
Variational inference and VAEs
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 22

https://cs.ubc.ca/~dsuth/440/24w2

Last time: approximate inference
Bayesian inference requires computing expectations with respect to posterior,

E[f(θ)] =
∫
θ
f(θ) p(θ | x)dθ

If f(θ) = θ, we get posterior mean of θ
If f(θ) = p(x̃ | θ), we get posterior predictive
If f(θ) = 1(θ ∈ S) we get probability of S (e.g., marginals)

But posterior often doesn’t have a closed-form expression
Bayesian linear regression – w ∼ N (m,V); y | x,w ∼ N (wTx, σ2) – does
Bayesian logistic regression – p(y | x,w) = 1/(1 + exp(−y wTx)) – doesn’t
More complex models almost never do

Our two main tools for approximate inference:
1 Monte Carlo methods
2 Variational methods

2 / 22

Approximate Inference
Two main strategies for approximate inference:

1 Monte Carlo methods:
Approximate expectations based on samples,

E
X∼p

f(X) ≈ 1

n

n∑
i=1

f(x(i))

Turns inference into sampling
Simple Monte Carlo: exactly as above, if we can take iid samples from p
Rejection sampling: get p samples from q samples and M ≥ maxx p̃(x)/q(x)
Importance sampling: estimate p expectations based on reweighting q samples
Markov chain Monte Carlo: a little later in the course

2 Variational methods:
Approximate p with “closest” distribution q from a tractable family,

E
X∼p

f(X) ≈ E
X∼q

f(X)

q could be Gaussian, product of Bernoulli, any other model with easy inference. . .
Turns inference into optimization

3 / 22

Variational Inference Illustration
Example: approximate a non-Gaussian p by a Gaussian q

Theoretical justification that most posteriors are “eventually” Gaussian

Laplace approximation: find the mode x∗, then
match first two derivatives of log-likelihood at the mode: N

(
x∗, [∇2 log p(x∗)]−1

)
Still works with an unnormalized p̃(x)/Z = p(x):
log p(x) = log p̃(x)− logZ has same mode and derivatives as log p

Is this the “best” Gaussian approximation? What if we want non-Gaussian approx?

4 / 22

Kullback-Leibler (KL) Divergence
We’d like to find the “closest” q to our target p

How do we define “closeness” between a distribution p and q?

A common measure is Kullback-Leibler (KL) divergence between p and q:

KL(p ∥ q) = E
X∼p

log
p(X)

q(X)

Also called information gain: “information lost when p is approximated by q”

If p = q, we have KL(p ∥ q) = 0 (no information lost)

Otherwise, KL(p ∥ q) grows as it becomes hard to predict p from q

KL is not symmetric: in general, KL(p ∥ q) ̸= KL(q ∥ p)

Maximizing likelihood = minimizing KL(ptrue ∥ pθ) (bonus slide)
Unfortunately, computing this requires integrating over or sampling from p

. . . exactly the problem we’re trying to avoid

5 / 22

Minimizing Reverse KL Divergence
Most variational methods minimize “reverse KL”, as showed up with the ELBO:

KL(q ∥ p) = E
X∼q

log
q(X)

p(X)
= E

X∼q
log

(
q(x)

p̃(x)
Z

)
Not very intuitive: “how much information is lost when we approximate q by p”
Does give some guarantee on approximating bounded functions (bonus)

“Reverse” KL only needs unnormalized distribution p̃/Z = p and expectations in q

KL(q ∥ p) = E
X∼q

[log q(X)]− E
X∼q

[log p̃(X)] + E
X∼q

[log(Z)]︸ ︷︷ ︸
const. in q

−Ex∼q log q(x) = Entropy[q] is the (differential) entropy of q
Value is known for many common choices of q

argmin
q

KL(q ∥ p) = argmax
q

Entropy[q] + E
x∼q

log p̃(x)

6 / 22

Example: Best Multivariate Gaussian

We want to find maxq Entropy[q] + Ex∼q[log p̃(x)]

For multivariate Gaussians, we have Entropy[q] = 1
2 log |Σ|+ d

2 log(2πe)

So to find the best multivariate Gaussian approximation, we need to find

argmax
µ,Σ

1
2 log |Σ|+ E

x∼N (µ,Σ)
log p̃(x) = argmax

µ,L
log |L|+ E

z∼N (0,I)
log p̃(µ+ Lz)

How to optimize this? Can’t autodiff through expectation. . .

Reparamaterization trick: take relevant variable out of the expectation

Use Leibniz rule ∂
∂a Ex∼p f(a, x) = Ex∼p

∂
∂af(a, x) when p doesn’t depend on a

Change variables to q = N (µ,LLT); use
∣∣∣LLT

∣∣∣ = |L||LT| = |L|2

If L is lower-triangular with Ljj > 0 (Cholesky factor), then |L| =
∏

j Ljj is easy

Can take samples for z and run SGD to optimize (but note it’s non-convex)

7 / 22

Reparameterization trick

Another view on why we can’t autodiff through the expectation:

∇θ E
x∼pθ

f(x) = ∇θ

∫
f(x)pθ(x)dx =

∫
f(x)∇θpθ(x)dx

and what do we do with that? (well, see bonus slide)

But if we write x = g(ε, θ) for ε ∼ r (standard normal, uniform, . . .),

∇θ E
x∼pθ

f(x) = ∇θ E
ε
f(g(ε, θ)) = ∇θ

∫
f(g(ε, θ))r(ε)dε

=

∫
∇θ [f(g(ε, θ))] r(ε)dε = E

ε
[∇θf(g(ε, θ))]

which is autodiff-friendly if we take Monte Carlo samples for ε

Need g to be differentiable (i.e. x should be continuous)

Tricks to avoid this; “Gumbel-Softmax” = “Concrete” distribution

8 / 22

Mean Field / Variational Bayes approximation

Another common scheme is coordinate optimization with an appropriate q

Consider choosing q as a product of independent qj

q(x) =

d∏
j=1

qj(xj)

If we fix q¬j and optimize qj among all distributions, we get (see PML2 10.2)

qj(xj) ∝ exp

(
E
q¬j

[log p̃(x)]

)
Iterative algorithm: pick j, choose (discrete or conjugate) qj to match above

Each iteration improves the (non-convex) reverse KL

9 / 22

Outline

1 Variational inference

2 Variational Auto-Encoders

10 / 22

Deep latent variable model
So far, we’ve built generative models out of relatively simple parts

Gaussian mixture is Z ∼ Cat(π), X | (Z = z) ∼ N (µz,Σz)

Can maximize p(x) =
∑k

z=1 πzN (x;µz,Σz) with EM/GD/. . .

Discriminative models allow using arbitrary functions (e.g. deep nets) inside

Y | (X = x) ∼ N (gθ(z), σ
2)

Can maximize p(y | x) = N (x; fθ(x), σ
2) with GD/. . .

Can we get a generative model with an arbitrary (deep) function in it?

An example deep latent variable model (X is d-dimensional, Z is k-dimensional):

Z ∼ N (0k, Ik) X | (Z = z) ∼ N (gθ(z), σ
2Id)

Want to maximize p(x) =

∫
N (z;0k, Ik)N (x; gθ(z), σ

2I)dz

How?
11 / 22

Deep latent variable model

We’d like to do MLE/similar for

Z ∼ N (0k, Ik) X | (Z = z) ∼ N (gθ(z), σ
2Id)

which is
max

θ

∑
i

log E
z(i)∼N (0k,Ik)

[
N (x(i); gθ(z

(i)), σ2I)
]

Could potentially approximate this integral with Monte Carlo + reparam trick:

max
θ

∑
i

log

 1

M

M∑
j=1

N (x(i); gθ(z
(i,j)), σ2I)

 for z(i,j) ∼ N (0, I)

But this converges really slowly when k is large / gθ is complicated: need a huge M

12 / 22

Amortized inference
EM would alternate between

Expectation: q(Z | X,Θ) = p(Z | X,Θ), compute EZ∼q log p(X,Z | Θ)
Maximization of EZ∼q log p(X,Z | Θ) in Θ

The E step (inferring Z given X) is hard here!
(So is the M step, in the normal deep network way)

Have some complicated function from X to Z
Idea: instead of exactly solving the inference problem, let’s approximate it
. . . with a neural network qϕ(z | x)

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

Named variational autoencoder (VAE):
encode image into latent code z, decode back to approximation of original image

13 / 22

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

ELBO

We’d like to maximize pθ(x) =
∫
pθ(x | z)pθ(z)dz

log pθ(x) = E
z∼qϕ(z|x)

[log pθ(x)]

= E
z∼qϕ(z|x)

[
log

pθ(x, z)

pθ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z) qϕ(z | x)
qϕ(z | x) pθ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
+ E

z∼qϕ(z|x)

[
qϕ(z | x)
pθ(z | x)

]
= ELBOθ,ϕ(x) + KL(qϕ(z | x) ∥ pθ(z | x))

Since KL ≥ 0, ELBOθ,ϕ(x) = log pθ(x)−KL(qϕ(z | x) ∥ pθ(z | x)) ≤ log pθ(x)

ELBO is the Evidence Lower BOund
Same as we used in EM, except that we’ve separated it per-sample here

14 / 22

Maximizing the ELBO

Once we know how to evaluate it, we can use as our loss

n∑
i=1

ELBOθ,ϕ(x
(i)) =

n∑
i=1

log pθ(x
(i))−KL(qϕ(z

(i) | x(i)) ∥ pθ(z
(i) | x(i)))

Because KL ≥ 0, this is a lower bound on the log-likelihood

Maximizing over the encoder/recognition parameters ϕ is

argmax
ϕ

n∑
i=1

ELBOθ,ϕ(x
(i)) = argmin

ϕ

n∑
i=1

KL(qϕ(z
(i) | x(i)) ∥ pθ(z

(i) | x(i)))

Finds a network that gives you a low reverse KL, for any training input x(i)

Making the inference network better makes the likelihood bound tighter

If qϕ(z | x) ≈ pθ(z | x) (on the training set),
maximizing over the probability parameters θ (approximately) maximizes likelihood

15 / 22

Evaluating the ELBO

To efficiently evaluate the ELBO here:

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z)pθ(z)

pθ(z)qϕ(z | x)

]
= E

z∼qϕ(z|x)

[
log

pθ(x, z)

pθ(z)

]
+ E

z∼qϕ(z|x)

[
log

pθ(z)

qϕ(z | x)

]
= E

z∼qϕ(z|x)
[log pθ(x | z)]−KL(qϕ(z | x) ∥ pθ(z))

First term: qϕ(z | x) should give a latent distribution where decoding to x is likely

Second term: qϕ(z | x) should be “near” pθ(z) (regularization)

16 / 22

Computing the ELBO and its gradient: the reparameterization trick
We want to maximize the average of

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z))

KL term for a given x is available in closed form if p(z), qϕ(z | x) are Gaussian
(if p(z) is N (0, I), qϕ(z | x) is N (µϕ(x),Σϕ(x)); regularizes ∥µϕ(x)∥2 and Σϕ(x) to be near I – bonus)

For the other term, we need Monte Carlo
Usually pθ(x | z) is N (fθ(z), σ

2I), so log pθ(x | z) = − 1
2σ2 ∥x− fθ(z)∥2 + const

We need Ez∼qϕ(z|x) log pθ(x | z)
Estimate with Monte Carlo
Can usually use just a single step for simplicity: if qϕ is “good,” should be okay

But how do we take ∇ϕ of this expectation? Use reparameterization trick again:

E
z∼qϕ(z|x)

[log pθ(x | z)] = E
ϵ∼N (0,I)

log pθ(x | z = µϕ(x) +Σϕ(x)
1
2 ϵ)

Take a Monte Carlo sample for ϵ; now have something we can autodiff
Now just do SGD to maximize 1

n

∑n
i=1 ÊLBOθ,ϕ(x

(i))
17 / 22

A VAE

https://arxiv.org/pdf/1606.05908.pdf

18 / 22

https://arxiv.org/pdf/1606.05908.pdf

A VAE on MNIST

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

19 / 22

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

Conditional VAE

https://arxiv.org/pdf/1606.05908.pdf

20 / 22

https://arxiv.org/pdf/1606.05908.pdf

Conditional VAE to “in-paint” on MNIST

https://papers.nips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

21 / 22

https://papers.nips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

Summary

Variational inference: choose q ≈ p and estimate EX∼p f(X) ≈ EX∼q f(X)

Reparameterization trick often helps find best q with SGD
Not consistent (q doesn’t converge to p if we run the algorithm forever)
Can be complicated and hard to parallelize
Only needs unnormalized density
Often better approximation for a given amount of computation than MCMC

Variational auto-encoders (VAEs) are a deep latent variable model

p(x) =
∫
p(z)p(x | z)dz

Learn an “inference”/“recognition” network q(z | x) to approximate inference
Minimizing the ELBO maximizes a lower bound on the likelihood

Next up: how to design a VAE and how to use it

22 / 22

Maximum likelihood minimizes KL

argmin
θ

KL(ptrue ∥ pθ) = argmin
θ

∫
ptrue(x) log

ptrue(x)

pθ(x)
dx

= argmin
θ

∫
ptrue(x) log ptrue(x)dx︸ ︷︷ ︸
doesn’t depend on θ

−
∫

ptrue(x) log pθ(x)dx

= argmin
θ

−
∫

ptrue(x) log pθ(x)dx

= argmax
θ

E
x∼ptrue

log pθ(x)

≈ argmax
θ

1

n

n∑
i=1

log pθ(x
(i))

23 / 22

REINFORCE estimator

Alternative gradient estimator to the reparameterization trick:

∇θ E
x∼pθ

f(x) = ∇θ

∫
f(x)pθ(x)dx =

∫
f(x)∇θpθ(x)dx

Notice that ∇θ log pθ(x) =
1

pθ(x)
∇θpθ(x), so

∇θ E
x∼pθ

f(x) =

∫
f(x)∇θ log pθ(x)pθ(x)dx = E

x∼pθ
[f(x)∇θ log pθ(x)]

So if we can evaluate ∇θ log pθ(x) for any x, we can estimate the gradient!

Called REINFORCE estimator:

Doesn’t require x to be continuous, e.g. it can be categorical with parameters a
differentiable function of θ
Unbiased estimator
Tends to have large variance

24 / 22

Reverse KL guarantees

Does KL(q ∥ p) being small tell us anything about |EX∼p f(X)− EX∼q f(X)|?
For a bounded f with |f(x)| ≤ F for all x, we have for any p and q that∣∣∣∣ E

X∼p
f(X)− E

X∼q
f(X)

∣∣∣∣ = 2F
1

2

∣∣∣∣ E
X∼p

f(X)

F
− E

X∼q

f(X)

F

∣∣∣∣
≤ 2F TV(p, q)

≤ F
√

2KL(q ∥ p)

Here we used the total variation distance, which is (supremum is a fancy version of max)

TV(p, q) =
1

2
sup

f :∀x,|f(x)|≤1

∣∣∣∣ E
X∼p

f(X)− E
Y∼q

f(Y)

∣∣∣∣
Pinsker’s inequality says that TV(p, q) ≤

√
1
2 KL(p ∥ q); note TV is symmetric

arxiv.org/abs/2202.07198 gives a nice overview of when this is tight

Not a super tight bound, but does give some reassurance
Can min. another “integral probability metric” for better bound, but usually harder 25 / 22

https://arxiv.org/abs/2202.07198

Computing the ELBO and its gradient: KL term

We want to maximize the average of

ELBOθ,ϕ(x) = E
z∼qϕ(z|x)

[log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z))

KL term for a given x is often available in closed form

Typically we choose pθ(z) to be N (0, I), qϕ(z | x) to be N (µϕ(x),Σϕ(x))

Then the KL is just (see PML2 eq 5.80)

1
2

(
∥µϕ(x)∥2 +TrΣϕ(x)− log |Σϕ(x)| − d

)
Most of the time we also choose Σϕ(x) to be diagonal; determinant is easy

This is just an expression in terms of ϕ; we can use autodiff

26 / 22

	Variational inference
	Variational Auto-Encoders
	Appendix

