
Variational inference and VAEs
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 28

https://cs.ubc.ca/~dsuth/440/24w2

Last time: variational inference

Finding “best” approximation q from some family to unnormalized target p̃

Often, will be p̃(θ | X) = p(X | θ)p(θ)
Usual objective: argminϕKL(qϕ ∥ p̃) = argmaxϕ Entropy[qϕ] + EX∼qϕ [log p̃(X)]

To estimate gradients of the objective, we use the reparameterization trick:
Write X ∼ qϕ as combination of: ε ∼ N (0, I), X = f(ε, ϕ)

e.g. f(ε,µ,L) = Lε+ µ gets N (µ,LLT)

Then, under reasonable regularity conditions,

∇ϕ E
X∼qϕ

log p̃(X) = ∇ϕ E
ε∼N (0,I)

log p̃(f(ε, ϕ)) = E
ε∼N (0,I)

∇ϕ log p̃(f(ε, ϕ));

now we can take a Monte Carlo sample for ε (often just one sample)
and use autodiff to evaluate ∇ϕ log p̃(f(ε, ϕ))
Can also have ε follow some other distribution, as long as it doesn’t depend on ϕ

2 / 28

Last time: VAEs

Deep latent variable model: something like

Z ∼ N (0k, Ik) X | (Z = z) ∼ N (gθ(z), σ
2Id)

Sampling is easy: sample a Z, run it through the network gθ, add normal noise

Inference is hard:

p(z | x) = p(z)p(x | z)
p(x)

=
p(z)p(x | z)∫
p(z′)p(x | z′)dz′

Finding most likely z: find the (small-norm z) that gets gθ(z) ≈ x
Finding the distribution: requires complicated integral over all possible z

So we decide to do approximate inference with a recognition network:
use qϕ(z | x) = N (z;µϕ(x),Σϕ(x)) with µϕ, Σϕ a neural network

Training based on ELBO (recapped next)

3 / 28

Last time: VAE objective
We got, similar to ELBO derivation for EM, that

log pθ(x) = ELBOθ,ϕ(x) + KL(qϕ(z | x) ∥ pθ(z | x))

max
ϕ

∑
i

ELBOθ,ϕ(x
(i)) aims for qϕ(z | x) ≈ pθ(z | x) = pθ(x | z)pθ(z)∫

pθ(x | z′)pθ(z′)dz′

Try to get approximate inference network to be consistent with pθ on the x(i)

max
θ

max
ϕ

∑
i

ELBOθ,ϕ(x
(i)) approximates max

θ

∑
i

log pθ(x
(i))

So if we max over both θ and ϕ, we should approximately get the MLE

The objective is based on ELBOθ,ϕ(x) which is

E
z∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
= E

z∼qϕ(z|x)
[log pθ(x | z)]−KL(qϕ(z | x) ∥ pθ(z))

First, encoding then decoding should be consistent; use reparamaterization trick
Second, encoding shouldn’t be “too weird”; closed-form function of ϕ for Gaussians

4 / 28

Outline

1 VAE architectures and fully-convolutional networks

2 Representation learning, part I

5 / 28

Convolutions and transposed convolutions

A VAE for images has two parts: typically

encoder: image X =⇒ latent Z ∼ N (µϕ(X),Σϕ(X))

decoder: latent Z =⇒ image X̂ ∼ N
(
gθ(Z), σ2I

)
Image is maybe 256× 256× 3 (196,608 dimensions)

We want the latent to be lower-dimensional (tens, maybe thousands, depending)

Going from high-dimensional image to low-dimensional output is familiar

Baseline approach: convolutional and pooling layers

What kind of layers should we use to output an image?

6 / 28

Related problem: pixel-level classification
Sometimes you want to apply a label to each pixel in an image:

Is this a pedestrian?

Is this a car, a sidewalk, a building, . . . ? (semantic segmentation)

7 / 28

Naive approach: sliding window

Train a CNN (or whatever) that predicts a pixel’s label given its neighbourhood

Apply it to each pixel, given its neighbourhood

Turns the problem into familiar image classification
Easy to apply to images with different sizes
Slow: need to run the CNN once per pixel in the image!
Need to choose the right window size, might not be as good at “sharing information”

8 / 28

Another approach: multi-label classification
Reduce to some low-dimensional latent, treat latent like multi-label classification

image X︸ ︷︷ ︸
256×256×3

conv, . . . , conv, dense
=============⇒ latent Z︸ ︷︷ ︸

1024

dense, dense
=======⇒ classifications Ŷ︸ ︷︷ ︸

256×256×# classes

Y1: “is top-left pixel a pedestrian?”, Y65,536: “is bottom-right pixel a pedestrian?”

Looks exactly like typical multi-label architecture:

image X︸ ︷︷ ︸
256×256×3

conv, . . . , conv, dense
=============⇒ latent Z︸ ︷︷ ︸

1024

dense, dense
=======⇒ classifications Ŷ︸ ︷︷ ︸

of labels

Y1: “is this a selfie?”, Y2: “is this a screenshot?”, Y3: “is this NSFW?”

Faster than sliding window: only run through the network once

Requires fixed image sizes

Many labels

Each problem is hard since spatial information in Z is all mixed up
9 / 28

Fully-convolutional networks

Make sure that the latent keeps spatial structure

image X︸ ︷︷ ︸
256×256×3

conv, . . . , conv
=========⇒ latent Z︸ ︷︷ ︸

16×16×4

up-sample
======⇒ classifications Ŷ︸ ︷︷ ︸

256×256×# classes

Still fast since it’s all one pass through a single network

Problems are easier since we still have local structure

Everything is convolutional: works on different sizes of images

Long, Shelhamer, Darrell (2014); quickly became default approach after

10 / 28

How to up-sample?
Goal of up-sampling/decoder is to go from small image to bigger image
Simplest approach: nearest-neighbour interpolation

https://towardsdatascience.com/

transposed-convolution-demystified-84ca81b4baba

Slightly fancier: bilinear interpolation takes weighted combination of corners
There are of course even fancier traditional methods (bicubic, splines, . . .)
Instead, let’s learn our upsampling operation

11 / 28

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

How to up-sample?
Goal of up-sampling/decoder is to go from small image to bigger image
Simplest approach: nearest-neighbour interpolation
Slightly fancier: bilinear interpolation takes weighted combination of corners

https://towardsdatascience.com/

transposed-convolution-demystified-84ca81b4baba

There are of course even fancier traditional methods (bicubic, splines, . . .)
Instead, let’s learn our upsampling operation

11 / 28

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

How to up-sample?
Goal of up-sampling/decoder is to go from small image to bigger image
Simplest approach: nearest-neighbour interpolation
Slightly fancier: bilinear interpolation takes weighted combination of corners
There are of course even fancier traditional methods (bicubic, splines, . . .)
Instead, let’s learn our upsampling operation

11 / 28

Transposed convolution
Usual base layer: transposed convolution / deconvolution

Note: different thing from signal processing’s notion of deconvolution!

https://arxiv.org/abs/1505.04366

Convolution layer: output pixel is a linear combination of input window
Transposed convolution: each input pixel produces several output pixels, which
overlap and are added up to make the output image

https://d2l.ai/chapter_computer-vision/transposed-conv.html
12 / 28

https://arxiv.org/abs/1505.04366
https://d2l.ai/chapter_computer-vision/transposed-conv.html

Transposed convolution

Convolution:
Transposed convolution:

13 / 28

Why “transposed” convolution?
We can write convolution as a matrix multiplication:

1 2 3
6 5 3
1 4 1

 ⋆

[
1 2
2 1

]
=

[
22 21
22 20

]
1 2 0 2 1 0 0 0 0
0 1 2 0 2 1 0 0 0
0 0 0 1 2 0 2 1 0
0 0 0 0 1 2 0 2 1

1
2
3
6
5
3
1
4
1

=

22
21
22
20

We can also write write transposed convolution as a matrix multiplication:

[
1 2
2 4

]
⊗

[
1 2
2 1

]
=

1 4 4
4 13 10
4 10 4

1 2 0 2 1 0 0 0 0
0 1 2 0 2 1 0 0 0
0 0 0 1 2 0 2 1 0
0 0 0 0 1 2 0 2 1

T

1
2
2
4

 =

1
4
4
4
13
10
4
10
4

With the same filter, get the transpose of the corresponding matrix

14 / 28

U-Nets
Convolutions, pooling lose a lot of information

If the latent is 16× 16× k, hard to remember/guess where the original boundaries in
the 256× 256 image were exactly

Various approaches to let the network see the original image to “check”
U-Nets connect back to when they processed at the same resolution

https://arxiv.org/pdf/1505.04597.pdf

15 / 28

https://arxiv.org/pdf/1505.04597.pdf

Getting labels for semantic segmentation

Getting labels for every pixel in an image is slow and expensive

One possibility: simulated environments where you know what everything is

Might not match real data well!

https://arxiv.org/abs/1608.01745

16 / 28

https://arxiv.org/abs/1608.01745

Getting labels for semantic segmentation

Getting labels for every pixel in an image is slow and expensive

One possibility: simulated environments where you know what everything is

Might not match real data well!

Other options: label one pixel or a scribble per object, guess at boundaries

https://arxiv.org/abs/1807.09856

16 / 28

https://arxiv.org/abs/1807.09856

VAE decoder

Model shouldn’t refer back to the original image!

Typical basic architecture based on transposed convolutions, e.g.:

https://arxiv.org/abs/1511.06434

17 / 28

https://arxiv.org/abs/1511.06434

Outline

1 VAE architectures and fully-convolutional networks

2 Representation learning, part I

18 / 28

Uses of (deep) latent variable models

Sometimes, what we care about is getting a good p(x)

Analogy: get a better fit to my data with a Gaussian mixture than just one

Latent variables Z are just “nuisance variables,” can throw them out after fitting

Sometimes, the Z themselves are useful to get insight about the data

Analogy: using GMM as a clustering algorithm and analyzing the clusters

Another example: can think of PCA as

data X
linear map
=⇒ latents Z

linear map
=⇒ reconstruction X̂

and what we really care about is Z

We hope that Z tells us about structure in the data

For example, maybe ∥z − z′∥ is more “semantically meaningful” than ∥x− x′∥

19 / 28

Autoencoders
PCA can also be called a linear autoencoder:

min
x̂

n∑
i=1

∥x(i) − x̂(i)∥2 = min
linear f,g

n∑
i=1

∥x(i) − g
(
f
(
x(i)
))

∥2

f is the encoder: turns x ∈ Rd into a latent z ∈ Rk

g is the decoder: reconstructs z ∈ Rk into an original data point x ∈ Rd

If k ≥ d, can get zero loss by using the identity function f(x) = x
If k < d, can’t do the identity function; try to save as much structure as possible

Suggests nonlinear autoencoders: with deep encoder fϕ and decoder gθ,

min
ϕ,θ

n∑
i=1

∥x(i) − gθ

(
fϕ

(
x(i)
))

∥2

VAEs make both the encoder and the decoder random distributions
Regular autoencoder is ≈ MLE for the VAE with

qϕ(z | x) ∝ 1(z = fϕ(x)) pθ(x | z) = N (x; gθ(z), σ
2I) pθ(z) ∝ 1

20 / 28

Representation learning with autoencoders
Some reasons we might want to use an autoencoder:
Compress a high-dim x into a low-dim z that doesn’t lose much information
Use a two-dimensional z and plot the “latent structure” in the data

https://www.cs.toronto.edu/~hinton/science.pdf

these days people usually use t-SNE instead; see distill.pub/2016/misread-tsne/ 21 / 28

https://www.cs.toronto.edu/~hinton/science.pdf
https://distill.pub/2016/misread-tsne/

Latent space interpolation

https://arxiv.org/abs/2204.06125

22 / 28

https://arxiv.org/abs/2204.06125

Representation learning for semi-supervised learning
Common problem: I have tons of unlabeled data but not much labeled data

Unsupervised pre-training (also called self-supervised):
1 Find a representation on the unlabeled data
2 Learn a simple model on the labeled data, using that representation

Nearest-neighbour, a linear model, a small network, . . .

We hope that the representation captures the important structure of the data

If so, then the simple model based on the labeled data can learn quickly
With this representation, it’s an easy problem!

Can do this with a “plain autoencoder”

But the distribution of latents can be very “irregularly shaped,” plus can overfit

VAEs try to make the distribution of latents close to standard normal

Randomized encoder and decoder also ≈ regularization

Hopefully makes for nicer representations, in addition to allowing sampling
23 / 28

Representation Learning with Latent Variable Models
We’d often like a “useful” distribution for Z | X
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE in VAEs

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

But we don’t actually maximize over all latent variable models
This relies on our model class (or really, learning process. . .) aligning well
Real(ish) case: if pθ(x | z) is too powerful, ignores z, i.e. useless representation

24 / 28

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with Latent Variable Models
We’d often like a “useful” distribution for Z | X
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE in VAEs

But we don’t actually maximize over all latent variable models

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

This relies on our model class (or really, learning process. . .) aligning well
Real(ish) case: if pθ(x | z) is too powerful, ignores z, i.e. useless representation

24 / 28

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with Latent Variable Models
We’d often like a “useful” distribution for Z | X
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE in VAEs

But we don’t actually maximize over all latent variable models
This relies on our model class (or really, learning process. . .) aligning well

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Real(ish) case: if pθ(x | z) is too powerful, ignores z, i.e. useless representation

24 / 28

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with Latent Variable Models
We’d often like a “useful” distribution for Z | X
Maximum likelihood minimizes KL between target and pθ(x) =

∫
pθ(x, z)dz

Objective wants a good fit for pθ(x); doesn’t care about usefulness at all
True for any objective that only cares about pθ(x), not just MLE in VAEs

But we don’t actually maximize over all latent variable models
This relies on our model class (or really, learning process. . .) aligning well
Real(ish) case: if pθ(x | z) is too powerful, ignores z, i.e. useless representation

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/
24 / 28

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Posterior collapse

If we use a really powerful decoder pθ(x | z):
Can in practice get great samples. . . that tend to ignore z entirely

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Remember ELBOθ,ϕ(x) = Ez∼qϕ(z|x) [log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z))

If pθ(x | z) ignores z, qϕ(z | x) can be just pθ(z) and KL becomes 0
Pretty good local max where z is totally useless

25 / 28

https://www.inference.vc/maximum-likelihood-for-representation-learning-2/

Representation Learning with VAEs

Maximizing the ELBO isn’t just MLE. . .

max
ϕ

∑
i

ELBOθ,ϕ(x
(i)) = log pθ(X)−min

ϕ

∑
i

KL(qϕ(z
(i) | x(i)) ∥ pθ(z

(i) | x(i)))

If ϕ is perfect, it’s just the MLE
Otherwise, we prefer the kinds of distributions that qϕ can successfully reconstruct

And training a VAE isn’t just minimizing the ELBO

We don’t find the actual maximizer in this architecture; we run SGD
The implicit bias of the SGD training procedure likely plays a very important role
Likely even more true for complex models, e.g. transformer-based

26 / 28

VQ-VAE

vector quantized VAE has discrete latent space, avoids(ish) posterior collapse

Encoder maps to a single discrete value of the latent; learn a prior on them

Autoregressive decoder is encouraged to “commit” to a latent

VQ-VAE-2 uses hierarchical latents
Autoregressive prior on the latents, but a fast feed-forward decoder

https://arxiv.org/pdf/1906.00446.pdf

27 / 28

https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://arxiv.org/pdf/1906.00446.pdf

Summary

Transposed convolutions for going from low dimensions to high

Fully-convolution networks for pixel-level labeling
Default architectural basis for VAE decoder on images

Representation learning: sometimes a useful scheme

Autoencoders: non-probabilistic version of VAEs
Whether VAEs/etc give useful representations: sometimes, but it’s tricky!

Next up: the next thing in sequence, sequential data

28 / 28

β-VAE

Put a weight β > 1 in front of the KL term in the ELBO

https://arxiv.org/pdf/1804.03599.pdf

Refined version: see TC-VAE 29 / 28

https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/abs/1802.04942

Wasserstein Auto-Encoder

Different framing for an auto-encoder-based generative model

Avoids “motivation” for posterior collapse

Simple version with deterministic encoder/decoder:

min
θ,ϕ

1

n

n∑
i=1

∥xi − decθ(encϕ(x
i))∥2 + λD

(
prior(z),

1

n

n∑
i=1

1
(
z = encϕ(x

i)
))

where D is some distance between probability distributions (kernel MMD, GAN)

Only makes marginal distribution of zs match the prior, not each one like VAEs

Can show approximately minimizes Wasserstein distance between model and data

30 / 28

	VAE architectures and fully-convolutional networks
	Representation learning, part I
	Appendix

