
Approximate Inference: Monte Carlo, Laplace Approximation
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 28

https://cs.ubc.ca/~dsuth/440/24w2

Overview of Bayesian Inference Tasks
Bayesian inference requires computing expectations with respect to posterior,

E[f(θ)] =
∫
θ
f(θ) p(θ | x)dθ

If f(θ) = θ, we get posterior mean of θ
If f(θ) = p(x̃ | θ), we get posterior predictive
If f(θ) = 1(θ ∈ S) we get probability of S (e.g., marginals)

But posterior often doesn’t have a closed-form expression
Bayesian linear regression – w ∼ N (m,V); y | x,w ∼ N (wTx, σ2) – does
Bayesian logistic regression – p(y | x,w) = 1/(1 + exp(−y wTx)) – doesn’t
More complex models almost never do

Our two main tools for approximate inference:
1 Monte Carlo methods
2 Variational methods

Classic ideas from statistical physics that revolutionized Bayesian stats
2 / 28

Approximate Inference

Two main strategies for approximate inference:
1 Monte Carlo methods:

Approximate expectations based on samples,

E
X∼p

f(X) ≈ 1

n

n∑
i=1

f(x(i))

Turns inference into sampling

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

E
X∼p

f(X) ≈ E
X∼q

f(X)

q could be Gaussian, product of Bernoulli, any other model with easy inference. . .
Turns inference into optimization

3 / 28

Outline

1 (Simple) Monte Carlo

2 Rejection sampling

3 Importance sampling

4 Laplace approximation

4 / 28

Monte Carlo: estimation by sampling
A basic Monte Carlo method for estimating probabilities of events:

Step 1: Generate a lot of samples x(i) from our model

X =


0 0 1 0
1 1 1 0
0 1 1 1
1 1 1 1


Step 2: Count how often the event occurred in the samples

Pr(X2 = 1) ≈ 3

4
Pr(X3 = 0) ≈ 0

This very simple idea is one of the most important algorithms in ML/statistics
Modern versions developed to build better nuclear weapons :/

“Sample” from a physics simulator, see how often it leads to a chain reaction
5 / 28

Monte Carlo to approximate probabilities

Monte Carlo estimate of the probability of an event A:

number of samples where A happened

number of samples
=

1

n

n∑
i=1

1(A happened in x(i))

You can think of this as the MLE of a binary variable 1(A happened)

Approximating probability of a pair of independent dice adding to 7:

Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
Roll two dice, check if they add to 7
. . .
Monte Carlo estimate: fraction where they add to 7

6 / 28

Monte Carlo to approximate probabilities

Recall the problem of modeling (Lib, CPC, NDP, GRN, PPC)

From 100 samples, what’s the probability that nLib > max(nCPC, nNDP, . . .)?

Can answer this in closed form with math . . . or think less and do Monte Carlo

Generate 100 samples, check who won
Generate 100 samples, check who won
. . .
Approximate probability by fraction of times they won

Another example: probability that Beta(α, β) is above 0.7

7 / 28

Monte Carlo to estimate the mean
A Monte Carlo estimate for the mean: the mean of the samples

E[X] ≈ 1

n

n∑
i=1

x(i)

A Monte Carlo approximation of the expected value of X2:

E[X2] ≈ 1

n

n∑
i=1

(
x(i)
)2

A Monte Carlo approximation of the expected value of f(X):

E[f(X)] ≈ 1

n

n∑
i=1

f
(
x(i)
)

E[f(X)] =
∑
x∈X

p(x)f(x) or

∫
x∈X

p(x)f(x)dx

Most general form: f(x) = x, f(x) = x2, f(x) = 1(A happens on x)

E[1(A happens on X)] =

∫
x∈X

p(x)1(A happens on x)dx =

∫
x:A happens

p(x)dx = Pr(A)

8 / 28

Monte Carlo: theory
Let µ = E[f(X)] be the value we want to compute (and assume it exists)
Estimate is µ̂ = 1

n

∑n
i=1 f

(
x(i)
)

(can view as an instance of SGD, see bonus)
With iid samples, Monte Carlo gives an unbiased estimate of µ:

E

[
1

n

n∑
i=1

f
(
x(i)
)]

=
1

n

n∑
i=1

E f
(
x(i)
)
= E f(X) = µ

Monte Carlo estimate “converges to µ” as n → ∞
Estimate gets arbitrarily close to µ as n increases: (strong) law of large numbers

Assume σ2 = Var[f(X)] exists and is bounded (“not infinite”)
Then expected squared error is exactly

E(µ̂− µ)2 = Var(µ̂) = Var

(
1

n

n∑
i=1

f
(
x(i)
))

=
1

n2

n∑
i=1

σ2 =
σ2

n

µ̂ is approximately normal with mean µ and variance σ2

n (central limit theorem)
9 / 28

Example application: Snakes and Ladders

Kid’s game “Snakes and Ladders”:

Start at 1, roll die, move the marker, follow snake/ladder
Absolutely no decision-making: can simulate the game

How long does this game go for?

Run the game lots of times, see how many turns it took

https://www.datagenetics.com/blog/november12011/

10 / 28

https://www.datagenetics.com/blog/november12011/

Conditional probabilities with Monte Carlo

“How much loooonger will this game go?”

Just simulate starting from current game state

“What’s the probability the game will go >100 turns, if it’s already gone 50?”

One approach:

Pr(A | B) =
Pr(A ∩B)

Pr(B)
≈

1
n

∑n
i=1 1(A and B happened on x(i))
1
n

∑n
i=1 1(B happened on x(i))

This is one instance of rejection sampling (more later)

If B is rare, most samples are wasted

11 / 28

Monte Carlo for Bayesian inference

We usually want to compute some kind of expectation under

p(Θ | X) =
p(X | Θ)p(Θ)

p(X)

We can usually easily compute p(X | θ) and p(θ)

But p(X) =
∫
p(X | θ)p(θ)dθ is usually tough

Even if we have p(θ | X), inverse CDF sampling is hard in high dimensions

There are various ways to do approximate sampling from unnormalized densities

Especially Markov chain Monte Carlo (MCMC)

We’ll need to study Markov chains first!

Today: two other ways

12 / 28

Motivating problem: Bayesian Logistic Regression

A classic way to fit a binary classifier is L2-regularized logistic loss,

ŵ ∈ argmax
w

n∑
i=1

log(1 + exp(−y(i)wTx(i))) +
λ

2
∥w∥2

This corresponds to using a sigmoid likelihood and Gaussian prior,

p(y | x,w) = 1

1 + exp(−y wTx)
, w ∼ N

(
0,

1

λ
I

)
In Bayesian logistic regression, we’d work with the posterior

But the posterior isn’t Gaussian: so this isn’t a conjugate prior
We don’t have a nice expression for the posterior predictive or marginal likelihood

13 / 28

Motivation: Monte Carlo for Bayesian Logistic Regression
Posterior predictive in Bayesian logistic regression has the form

p(ỹ | x̃,X,y, λ) =

∫
w
p(ỹ | x̃, w) p(w | X,y, λ) dw

= E
w

[
p(ỹ | x̃, w) | X,y, λ

]
Given w, we can compute p(ỹ | x̃, w) = 1/

(
1 + exp

(
−ỹ wTx̃

))
just fine

If we could sample from the posterior for w, we could estimate with Monte Carlo!
But we don’t know how to generate IID samples from this posterior

Soon, we’ll cover MCMC, which is a standard method in scenarios like this

But we’ll start simpler: rejection sampling and importance sampling
These methods assume you can generate from a simple distribution q

for example, a Gaussian
but you really want to solve an integral for a complicated distribution p

for example, the posterior for Bayesian logistic regression
14 / 28

Outline

1 (Simple) Monte Carlo

2 Rejection sampling

3 Importance sampling

4 Laplace approximation

15 / 28

Rejection Sampling for Conditionals

We already mentioned rejection sampling for conditional sampling:

Example: sampling from a Gaussian conditional on knowing x ∈ [−1, 1]

Generate Gaussian samples, throw out (“reject”) the ones that aren’t in [−1, 1]
The remaining samples will follow the conditional distribution

Can be used to generate IID samples from conditional distributions

16 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:

17 / 28

General Rejection Sampling Algorithm
Ingredients of the general rejection sampling algorithm:

1 Ability to evaluate an unnormalized p̃(x), so that p(x) = p̃(x)/Z
2 A distribution q that we can sample from
3 An upper bound M on p̃(x)/q(x)

Rejection sampling algorithm:
1 Sample x from q(x)
2 Keep the sample with probability p̃(x)/(Mq(x)):

Sample u from Unif([0, 1]), keep the sample if u ≤ p̃(x) / (Mq(x))

The accepted samples will be from p(x), as long as M is a valid upper bound

Then can use the accepted samples in Monte Carlo:

E
x∼p

f(x) ≈ 1∑m
i=1 1

(
accepted x(i)

) m∑
i=1

1
(
accepted x(i)

)
f
(
x(i)
)

18 / 28

General Rejection Sampling Algorithm

For Bayesian logistic regression, we could propose samples from the prior:

p̃(w | X,y) = p(y | X, w) p(w) q(w) = p(w)

p̃(w | y,X)

q(w)
=

p(y | X, w)p(w)

p(w)
= p(y | X, w) ≤ 1

Recall y is discrete here, so p(y | X, w) ≤ 1: we can use M = 1
w sampled from prior would tend to be kept if they explain the data well

Drawbacks of rejection sampling:
You need to know a bound M on p̃(x)/q(x) (may be hard/impossible to find)

If x is unbounded and p has heavier tails than q, no M exists

You may reject a large number of samples

Most samples are rejected for high-dimensional complex distributions, or if q is bad

19 / 28

Outline

1 (Simple) Monte Carlo

2 Rejection sampling

3 Importance sampling

4 Laplace approximation

20 / 28

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

21 / 28

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

21 / 28

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

21 / 28

Alternate approach: importance sampling
Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q
Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation
Only assumption is that for all x with nonzero p, q is also nonzero

21 / 28

Alternate approach: importance sampling

Instead of rejection, importance sampling re-weights q samples to look like p

Derivation:

E
x∼p

[f(x)] =

∫
p(x)f(x) dx

=

∫
q(x)

p(x)

q(x)
f(x) dx

= E
x∼q

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x(i))

q(x(i))
f(x(i)),

using a Monte Carlo approximation with IID samples from q

Replace integral with a sum for discrete distributions

We can sample from q, but reweight by p(x)/q(x) to compute expectation

Only assumption is that for all x with nonzero p, q is also nonzero

21 / 28

Self-Normalized Importance Sampling
What if we only have p̃, with p(x) = p̃(x)/Z?

E
x∼p

[f(x)] =

∫
p(x)f(x) dx =

1

Z

∫
q(x)

p̃(x)

q(x)
f(x) dx

=
Ex∼q

[
p̃(x)
q(x)f(x)

]
∫
p̃(x) dx

=
Ex∼q

[
p̃(x)
q(x)f(x)

]
∫
q(x) p̃(x)q(x) dx

=
Ex∼q

[
p̃(x)
q(x)f(x)

]
Ex∼q

[
p̃(x)
q(x)

]
Can use Monte Carlo estimator based on m samples from q:

E
x∼p

[f(x)] ≈
1
n

∑m
i=1

p̃(x(i))

q(x(i))
f(x(i))

1
m

∑m
i=1

p̃(x(i))

q(x(i))

Weighted mean, normalized by p̃(x(i))/q(x(i))
Biased estimator: E 1

Ẑ
> 1

Z for non-constant distributions (Jensen’s inequality)

22 / 28

Importance Sampling

Importance sampling is only efficient if q is close to p

Otherwise, weights will be huge for a small number of samples

Even though unbiased, variance can be huge

Can be problematic if q has lighter “tails” than p:

You rarely sample the tails, so those samples get huge weights

As with rejection sampling, does not tend to work well in high dimensions
There’s room, though, to cleverly design q

e.g. “alternate between sampling two Gaussians with different variances”

23 / 28

Outline

1 (Simple) Monte Carlo

2 Rejection sampling

3 Importance sampling

4 Laplace approximation

24 / 28

Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Variational methods try to find simple distribution q that is closest to target p

Unlike Monte Carlo, does not converge to true solution

A Gaussian may not be able to perfectly model posterior

Variational methods quickly give an approximate solution

Sometimes all we need
Sometimes, approximation is better than any reasonable amount of Monte Carlo!

25 / 28

Laplace Approximation

The classic, simplest variational method is the Laplace approximation
1 Find the mode x∗,

x∗ ∈ argmax
x

log p(x)

2 Compute the second-order Taylor expansion of log p(x) at x∗

log p(x) ≈ log p(x∗) +∇ log p(x∗)︸ ︷︷ ︸
0

T
(x− x∗) +

1

2
(x− x∗)T ∇2 log p(x∗) (x− x∗)

3 Use the distribution q agreeing with this log-likelihood, up to normalization:

log q(x) =
1

2
(x− x∗)[∇2 log p(x∗)](x− x∗) + const

meaning the distribution q is exactly N (x∗, [∇2 log p(x∗)]−1)

Same approximation as used by Newton’s method in optimization

26 / 28

Laplace Approximation
Laplace approximation replaces a complicated p with a Gaussian q

Centered at the mode, and agrees with 1st/2nd derivatives of log-likelihood there:

In the n → ∞ limit, “nicely behaved” posteriors are asymptotically normal
Bernstein-von Mises theorem

Now to compute E f(X), you only need to compute Gaussian integrals
Can do analytically, with linear algebra, for many f

If not, sampling from a Gaussian and doing Monte Carlo is easy

Fast: just maximize + find one Hessian
Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc

It might not even give you the “best” Gaussian approximation:

27 / 28

https://en.wikipedia.org/wiki/Bernstein-von_Mises_theorem

Summary

Bayesian inference in non-conjugate models usually requires approximate inference

If we can sample from the posterior, can use Monte Carlo
Can find “best” approximation with variational methods

Monte Carlo: estimate EX∼p f(X) ≈ 1
n

∑n
i=1 f(x

(i))

Converges to true expectation asymptotically, unbiased estimate, variance
Var(f(X))/n
Need to be able to sample from p
Rejection sampling turns q samples into p̃ samples, if you know maxx p̃(x)/q(x)

Exact samples, but may be inefficient and hard to know M

Importance sampling re-weights q samples to estimate expectations under p

Unbiased but can be high variance
Self-normalized IS for unnormalized p̃; same problems, plus bias

Variational: choose q ≈ p and estimate EX∼p f(X) ≈ EX∼q f(X)

Simplest approach: Laplace approximation, local normal approx at the mode

28 / 28

Law of the Unconscious Statistician

These inequalities sometimes called “Law of the Unconscious Statistician”:

E[f(X)] =
∑
x∈X

f(x)p(x) E[f(X)] =

∫
x∈X

f(x)p(x)dx

Two explanations I’ve heard for “unconscious”:

You can compute expectations without thinking
Or: people don’t realize this is actually a theorem to prove, not a definition

Y = f(X)

E[Y] =
∑
y

yPr(Y = y) =
∑
y

y
∑

x:f(x)=y

p(x) =
∑
x

f(x)p(x)

29 / 28

Monte Carlo as a stochastic gradient method

Can view as SGD on f(µ̂) = 1
n∥µ̂− µ∥2 with learning rate 1

i+1 :

µ̂n = µ̂n−1 −
1

n

(
µ̂n−1 − x(i)

)
=

(
1− 1

n

)
µ̂n−1 +

1

n
x(i)

=
n− 1

n

(
1

n− 1

n−1∑
i=1

x(i)

)
+

1

n
x(i)

=
1

n

n−1∑
i=1

x(i) +
1

n
x(i)

=
1

n

n∑
i=1

x(i)

30 / 28

	(Simple) Monte Carlo
	Rejection sampling
	Importance sampling
	Laplace approximation
	Appendix

