Binary Density Estimation CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan-Apr 2025)

Admin

- Sign up for Piazza from the link on cs.ubc.ca/~dsuth/440
- Lecture recordings are linked from Piazza
- CBTF quiz booking should be available by the end of this week
- Will post instructions on Piazza once it's available
- Again, I expect everyone to get in off the waitlist
 - But it'll take a bit to confirm and sort through everything
- Assignment 1 will be out tonight
- If you're on the waitlist (and want to join the class), do the assignment
- Office hours starting next week will link calendar from Piazza

Last time: binary density estimation

- \bullet Density estimation: going from data \rightarrow probability model
- Inference: "doing things" with a probability model
 - Computing probabilities of "derived events"
 - Computing likelihoods
 - Finding the mode
 - Sampling
- Bernoulli distribution: simple parameterized probability model for binary data
- If $X \sim \operatorname{Bern}(\theta)$, then for $x \in \{0,1\}$ we have

$$\Pr(X = x \mid \theta) = \begin{cases} \theta & \text{if } x = 1\\ 1 - \theta & \text{if } x = 0 \end{cases} = \theta^{\mathbb{1}(x=1)} (1 - \theta)^{\mathbb{1}(x=0)} = \theta^x (1 - \theta)^{1-x}$$

• Also write this as $p(x \mid \theta)$ or even p(x), if context is clear

Outline

2 MAP estimation

MLE: binary density estimation

- We know how to use a Bernoulli model (inference) for a bunch of tasks
- How can we train a Bernoulli model (learning) from data?

$$\mathbf{X} = \begin{bmatrix} 1\\0\\0\\1\\0 \end{bmatrix} \xrightarrow{\text{MLE}} \theta = 0.4$$

- Recall ${\bf X}$ collects the data points $x^{(1)},\ldots,x^{(n)}$
- $\bullet\,$ We assume these are iid samples from a random variable X
- Classic way: maximum likelihood estimation (MLE)

The likelihood function

 The likelihood function is a function from parameters θ to the probability (density) of the data under those parameters

• $\mathcal{L}(\theta) = p(\mathbf{X} \mid \theta)$, which for Bernoullis we saw is $\theta^{n_1}(1-\theta)^{n_0}$

• Here's the likelihood for $\mathbf{X}=(1,0,1),$ i.e. $\theta^2(1-\theta):$

•
$$\mathcal{L}(0.5) = p(1,0,1 \mid \theta = 0.5) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = 0.125$$

• $\mathcal{L}(0.75) = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} \approx 0.14$: **X** is more likely for $\theta = 0.75$ than $\theta = 0.5$

- $\mathcal{L}(0) = 0 = \mathcal{L}(1)$: X is impossible for $\theta = 0$ or 1, since we have some 1s and some 0s
- Maximum is at $\theta=2/3$ back to this in a second
- Likelihood is not a distribution over θ , i.e. $\int \mathcal{L}(\theta) d\theta \neq 1$
 - We do have $\int p(\mathbf{X} \mid \theta) \, \mathrm{d}\mathbf{X} = 1$, but that's not really relevant if we only have one \mathbf{X}

Maximizing the likelihood

- Maximum likelihood estimation (MLE): pick the θ with the highest likelihood
 - "Find the parameters heta where the data ${f X}$ would have been most likely to be seen"

• For Bernoullis, the MLE is
$$\hat{ heta} = rac{n_1}{n} = rac{n_1}{n_1+n_0}$$

- "If you flip a coin 50 times and get 23 heads, guess that $Pr(heads) = \frac{23}{50}$ "
- Code: theta = np.mean(X) takes $\mathcal{O}(n)$ time
- Let's derive this result
 - It's going to seem overly complicated for this really simple result
 - But the steps we use will be applicable to much harder situations

MLE for Bernoullis

• Notationally, we can write maximizing the likelihood as

$$\hat{\theta} \in \operatorname*{arg\,max}_{\theta} \mathcal{L}(\theta) = \operatorname*{arg\,max}_{\theta} \ \theta^{n_1} (1-\theta)^{n_0}$$

• $\arg \max_x f(x)$ means "the set of x that maximize f": might be more than one!

- Usually, instead of maximizing the likelihood we maximize the log-likelihood
 - Same solution set, since if $\alpha > \beta$ then $\log \alpha > \log \beta$ (log is strictly monotonic)
 - See "Max and Argmax" notes from the course site
 - Usually easier mathematically (also numerically much more stable)

$$\hat{\theta} \in \underset{\theta}{\operatorname{arg\,max}} n_1 \log(\theta) + n_0 \log(1-\theta)$$

• The maximum will have a zero derivative:

$$0 = \frac{n_1}{\theta} - \frac{n_0}{1 - \theta}$$

• and so
$$n_1(1- heta) = n_0 \theta$$
 or $n_1 = \underbrace{(n_0 + n_1)}_{-----} \theta$ or $\theta = \frac{n_1}{n}$

MLE for Bernoullis

• We're looking for

$$\hat{\theta} \in \underset{\theta}{\operatorname{arg\,max}} \log \mathcal{L}(\theta) = \underset{\theta}{\operatorname{arg\,max}} n_1 \log(\theta) + n_0 \log(1-\theta)$$

- Derivative of $n_1 \log(\theta) + n_0 \log(1-\theta)$ is zero only if $\theta = \frac{n_1}{n_0+n_1} = \frac{n_1}{n}$
- But is this actually a maximum?
- Yes: it's a concave function (second derivative is negative): $-\frac{n_1}{\theta^2} \frac{n_0}{(1-\theta)^2} \le 0$
- What if $n_1 = 0$ or $n_0 = 0$? Then we just divided by zero!
- $\log(0) = -\infty$ makes things complicated; go back to plain likelihood $heta^{n_1}(1- heta)^{n_0}$
- If $(n_1 = 0, n_0 > 0)$, find $\theta = 0$; if $(n_1 > 0, n_0 = 0)$, get $\theta = 1$
 - So same n_1/n formula still works

MLE for binary data estimation

 $\bullet\,$ Given iid binary data ${\bf X},$ we can train/learn a probability model with MLE:

$$\mathbf{X} \quad \xrightarrow{\mathrm{MLE}} \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

- Given this $\mathrm{Bern}(\hat{ heta})$ model, can then ask inference questions
 - "If I eat lunch with three randomly selected UBC students, what's the probability any of them are COVID-positive?"
 - One minus the probability none of them are: $1-(1-\theta)^3 pprox (1-(1-\hat{\theta})^3)$

Outline

Problems with MLE

- ullet Often (including here), the MLE is asymptotically optimal as $n \to \infty$
 - In particular, if we see $X \sim \text{Bern}(\theta^*)$, then $\hat{\theta}$ converges to the true θ^* as $n \to \infty$
 - These kinds of properties are covered in honours/grad stat classes
- But for small n, it can do really bad things
 - Before we considered $x^{(1)}=1, x^{(2)}=0, x^{(3)}=1$, with $\hat{\theta}_{\mathrm{MLE}} pprox 0.67$
 - If we see an $x^{(4)} = 1$, we get an MLE of 0.75
 - If we see an $x^{(4)} = 0$, get an MLE of 0.5
 - $\bullet\,$ If you get an "unlucky" ${\bf X},$ the MLE might be really bad
- $\bullet\,$ For Bernoullis, this sensitivity decreases quickly with n
- But for more complex models, the MLE can tend to overfit

Problems with MLE

- Imagine instead we'd seen a (barely-different) dataset, $x^{(1)} = 1$, $x^{(2)} = 1$, $x^{(3)} = 1$
- Then the MLE is $\hat{\theta} = 1$
- $\bullet\,$ Now imagine we see a test dataset with a 0 in it
- Our likelihood of that test dataset is zero, because $1 \hat{\theta} = 0$
 - Serious overfitting to this small dataset
 - If your drug works for everyone in a trial of three people, does it always work?
- Common solution (340 does this for Naive Bayes): Laplace smoothing

$$\hat{\theta}_{\text{Lap}} = \frac{n_1 + 1}{(n_1 + 1) + (n_0 + 1)} = \frac{n_1 + 1}{n + 2}$$

MLE for a dataset with an extra "imaginary" 0 and 1 in it; avoids zero counts
This is a special case of MAP estimation

Following a MAP

• In MLE we maximize the probability of the data given the parameters:

```
\hat{\theta} \in \operatorname*{arg\,max}_{\theta} p(\mathbf{X} \mid \theta)
```

- "Find the θ that makes ${\bf X}$ have the highest probability given θ "
- But...this is kind of weird
- Data could be most likely for a really weird θ : get overfitting
 - If θ allows highly-complex models, could be one that just memorizes the data exactly
- What we really want is the "best" θ
- "After seeing the data ${\bf X},$ which θ is most likely?"

$$\hat{\theta} \in \operatorname*{arg\,max}_{\theta} p(\theta \mid \mathbf{X})$$

• This is called maximum a posteriori (MAP) estimation

Probability review (MAKE SURE YOU KNOW ALL OF THIS)

- Product rule: $Pr(A \cap B) = Pr(A \mid B) Pr(B)$
 - Rearrange into conditional probability formula: $\Pr(A \mid B) = \Pr(A \cap B) / \Pr(B)$
 - Order doesn't matter for joints: $\Pr(A \cap B) = \Pr(B \cap)$
 - Using twice, get Bayes rule: $Pr(A \mid B) = Pr(B \mid A) Pr(A) / Pr(B)$
 - Flips order of conditionals, depending on the marginals $\Pr(A)$ and $\Pr(B)$
- Marginalization rule:
 - If X is discrete: $Pr(A) = \sum_{x} Pr(A \cap (X = x))$
 - If X is continuous: $Pr(A) = \int p(A \cap (X = x)) dx$
- These two rules are close friends:

$$p(a) = \sum_{b} p(a,b) = \sum_{b} p(a \mid b)p(b); \quad p(a \mid b) = \frac{p(b \mid a)p(a)}{p(b)} = \frac{p(b \mid a)p(a)}{\sum_{a'} p(b \mid a')p(a')}$$

- Still work if you condition everything:
 - $p(a, b \mid c) = p(a \mid b, c)p(b \mid c)$ and $p(a \mid c) = \sum_{b} p(a, b \mid c)$
- See probability notes on the course site if you need them (catch up quick!)

Maximum a Posteriori (MAP) estimation

- Posterior probability is "what we believe *after* seeing the data": $p(\theta \mid \mathbf{X})$
- Using Bayes rule,

- $\bullet\,$ To use this, we need a prior distribution for $\theta\,$
 - What we believe about $\boldsymbol{\theta}$ before seeing the data
 - If we're flipping coins: might want $p(\theta)$ higher for values close to/exactly equal to $\frac{1}{2}$
 - For COVID, maybe a separate study estimated Lower Mainland rate at 0.04
 - $\bullet\,$ Then could use a prior that prefers θ not too different from that number
 - In CPSC 340, priors on linear models' weights correspond to regularizers
 - $\bullet\,$ Choose smaller $p(\theta)$ for models more likely to overfit

MAP for Bernoulli with a discrete prior

• So our MAP estimate is $\hat{\theta} = 0.5$

• ... using this choice of prior, which favours a fair coin

• Notice that $p(\mathbf{X})$ didn't matter: it's the same for all θ

Digression: proportional-to (∞) notation

- In math, the notation $f(\theta) \propto g(\theta)$ means "there is some $\kappa > 0$ such that $f(\theta) = \kappa g(\theta)$ for all θ "
- There are many possible $\kappa:$ we have both $10\theta^2\propto\theta^2$ and $\sqrt{\pi}\theta^2\propto\theta^2$
- For probability distributions, if $p \propto g$, the constant κ is unique
- This is because we know that probability distributions sum/integrate to 1:
- Say θ is discrete, and $p(\theta) = \kappa g(\theta) \propto g(\theta)$
 - We know that $\sum_{\theta} p(\theta) = 1$, so $\sum_{\theta} \kappa g(\theta) = 1$: thus $\kappa = 1/(\sum_{\theta} g(\theta))$

• Plugging back in, this means
$$p(\theta) = \frac{g(\theta)}{\sum_{\theta'} g(\theta')}$$

• Plugging in on the previous slide, we could find that e.g.

$$\Pr(\theta = 0.5 \mid \mathbf{X}) \approx \frac{0.06}{0 + 0.01 + 0.06 + 0.03 + 0} \approx 60\%$$

• Using \propto can make our life a lot easier!

Continuous distributions

- $\bullet\,$ Recall that θ could be any number between 0 and 1
- But our previous prior only allowed $\theta \in \{0, 0.25, 0.5, 0.75, 1\}$
- $\bullet\,$ Instead, it'd be nicer to allow any value of θ from [0,1]
- Usually want a continuous distribution
- Convenient to work with their probability density function (pdf)
 - A function $p(\theta)$ with $p(\theta) \geq 0$ and $\int_{-\infty}^{\infty} p(\theta) \mathrm{d}\theta = 1$
 - Note: can have $p(\theta) > 1$ for some $\theta!$
 - Get probabilities by integrating over a range: $\Pr(0.45 \le \theta \le 0.55) = \int_{-\infty}^{0.55} p(\theta) d\theta$

• Probability of any individual
$$\theta$$
 is 0: $\Pr(\theta = 0.5) = \int_{0.5}^{0.5} p(\theta) \, d\theta = 0$

- Note that if $p \propto g$, $1 = \int p(\theta) d\theta = \kappa \int g(\theta) d\theta$
 - Proportionality constant is still unique, $p(\theta) = g(\theta) / \int g(\theta') \mathrm{d} \theta'$

Continuous posteriors

• Recall the posterior, likelihood, prior are related as

 $p(\theta \mid \mathbf{X}) \propto p(\mathbf{X} \mid \theta) p(\theta)$

- \bullet If we have a continuous prior on $\theta, \, p(\theta)$ is a probability density
- But even so, for binary **X**, likelihood $p(\mathbf{X} \mid \theta)$ is a probability:

$$p(\mathbf{X} \mid \theta) = \Pr(X^{(1)} = x^{(1)}, \dots, X^{(n)} = x^{(n)} \mid \theta)$$

• Later, for continuous X, likelihood will also be a density function • $p(\theta \mid \mathbf{X})$ is also a posterior density

What prior to use for Bernoulli?

- Want a continuous distribution on [0,1] that works well with a Bernoulli likelihood
- Most common choice is the beta distribution:

$$p(\theta \mid \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \quad \text{for } 0 \le \theta \le 1, \alpha > 0, \beta > 0$$

- Density is 0 if $\theta \notin [0,1]$
- Looks like a Bernoulli likelihood, with $(\alpha 1)$ ones and $(\beta 1)$ zeroes
- But a key difference: the argument is $\theta,$ not α or β
- Probability distribution over $\theta \in [0,1]$ "probability over probabilities"
- ${\, \bullet \,}$ We know what's hidden in the \propto sign:

$$p(\theta \mid \alpha, \beta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{\int \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \mathrm{d}\theta} \longrightarrow \text{Beta function } B(\alpha, \beta)$$

Beta distribution

• Beta distribution can take many shapes for different α and β : animation

https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg

- Why such a popular choice? Partial reason: it's pretty flexible
 - Can prefer 0.5, 0, 0.23561, towards "0 or 1", can be uniform (lpha=eta=1), \ldots
 - Can't bias towards "0.25 or 0.75", can't say "half the time it'll be *exactly* 0.5", ...

Beta-Bernoulli model

- Beta is "flexible enough," but mostly posterior and MAP have really simple forms
- Posterior when $\theta \sim \text{Beta}(\alpha, \beta)$, $X \sim \text{Bern}(\theta)$:

$$p(\theta \mid \mathbf{X}, \alpha, \beta) \propto p(\mathbf{X} \mid \theta, \alpha, \beta) \ p(\theta \mid \alpha, \beta) = p(\mathbf{X} \mid \theta) p(\theta \mid \alpha, \beta)$$
$$\propto \theta^{n_1} (1 - \theta)^{n_0} \ \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$
$$= \theta^{(n_1 + \alpha) - 1} (1 - \theta)^{(n_0 + \beta) - 1}$$

which is another beta distribution! $(\theta \mid \mathbf{X}, \alpha, \beta) \sim \text{Beta}(\alpha + n_1, \beta + n_0)$

- \bullet Why does it have to be a beta? Because \propto is unique
 - If $p(t) \propto t^{\tilde{\alpha}-1}(1-t)^{\tilde{\beta}-1}$, we necessarily have $t \sim \text{Beta}(\tilde{\alpha}, \tilde{\beta})$
 - Make sure this makes sense to you!

MAP in the Beta-Bernoulli model

- The posterior with a Bernoulli likelihood and beta prior is beta
- That is, with $\tilde{\alpha}=n_1+\alpha$, $\tilde{\beta}=n_0+\beta$,

$$p(\theta \mid \mathbf{X}, \alpha, \beta) = \frac{\theta^{\tilde{\alpha} - 1} (1 - \theta)^{\tilde{\beta} - 1}}{B(\tilde{\alpha}, \tilde{\beta})}$$

• Taking the log and setting the derivative to zero gives

$$\theta = \frac{\tilde{\alpha} - 1}{\tilde{\alpha} + \tilde{\beta} - 2} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2} \quad \text{or} \quad \theta \in \{0, 1\}$$

- If α̃ > 1, β̃ > 1 (always true if n₀, n₁ ≥ 1), then MAP is first expression above
 If α = 1, β = 1 (a uniform prior), we get the MLE
 - If $\alpha=\beta=2$ (mild preference towards 1/2), we get Laplace smoothing
 - If $\alpha = \beta > 2$, we bias more strongly towards $\hat{\theta} = 0.5$ than Laplace smoothing
 - If $\alpha = \beta < 1$, we bias away from 1/2 (towards either 0 or 1)
 - If $\alpha > \beta$, we bias towards 1
 - $\bullet~{\rm As}~n\to\infty,$ the prior stops mattering and ${\rm MAP}\to{\rm MLE}$
 - $\bullet\,$ But using a prior means we behave better when we have relatively small n

Existence of MAP estimate under beta prior

• Our MAP estimate for $\text{Beta}(\alpha,\beta)$ prior and Bernoulli likelihood was

$$\hat{\theta} = \frac{n_1 + \alpha - 1}{(n_1 + \alpha - 1) + (n_0 + \beta - 1)}$$

• We assumed that
$$n_1 + \alpha > 1$$
, $n_0 + \beta > 1$

- But what if we don't have these?
- By checking likelihood, get pretty quickly that:

• If
$$n_1+lpha>1$$
 and $n_0+eta\leq 1$, $\hat{ heta}=1$

- If $n_1 + \alpha \leq 1$ and $n_0 + \beta > 1$, $\hat{\theta} = 0$
- If $n_1 + \alpha < 1$ and $n_0 + \beta < 1$, density is infinite at both $\hat{\theta} = 0$ and $\hat{\theta} = 1$
- If $n_1 + \alpha = 1$ and $n_0 + \beta = 1$, anything in [0, 1] works

Hyper-parameters and (cross)-validation

- \bullet We call the parameters of the prior, α and $\beta,$ the hyper-parameters
 - Parameters that "affect the complexity of the model"
 - 340 examples: degree of a polynomial, depth of a decision tree, neural network architecture, regularization weight, number of rounds of gradient boosting
 - Also anything hard to fit with your learning algorithm, e.g. gradient descent step size
- Trying to fit α and β based on training likelihood doesn't work: would just become MLE by making $\alpha,\beta\to 1$
- Default 340-type approach: use a validation set (or cross-validation)
 - $\bullet~$ Split ${\bf X}$ into "training" and "validation" sets
 - For different values of α and β :
 - Find the MAP on the training set, evaluate its validation likelihood
 - Pick the hyper-parameters with highest validation likelihood
 - Approximates maximizing the held-out generalization error on totally-new data
- 340 covers many things that can go wrong, like overfitting to the validation set
 - Happens all the time, including in UBC PhD theses and in top conferences!
- CPSC 532D covers this more mathematically :)

Summary

- Maximum likelihood estimation (MLE):
 - Estimates θ by finding the setting that maximizes the data likelihood, $p(\mathbf{X} \mid \theta)$
 - For Bernoulli, just $\hat{\theta} = (number \text{ of } 1s)/(number \text{ of examples})$
- Maximum a posteriori (MAP) estimation:
 - Maximizes posterior probability of parameters given data
 - Can avoid bad behaviour of MLE, but requires choosing a prior
- \bullet Probability review: product rule, marginalization, Bayes rule, α for probabilities
- Beta distribution: "cooperates well" with Bernoulli likelihood

• Next time: everything(ish) from 340 but with probabilities