian: distribution on R?

Beta: distribution on [0, 1] (including uniform)
Dirichlet: distribution on discrete probabilities
Wishart: distribution on positive-definite matrices
Poisson: distribution on non-negative integers
Gamma: distribution on positive real numbers

Many, many others: Wikipedia has a big table

® 6 6 6 66 6 o o o o

...can even have infinite-dimensional statistics via kernel exponential families
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https://en.wikipedia.org/wiki/Exponential_family#Table_of_distributions

Non-Examples of Exponential Families bonus!

@ Laplace and student ¢ distribution are not exponential families

o “Heavy-tailed”: have larger probability that data is far from mean
e More robust to outliers than Gaussian

o Ordinal logistic regression is not in exponential family
e Can be used for categorical variables where ordering matters
@ In these cases, we may not have nice properties:

e MLE may not be intuitive or closed-form, NLL may not be convex
e May not have conjugate prior, so need approximation
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Summary

@ Exponential families:

e Have sufficient statistics and canonical parameters

o Maximimum likelihood becomes moment matching; always have conjugate priors
o Can build discriminative models by using canonical parameter s(x) = w'x

o Many things (but not everything!) are exponential families

@ Next time: mixing things up
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Convex Conjugate and Entropy bonus!

@ The convex conjugate of a function A is given by

Ay = vu {1nTw — A(w)}

e For logistic regression, consider:
A(w) = log(1 + exp(w)),

then A*(u) satisfies w = log(u)/log(1 — )
e When 0 < it < 1 we have

A (p) = plog(p) + (1 — p)log(1 — p)
= _H(p#)a

negative entropy of the Bernoulli distribution with mean p
o If y does not satisfy boundary constraint, sup is co
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Convex Conjugate and Entropy bonus!

@ More generally, if A(w) =log(Z(w)) for an exponential family then
A*(p) = —H(py),

subject to boundary constraints on p and the constraint
1= VA(w) = E[s(X)]
o Convex set satisfying these is called marginal polytope M
e If A is convex (and lower semi-continuous), A** = A. Then
A(w) = sup{w'p — A*(u)}
peu
and when A(w) = log(Z(w)) we have

log(Z(w)) = ) {w'n+ H(pu)}

@ This can be used to derive variational methods, since we have

written computing log(Z) as a convex optimization problem
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Maximum Likelihood and Maximum Entropy bonus!

@ The maximum likelihood parameters w in exponential family satisfy:

min —w S(X)+10g(Z( )

weRd
= min —w"s(X) + sup {w'pu+ H(p,)} (convex conjugate)
weRd WEM
= min sup {—w's(X) +w'pu+ H(p,)}
weRd pEM
= sup {min —w's(X) +w'pu+ H(p,)} (convex/concave)
HEM weRY

which is —oo unless s(X) = p (e.g., maximum likelihood w), so we have

min —w Ts(X) + log(Z(w ))Zggﬁff(pu)

subject to s(X) = p.
o Maximum likelihood = maximum entropy + moment constraints

o Converse: MaxEnt + fit feature frequencies = ML(log-linear)
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