Variational inference and VAEs
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2
University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan—Apr 2025)

1/22

https://cs.ubc.ca/~dsuth/440/24w2

Last time: approximate inference

@ Bayesian inference requires computing expectations with respect to posterior,

/f p(f | x)d

o If f(6) =6, we get posterior mean of
o If f(6) =p(Z|6), we get posterior predictive
o If f(8) =1(0 € 5) we get probability of S (e.g., marginals)

@ But posterior often doesn’t have a closed-form expression
o Bayesian linear regression — w ~ N'(m,V); y | #,w ~ N(w'x, %) — does
o Bayesian logistic regression — p(y | z,w) = 1/(1 + exp(—yw'z)) — doesn’t
e More complex models almost never do

@ Our two main tools for approximate inference:
@ Monte Carlo methods

@ Variational methods
2/22

Approximate Inference

Two main strategies for approximate inference:
@ Monte Carlo methods:
e Approximate expectations based on samples,

~ = ()
E 10~ =3 1)
Turns inference into sampling
Simple Monte Carlo: exactly as above, if we can take iid samples from p
Rejection sampling: get p samples from ¢ samples and M > max, p(x)/q(z)
Importance sampling: estimate p expectations based on reweighting ¢ samples
e Markov chain Monte Carlo: a little later in the course
@ Variational methods:
e Approximate p with “closest” distribution ¢ from a tractable family,

E JX)~ B f(X)

e ¢ could be Gaussian, product of Bernoulli, any other model with easy inference. ..

e Turns inference into optimization

3/22

Variational Inference lllustration

@ Example: approximate a non-Gaussian p by a Gaussian ¢
e Theoretical justification that most posteriors are “eventually” Gaussian

@ Laplace approximation: find the mode z*, then
match first two derivatives of log-likelihood at the mode: N (z*, [VZlog p(z*)] 1)
o Still works with an unnormalized p(z)/Z = p(x):
log p(z) = logp(x) — log Z has same mode and derivatives as logp

q(x)
% P(x)

@ Is this the “best” Gaussian approximation? What if we want non-Gaussian approx?

4/22

Kullback-Leibler (KL) Divergence

We'd like to find the “closest” ¢ to our target p
How do we define “closeness” between a distribution p and ¢?

A common measure is Kullback-Leibler (KL) divergence between p and ¢:

p(X)
q(X)

Also called information gain: “information lost when p is approximated by ¢”

KL(p [l ¢) = E log

If p =g, we have KL(p || ¢) = 0 (no information lost)
Otherwise, KL(p || ¢) grows as it becomes hard to predict p from ¢
KL is not symmetric: in general, KL(p || q) # KL(q || p)

e Maximizing likelihood = minimizing KL(ptrue || po) (bonus slide)
@ Unfortunately, computing this requires integrating over or sampling from p

e ...exactly the problem we're trying to avoid

5/22

Minimizing Reverse KL Divergence

@ Most variational methods minimize “reverse KL", as showed up with the ELBO:

_ o 1) _ oo (1)
KL(q || p) —Xﬂiql 8 (X —Xﬂiql g (ﬁ($)Z>

e Not very intuitive: “how much information is lost when we approximate ¢ by p”
o Does give some guarantee on approximating bounded functions (bonus)

@ “Reverse” KL only needs unnormalized distribution p/Z = p and expectations in g

KL(g | p) = E floga(X)]— E [logh(X)] + E [log(Z)]
q q q

const. in g

o —[E,,logq(z) = Entropy|[q| is the (differential) entropy of ¢
e Value is known for many common choices of ¢

argmin KL(q || p) = arg max Entropy[¢] + E logp(x)
q q r~q

6/22

Example: Best Multivariate Gaussian

We want to find max, Entropy|q| + Eg~q[log p(x)]

For multivariate Gaussians, we have Entropy[q] = 3 log || + %log(27re)

So to find the best multivariate Gaussian approximation, we need to find

1 ~ -
arg max 3 log || + E logp(zr) =argmaxlog|L|+ E logp(u+ Lz
w3 > N (p,X) (=)= L T z~N(0,I) ()

How to optimize this? Can't autodiff through expectation. ..

Reparamaterization trick take relevant variable out of the expectation
o Use Leibniz rule 2 E,, f(a,z) = Eynp 2 f(a,x) when p doesn't depend on a
o Change variables to ¢ = A"(u, LLT); use ’LLT‘ — IL|L7| = [L?
o If L is lower-triangular with L;; > 0 (Cholesky factor), then [L| =[], L;; is easy

Can take samples for z and run SGD to optimize (but note it's non-convex)

7/22

Reparameterization trick

@ Another view on why we can't autodiff through the expectation:

Vo E f(2)= Vo [f@pa(o)ds = [f@) V(e

and what do we do with that? (well, see bonus slide)

e But if we write z = g(e,0) for € ~ r (standard normal, uniform, ...),
Vo E f(2) = VoE f(g(e.6)) = Vo [Hlg(e0)r(e):
— [Valr(o(e,6)] r(©)d = E Vo (ofe,6))

which is autodiff-friendly if we take Monte Carlo samples for ¢
@ Need g to be differentiable (i.e. = should be continuous)
e Tricks to avoid this; “Gumbel-Softmax” = “Concrete” distribution

8/22

Mean Field / Variational Bayes approximation bonus!

@ Another common scheme is coordinate optimization with an appropriate ¢

@ Consider choosing g as a product of independent g;

d
g(z) = [] as(=y)
j=1
o If we fix g—; and optimize ¢; among all distributions, we get (see PML2 10.2)

q;(;) o< exp (E [10g13(w)]>

q-j

o lterative algorithm: pick j, choose (discrete or conjugate) ¢; to match above
o Each iteration improves the (non-convex) reverse KL

9/22

Outline

© Variational Auto-Encoders

10/22

Deep latent variable model

@ So far, we've built generative models out of relatively simple parts
o Gaussian mixture is Z ~ Cat(n), X | (Z =2) ~ N(p, X,)
o Can maximize p(z) = 25:1 N (z; py, X,) with EM/GD/. ..

e Discriminative models allow using arbitrary functions (e.g. deep nets) inside
Y | (X =) ~N(go(2),07)
o Can maximize p(y |) = N(z; fo(x),0?%) with GD/. ..
e Can we get a generative model with an arbitrary (deep) function in it?
@ An example deep latent variable model (X is d-dimensional, Z is k-dimensional):
Z~NOgT) X [(Z=2)~N(g(2),0°La)

o Want to maximize p(z) = /./\/(Z;Ok,Ik)N(l‘;gg(Z),UZI)dZ

o How?
11/22

Deep latent variable model

e We'd like to do MLE/similar for
Z~NOgT) X [(Z=2)~N(g(2),0°1a)

which is

max Z log

o Could potentially approximate this integral with Monte Carlo + reparam trick:

[N (z; go(21), 021)]

NN Okalk)

M
maleog M Z D: g2, 021) for (47 ~ N(0,T)

o But this converges really slowly when k is large / gy is complicated: need a huge M

12/22

Amortized inference

e EM would alternate between
o Expectation: ¢(Z | X,0) =p(Z | X,0), compute Ez,logp(X,Z | O)
o Maximization of Ez.,logp(X,Z | ©) in ©

The E step (inferring Z given X) is hard here!
o (Sois the M step, in the normal deep network way)

Have some complicated function from X to Z
Idea: instead of exactly solving the inference problem, let's approximate it
... with a neural network ¢4(z | x)

p(z)
https://danijar.com/building-variational-auto-encoders-in-tensorflow/

o Named variational autoencoder (VAE):

encode image into latent code z, decode back to approximation of original image)
13 /22

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

ELBO

e We'd like to maximize pg(z) = [pg(z | 2)pe(z)dz
logpg(z) = E [logpy(z)]
2y (2|z)
_ E log p@(xv Z) :|
w~ap(zle) | po(z | @)

= E g pe(a:,z)%(ZIw)]
avas(zlz) | qe(z |) po(z | @)
[po(x,2)] {QO('Z | fc)]
= E |logZ22% 14+ E |22
2rqy(zlz) | gq¢(z\w) zvqy(2le) | Doz | @)
= ELBOg ¢(z) + KL(gg(2 |) || po(z | 2))

@ Since KL > 0, ELBOy 4(x) = logpg(z) — KL(ge(2 | z) || po(z |)) < logpe(x)
e ELBO is the Evidence Lower BOund
e Same as we used in EM, except that we've separated it per-sample here

14/22

Maximizing the ELBO

@ Once we know how to evaluate it, we can use as our loss

ZELBOM (@) Zlogpe — KL(gp (" | D) || po(z1 | 21))
=1
@ Because KL > 0, this is a lower bound on the log-likelihood

e Maximizing over the encoder/recognition parameters ¢ is

arg;naxZELBOev(ﬁ(x(i)) = arg;rlinZKL(q¢(z(i) | 20) || po(2@ |)
=1 i=1

o Finds a network that gives you a low reverse KL, for any training input z(*)
e Making the inference network better makes the likelihood bound tighter

o If g4(2z |) = po(2 | x) (on the training set),
maximizing over the probability parameters (approximately) maximizes likelihood

15/22

Evaluating the ELBO
o To efficiently evaluate the ELBO here:

[pe(z,2) }
ELBO T) = E log ———=
0.6(7) zrgy(zlz) | & qs(2 |)

N ZNqE:(z\:v) L pe(2)qe(2 | x)}

_ [og P0(%:2) op P0(2)
B z~q}f:£z\m> _1 ® po(2)] +z~q£§z\x> [l 5 qe(2 | :v)}
= E)[logpe(mIZ)]—KL(%(ZIx) | po(2))

z~qg (2]

o First term: g4(z |) should give a latent distribution where decoding to x is likely

@ Second term: gy(z | x) should be “near” py(z) (regularization)

16/22

Computing the ELBO and its gradient: the reparameterization trick
@ We want to maximize the average of
ELBOgg(z) = E [logpg(x | 2)] = KL(gs(2 | 2) || p(2))
2~y (2|7)
e KL term for a given x is available in closed form if p(z), g4(2 |) are Gaussian
(if p(2) is N(0,1), gp(z |) is N (e (x), B(x)); regularizes ||y (x)||? and Zy(z) to be near I — bonus)

For the other term, we need Monte Carlo
Usually pg(z | 2) is N(fo(2),0%I), so logpg(x | 2) = — 52zl — fo(2)||* + const
We need E. g, (-|x) log po(z | 2)
e Estimate with Monte Carlo
o Can usually use just a single step for simplicity: if g4 is "good,” should be okay
@ But how do we take V of this expectation? Use reparameterization trick again:

1
E o z|z))= E lo x| z= z) + Xg(T)2€
qué(zlx)[gpo(z | 2)] oD gpo(z | 2 = po(x) + Zy(x)2€)

Take a Monte Carlo sample for €; now have something we can autodiff
Now just do SGD to maximize 2 > ELBOg 4(x®)

n

17/22

A VAE
X — f&)

[KLIN (1(X), £(X)[|N(0,1)]] | Decoder
A A (P)

#(X)][E(X)

Encoder I Sample € from A (0, 1) ‘
(@)

https://arxiv.org/pdf/1606.05908.pdf

18/22

https://arxiv.org/pdf/1606.05908.pdf

A VAE on MNIST

Epoch 0

#»*o*‘r‘a*

Epoch 1

Epoch 15 Epoch 10 Epoch 5

alslalalalili|i[o]7
HOGHRAEDQAELD
7i2]slilala]/el7]7

elelslélolsalalé

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

19/22

https://danijar.com/building-variational-auto-encoders-in-tensorflow/

Conditional VAE bonus!

[z X)

Decoder

(P)

| X | | Sample z from A/ (0, I) I

Decoder

(P)

=
5
=
=
>
™
=
s
=
=
=

Encoder ‘ Sample € from N (0, 1) |
(@)

X

https://arxiv.org/pdf/1606.05908.pdf

20/22

https://arxiv.org/pdf/1606.05908.pdf

bon UlS,[

4

4

Ll 56233005226

ground
truth

Conditional VAE to “in-paint” on MNIST

48

| = [
olocowoOO®

— — — — — — —

>

)

LLLLLLY
NN AN A

X ol X Y~
od N a9
nuvwheobbw

VQVVVVVO
SSUNEENENENCNEN

MmO MmMe N
nnihmnhnhn
AN

.nips.cc/paper_files/paper/2015/file/8d55a249e6baabc06772297520da2051~Paper . pdf

https://papers

21/22

https://papers.nips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

Summary

@ Variational inference: choose ¢ = p and estimate Ex.,, f(X) = Ex~q f(X)
Reparameterization trick often helps find best ¢ with SGD

Not consistent (¢ doesn’t converge to p if we run the algorithm forever)

Can be complicated and hard to parallelize

Only needs unnormalized density

Often better approximation for a given amount of computation than MCMC

° Variational auto-encoders (VAEs) are a deep latent variable model
fp p(z | 2)dz
° Learn an mference / “recognition” network ¢(z |) to approximate inference
e Minimizing the ELBO maximizes a lower bound on the likelihood

@ Next up: how to design a VAE and how to use it

22/22

Maximum likelihood minimizes KL bonus!

arg min KL(ptrue ” pe) = arg min /ptrue(x) lOg Dtrue (CC) deZ’
o 0 po(x)

= aJrgolnin/ptrue(:‘c) lngtrue($)dm_ /ptrue(l') 1nge($)d$

doesn’t depend on 6
= argemin - /ptme(x) log pg(x)dx

=argmax E logpy(x)

0 T~Ptrue

1 — :
~ — 1 (@)
arg énax - ; og pe(z\¥)

23/22

i onus!
REINFORCE estimator L
@ Alternative gradient estimator to the reparameterization trick:

Vo E f(z Ve/f e d:c—/f \Veops(z)dz

e Notice that Vylogpy(z) = Vopo(x), s

PB(I)

Vo E (o) = [1@)Vologpa(o)pm(a)do = E [f(2)Valogpa(a)

TP, T~Po

e So if we can evaluate Vylogpg(z) for any x, we can estimate the gradient!

o Called REINFORCE estimator:
e Doesn't require x to be continuous, e.g. it can be categorical with parameters a
differentiable function of 6
e Unbiased estimator
e Tends to have large variance
24 /22

Reverse KL guarantees bonus!

e

@ Does KL(g || p) being small tell us anything about [Ex~, f(X) — Ex~q f(X)|?
@ For a bounded f with |f(x)| < F for all 2, we have for any p and ¢ that

| f(X) f(X)
&, 10 - so|=an 3| L) - p I
<2FTV(p,q)

< F+/2KL(q || p)

o Here we used the total variation diStance, which is (supremum is a fancy version of max)

1
TV(p,q) =5 sup
2 fva,| f(a)<1

E 1)~ E f(¥)

o Pinsker's inequality says that TV (p, q) < \/%KL(p Il ¢); note TV is symmetric

@ arxiv.org/abs/2202.07198 gives a nice overview of when this is tight
@ Not a super tight bound, but does give some reassurance
@ Can min. another “integral probability metric” for better bound, but usually harder 25,22

https://arxiv.org/abs/2202.07198

Computing the ELBO and its gradient: KL term bonus!

@ We want to maximize the average of

ELBOgg(z) = E [logpg(z | 2)] — KL(gs(2 | 2) || p(2))

zrqgy (2|

KL term for a given z is often available in closed form

Typically we choose py(z) to be N (0,I), g4(z | z) to be N (py(z), Xp(z))
@ Then the KL is just (see PML2 eq 5.80)

L (|l ()2 + Tr By () — log S ()] — d)

Most of the time we also choose X;(z) to be diagonal; determinant is easy

This is just an expression in terms of ¢; we can use autodiff

26 /22

	Variational inference
	Variational Auto-Encoders
	Appendix

