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Previously: Density Estimation with Categorical/Gaussian Distributions

We have discussed density estimation with categorical and Gaussian distribution

Bernoulli is a special case of categorical (up to notation changes)

These distributions have a lot of nice properties for learning/inference

NLL is convex, and MLE has closed-form (statistics in training data)
A conjugate prior exists, so posterior is prior with “updated hyper-parameters”

But these distributions make restrictive assumptions:

Categorical assumes categories are unordered, non-hierarchical, and finite
Gaussian assumes symmetry, full support, no outliers, uni-modal

Many alternatives to categorical/Gaussian exist (examples later)

Alternatives that are in the exponential family maintain nice properties
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Exponential Family: Definition
General form of exponential family likelihood for data x with parameters θ is

p(x | θ) = h(x) exp(η(θ)Ts(x))

Z(θ)

The value s(x) is the vector of sufficient statistics
s(x) tells us everything that is relevant to θ about the data point x

The parameter function η controls how parameters θ interact with the statistics
We’ll focus on η(θ) = θ, which is called the canonical form

The support function h contains terms that don’t depend on θ
Also called the base measure

The normalizing constant Z ensures it sums/integrates to 1 over x
Also called the partition function
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Bernoulli as Exponential Family
Is Bernoulli in the exponential family for some parameters w?

p(x | θ) = θx(1− θ)1−x 1(x ∈ {0, 1}) ?
=

h(x) exp(η(θ)TF (x))

Z(θ)

To introduce an exponential, also introduce a log so they cancel out:

p(x | θ) = θx(1− θ)1−x 1(x ∈ {0, 1})
= exp(log(θx(1− θ)1−x)) 1(x ∈ {0, 1})
= exp(x log θ + (1− x) log(1− θ)) 1(x ∈ {0, 1})

= (1− θ) exp

(
x log

(
θ

1− θ

))
1(x ∈ {0, 1})

The sufficient statistic is s(x) = x; normalizing constant is Z(θ) = 1/(1− θ)
The parameter function is η(θ) = log(θ/(1− θ)) (the log odds)

Not in canonical form. Canonical form would use log odds directly as the parameter

The support function is h(x) = 1(x ∈ {0, 1}) – says if we’re “in the support”
There are also other ways to write Bernoulli as an exponential family
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Gaussian as Exponential Family
One way to write univariate Gaussian as an exponential family:

p(x | µ, σ2) =
1√
2πσ

exp
(
−(x− µ)2/2σ2

)
=

1√
2πσ

exp
(
−x2/2σ2 + µx/σ2 − µ2/2σ2

)
=

1√
2π

exp
(
−µ2/2σ2

)
σ

exp

([
µ/σ2

−1/2σ2

]T [
x
x2

])
The sufficient statistics are x and x2, and parameters are µ/σ2 and −1/2σ2

The normalizing constant is σ exp(µ2/2σ2), and support is 1/
√
2π

Multivariate Gaussian looks roughly the same (with vec to flatten a matrix):

p(x | µ,Σ) =
1

(2π)d/2︸ ︷︷ ︸
h(x)

exp(−1
2µ

TΣ−1µ)

log |Σ|︸ ︷︷ ︸
1/Z(θ)

exp

([
Σ−1µ

vec(−1
2Σ

−1)

]
︸ ︷︷ ︸

η(θ)

T [
x

vec(xxT)

]
︸ ︷︷ ︸

s(x)

)
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Learning with Exponential Families

With n IID examples and canonical parameters η, the likelihood is

p(X | η) =
n∏

i=1

h(x(i))
exp(ηTs(x(i)))

Z(η)

=
1

Z(η)n
exp

(
ηT

n∑
i=1

s(x(i))

)
n∏

j=1

h(x(i))

=
exp(ηTs(X))

Z(η)n

n∏
j=1

h(x(i)),

defining sufficient statistics s(X) =
∑n

i=1 s(x
(i))

s(X) contains everything relevant for learning – can throw away the actual data

For Gaussians, only knowledge of data we need is
∑n

i=1 x
(i) and

∑n
i=1(x

(i))2

No point in using SGD: just compute s on each example once
Exponential families are the only class of distributions with a finite sufficient statistic
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Learning with Exponential Families
With iid data, canonical params η, NLL is f(η) = −ηTs(X) + n logZ(η) + const

The jth partial derivative of the NLL, divided by n, is

1

n

∂

∂ηj
f(η) = − 1

n
sj(X) +

1

Z(η)

∂

∂ηj
Z(η)

= − 1

n
sj(X) +

1

Z(η)

∂

∂ηj

∫
h(x) exp

(
ηTs(x)

)
dx (use

∑
for discrete x)

= − 1

n
sj(X) +

∫
h(x)

exp(ηTs(x))

Z(η)
sj(x) dx (w/ conditions)

= − 1

n
sj(X) +

∫
p(x | η)sj(x)dx

= − E
X∼data

[sj(X)] + E
X∼model pη

[sj(X)]

The stationary points where ∇f(η) = 0 correspond to moment matching:
Set parameters so that expected sufficient statistics equal to statistics in data
This is the source of the simple/intuitive closed-form MLEs we’ve seen so far
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Convexity and Entropy in Exponential Families

If you take the second derivative of the NLL you get

∇2f(η) = Cov[s(X)],

the covariance of the sufficient statistics
Covariances are positive semi-definite, Cov[s(X)] ⪰ 0, so NLL is convex
“Set the gradient to zero and solve” gives the MLE. . . for canonical params
The NLL might not be convex in other parameterizations

e.g. multivariate Gaussians in terms of Σ

Higher-order derivatives give higher-order moments
We call log(Z) the cumulant function

Can show MLE maximizes entropy over all distributions that match moments
Entropy is a measure of “how random” a distribution is
So Gaussian is “most random” distribution that fits means and covariance of data

Or you can think of this as Gaussian makes “least assumptions”

Details for special case of h(x) = 1 in bonus slides
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Conjugate Priors in Exponential Family
Exponential families in canonical form are guaranteed to have conjugate priors

For example, we could choose a prior like

p(η | α) ∝ exp(ηTα)

Z(η)k

α is “pseudo-counts” for the sufficient statistics
k modifies the strength of the prior (Z above is the likelihood’s normalizer)
Rewriting as exp(ηTα− k logZ(η)) shows this is itself an exponential family:
canonical parameters (α, k) and sufficient stats s(η) = (η,− logZ(η))

Then the posterior has the same form,

p(η | X, α) ∝ exp(ηT(s(X) + α))

Z(η)n+k

Prior’s normalizing constant (some ζk(α), not Z(η)) useful for Bayesian inference:

e.g. can derive, like before, that p(X | α) = ζn+k(s(x) + α)/ζk(α) ·
∏n

i=1 h(x
(i))
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Discriminative Models and the Exponential Family
Going from an exponential family to a discriminative supervised learning:

Usual way is to set canonical parameter to wTx
Gives a convex NLL, where MLE tries to match data/model’s conditional statistics
Called generalized linear model (GLM) – see Stat 538A, Generalized Linear Models :)

For example, consider Gaussian with fixed variance for y
Can write this with canonical parameter µ; setting µ = wTx gives least squares

If we start with Bernoulli for y, we get logistic regression
Canonical parameter is log-odds, log(θ)/ log(1− θ)
Setting wTx = log(θ/(1− θ)) and solving for θ gives θ = σ(wTx)

Gives a reason (sort of) for using the logistic sigmoid σ(t) = 1/(1 + exp(−t))

You can obtain regression models for other settings using this kind of approach
Set canonical parameters to fθ(x), the output of a neural network
Use a different exponential family to handle a different type of data
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Examples of Exponential Families

Bernoulli: distribution on {0, 1}
Categorical: distribution on {1, 2, . . . , k}
Multivariate Gaussian: distribution on Rd

Beta: distribution on [0, 1] (including uniform)

Dirichlet: distribution on discrete probabilities

Wishart: distribution on positive-definite matrices

Poisson: distribution on non-negative integers

Gamma: distribution on positive real numbers

Many, many others: Wikipedia has a big table

. . . can even have infinite-dimensional statistics via kernel exponential families
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Non-Examples of Exponential Families

Laplace and student t distribution are not exponential families

“Heavy-tailed”: have larger probability that data is far from mean
More robust to outliers than Gaussian

Ordinal logistic regression is not in exponential family

Can be used for categorical variables where ordering matters

In these cases, we may not have nice properties:

MLE may not be intuitive or closed-form, NLL may not be convex
May not have conjugate prior, so need approximation
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Summary

Exponential families:

Have sufficient statistics and canonical parameters
Maximimum likelihood becomes moment matching; always have conjugate priors
Can build discriminative models by using canonical parameter s(x) = wTx
Many things (but not everything!) are exponential families

Next time: mixing things up
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Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W

{µTw −A(w)}

For logistic regression, consider:

A(w) = log(1 + exp(w)),

then A∗(µ) satisfies w = log(µ)/ log(1− µ)

When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)

= −H(pµ),

negative entropy of the Bernoulli distribution with mean µ
If µ does not satisfy boundary constraint, sup is ∞
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Convex Conjugate and Entropy

More generally, if A(w) = log(Z(w)) for an exponential family then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and the constraint

µ = ∇A(w) = E[s(X)]

Convex set satisfying these is called marginal polytope M
If A is convex (and lower semi-continuous), A∗∗ = A. Then

A(w) = sup
µ∈U

{wTµ−A∗(µ)}

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M

{wTµ+H(pµ)}

This can be used to derive variational methods, since we have
written computing log(Z) as a convex optimization problem
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Maximum Likelihood and Maximum Entropy

The maximum likelihood parameters w in exponential family satisfy:

min
w∈Rd

−wTs(X) + log(Z(w))

= min
w∈Rd

−wTs(X) + sup
µ∈M

{wTµ+H(pµ)} (convex conjugate)

= min
w∈Rd

sup
µ∈M

{−wTs(X) + wTµ+H(pµ)}

= sup
µ∈M

{min
w∈Rd

−wTs(X) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless s(X) = µ (e.g., maximum likelihood w), so we have

min
w∈Rd

−wTs(X) + log(Z(w)) = max
µ∈M

H(pµ)

subject to s(X) = µ.
Maximum likelihood ⇒ maximum entropy + moment constraints
Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear)
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