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https://cs.ubc.ca/~dsuth/440/24w2

Admin Qd/miﬂ

Sign up for Piazza from the link on cs.ubc.ca/~dsuth/440

Lecture recordings are linked from Piazza

CBTF quiz booking should be available by the end of this week

Will post instructions on Piazza once it's available

Again, | expect everyone to get in off the waitlist
o But it'll take a bit to confirm and sort through everything

@ Assignment 1 will be out tonight
@ If you're on the waitlist (and want to join the class), do the assignment
o Office hours starting next week — will link calendar from Piazza
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cs.ubc.ca/~dsuth/440

Last time: binary density estimation

@ Density estimation: going from data — probability model
@ Inference: “doing things” with a probability model
o Computing probabilities of “derived events”
Computing likelihoods
Finding the mode
Sampling

@ Bernoulli distribution: simple parameterized probability model for binary data
e If X ~ Bern(6), then for x € {0,1} we have

0 ife=1

:eﬂ(le) 1-0 1(z=0) —0%(1 - 9"
1—-6 ifxz=0 ( ) ( )

Pr(X:x\H):{

@ Also write this as p(x | 0) or even p(z), if context is clear
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Outline

@ Maximum likelihood estimation (MLE)
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MLE: binary density estimation

@ We know how to use a Bernoulli model (inference) for a bunch of tasks

@ How can we train a Bernoulli model (learning) from data?

1
0
X=|o] X5 6=04
1
0
e Recall X collects the data points (1, ... z(®)

o We assume these are iid samples from a random variable X

@ Classic way: maximum likelihood estimation (MLE)
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The likelihood function

@ The likelihood function is a function from parameters 6
to the probability (density) of the data under those parameters

o L(0) =p(X|8), which for Bernoullis we saw is ™ (1 — )"0
@ Here's the likelihood for X = (1,0, 1), i.e. 6%(1 — 0):

< 0.1

~—

0 01 02 03 04 05 06 07 08 09 1
0

i1
L(0) =0= L(1): X is impossible for § = 0 or 1, since we have some 1s and some 0Os

Maximum is at § = 2/3 — back to this in a second
o Likelihood is not a distribution over 0, i.e. [ £(0)df # 1
o We do have [p(X | 6#)dX =1, but that's not really relevant if we only have one X
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Maximizing the likelihood

e Maximum likelihood estimation (MLE): pick the 6 with the highest likelihood
e "Find the parameters 6 where the data X would have been most likely to be seen”

~on n
@ For Bernoullis, the MLE is 8 = St
n ny +ng
o "If you flip a coin 50 times and get 23 heads, guess that Pr(heads) =
o Code: theta = np.mean(X) takes O(n) time

23n
50

@ Let's derive this result

e It's going to seem overly complicated for this really simple result
o But the steps we use will be applicable to much harder situations
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MLE for Bernoullis

@ Notationally, we can write maximizing the likelihood as

0 € arg max £() = argmax 0™ (1 — §)"°
0 0

argmax, f(x) means “the set of x that maximize f": might be more than one!
Usually, instead of maximizing the likelihood we maximize the log-likelihood
e Same solution set, since if & > (3 then loga > log § (log is strictly monotonic)
@ See “Max and Argmax” notes from the course site

o Usually easier mathematically (also numerically much more stable)
0 € argmax ny log(#) + nolog(1 — 0)
0

@ The maximum will have a zero derivative:

__ M

=% 129
e and 50711(1—0):noé?ornl:(7”L0+nl)6?or9:ﬂ
N—_—— n
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https://www.cs.ubc.ca/~schmidtm/Courses/Notes/max.pdf

MLE for Bernoullis

e We're looking for
0 € arg maxlog £(0) = arg max n; log(#) + ng log(1 — 6)
0 0

n1 — n
no+ni n

Derivative of njlog(#) + nglog(1 — @) is zero only if § =

But is this actually a maximum?

Yes: it's a concave function (second derivative is negative): —%3 — = 9)2 <0

What if ny = 0 or ng = 07 Then we just divided by zero!

log(0) = —oo makes things complicated; go back to plain likelihood 6™ (1 — )"0
If (n1 =0, ng > 0), find @ =0; if (n; >0,n9=0), get =1

e So same ny/n formula still works
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MLE for binary data estimation

@ Given iid binary data X, we can train/learn a probability model with MLE:

>

X

Qb>
Il
3\*—‘

o Given this Bern(f) model, can then ask inference questions

e "If | eat lunch with three randomly selected UBC students, what's the probability
any of them are COVID-positive?”

e One minus the probability none of them are: 1 — (1 —0)> &~ (1 — (1 — 0)%)
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Outline

© MAP estimation

11/27



Problems with MLE

@ Often (including here), the MLE is asymptotically optimal as n — oo

o In particular, if we see X ~ Bern(6*), then 0 converges to the true 8* as n — oo
o These kinds of properties are covered in honours/grad stat classes

But for small n, it can do really bad things
o Before we considered () = 1,22 = 0,23) =1, with Oy ~ 0.67
If we see an z(*) =1, we get an MLE of 0.75
If we see an () = 0, get an MLE of 0.5
If you get an “unlucky” X, the MLE might be really bad

For Bernoullis, this sensitivity decreases quickly with n

But for more complex models, the MLE can tend to overfit
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Problems with MLE
Imagine instead we'd seen a (barely-different) dataset, D = 1, (2 = 1, 3 =1
Then the MLE is § = 1

Now imagine we see a test dataset with a 0 in it

Our likelihood of that test dataset is zero, because 1 — 6 =0

e Serious overfitting to this small dataset
e If your drug works for everyone in a trial of three people, does it always work?

e Common solution (340 does this for Naive Bayes): Laplace smoothing

- ny +1 o np+1
e = i+ D+ (no+1) n+2

(]

MLE for a dataset with an extra “imaginary” 0 and 1 in it; avoids zero counts

This is a special case of MAP estimation
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Following a MAP

@ In MLE we maximize the probability of the data given the parameters:

0 € argmaxp(X | 6)
0

“Find the 0 that makes X have the highest probability given 6"

But. .. this is kind of weird
Data could be most likely for a really weird 0: get overfitting
o If 6 allows highly-complex models, could be one that just memorizes the data exactly

What we really want is the “best” 6
“After seeing the data X, which € is most likely?"

0 € argmaxp(0 | X)
0

@ This is called maximum a posteriori (MAP) estimation




Probability review (MAKE SURE YOU KNOW ALL OF THIS)  Veview

e Product rule: Pr(An B) = Pr(A | B) Pr(B)
o Rearrange into conditional probability formula: Pr(A | B) = Pr(AN B)/Pr(B)
o Order doesn't matter for joints: Pr(AN B) = Pr(BN)
o Using twice, get Bayes rule: Pr(A | B) = Pr(B | A)Pr(A)/ Pr(B)
o Flips order of conditionals, depending on the marginals Pr(A) and Pr(B)
e Marginalization rule:
o If X is discrete: Pr(A) =5 Pr(An(X =ux))
o If X is continuous: Pr(A) = [p(AN (X =2z)) dz
@ These two rules are close friends:

p(a) = Zp(a, b) = Zp(a | b)p(b);  pla|b) = p(b|a)p(a)  p(b]|a)p(a)
b b

pb) Y. p(|d)p(a)

@ Still work if you condition everything:
o pla,b|c)=pla|bc)p(b|c) and plalc)=73,p(a,blc)

@ See probability notes on the course site if you need them (catch up quick!)
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https://www.cs.ubc.ca/~schmidtm/Courses/Notes/probability.pdf

Maximum a Posteriori (MAP) estimation

@ Posterior probability is “what we believe after seeing the data”: p(6 | X)

o Using Bayes rule,

_ p(X | 0)p(0)
p(0 w /ogp(X | 0) p(9)\
Constant in terms of 6 Likelihood Prior

@ To use this, we need a prior distribution for 6

o What we believe about 6 before seeing the data
o If we're flipping coins: might want p(6) higher for values close to/exactly equal to %
e For COVID, maybe a separate study estimated Lower Mainland rate at 0.04

@ Then could use a prior that prefers 6 not too different from that number
e In CPSC 340, priors on linear models’ weights correspond to regularizers
@ Choose smaller p(6) for models more likely to overfit
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MAP for Bernoulli with a discrete prior

e Consider z(1) =1, 23 =1, 23 =0, where MLE is %
Using a prior that looks like Gives posterior proportional to

Pr(0=0 )=0.05 Pr(e_o I X)x (0 -0 -1 )-005=0
Pr(f = 0.25) = 0.2 Pr(6 =0.25 | X)  (0.25-0.25-0.75) - 0.2 ~ 0.01
Pr( =05 )=05 Pr(f =05 | X) o (0.5 -0.5 -0.5)-0.5 ~0.06
Pr(6 = 0.75) = 0.2 Pr(6 =0.75 | X)  (0.75-0.75 - 0.25) - 0.2 ~ 0.03
Pr(f=1 )=0.05 Pr@=1 [X)x(1 -1 -0 )-005=0

e So our MAP estimate is § = 0.5
e ...using this choice of prior, which favours a fair coin

@ Notice that p(X) didn't matter: it's the same for all §
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Digression: proportional-to (o) notation
@ In math, the notation f(6) x g(6) means
“there is some x > 0 such that f(0) = rg(0) for all "
@ There are many possible x: we have both 100% oc #2 and /70? o 62

For probability distributions, if p < g, the constant « is unique

This is because we know that probability distributions sum/integrate to 1:
Say 0 is discrete, and p(0) = kg(0) x g(0)
o We know that > ,p(0) =1,s0 > ,kg(0) =1: thus k =1/ (>, g(6))

. L 9(0)
o Plugging back in, this means p(0) = —<———~+
O =5, 0@
@ Plugging in on the previous slide, we could find that e.g.
0.06
Pr(f=05|X) ~ ~ 60%

0+ 0.01 +0.06 + 0.03 40
Using o< can make our life a lot easier!
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: T o
Continuous distributions Ceview

Recall that 6 could be any number between 0 and 1
But our previous prior only allowed 6 € {0,0.25,0.5,0.75,1}
Instead, it'd be nicer to allow any value of 6 from [0, 1]

Usually want a continuous distribution
Convenient to work with their probability density function (pdf)
o A function p(6) with p(f) >0 and [~ p(6)d6 = 1
o Note: can have p(f) > 1 for some 6!

0.55

o Get probabilities by integrating over a range: Pr(0.45 < 6 < 0.55) = / p(0)do
0.45

0.5
e Probability of any individual 6 is 0: Pr(f = 0.5) = / p(6)déd =0
0.5

Note that if px g, 1 = [p(#)df =k [ g(#)d
o Proportionality constant is still unique, p(8) = g(8)/ [ g(6')d¢’
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Continuous posteriors

Recall the posterior, likelihood, prior are related as

p(0 | X) o< p(X | 0) p(6)

If we have a continuous prior on 6, p(6) is a probability density

But even so, for binary X, likelihood p(X | #) is a probability:

p(X ] 0)=Pr(XM =20 x0) =z g

e Later, for continuous X, likelihood will also be a density function

p(0 | X) is also a posterior density
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What prior to use for Bernoulli?

e Want a continuous distribution on [0, 1] that works well with a Bernoulli likelihood

@ Most common choice is the beta distribution:

(0], ) x 0211 —0)P1 for0<h<1,a>0,6>0

Density is 0 if 6 ¢ [0, 1]

Looks like a Bernoulli likelihood, with (av — 1) ones and (8 — 1) zeroes
But a key difference: the argument is 6, not a or 3

Probability distribution over 8 € [0, 1] — “probability over probabilities”

@ We know what's hidden in the o sign:

00(71( 0)671
J‘acx 1 9 B-140 Y

p(f | a,B) =

Beta function B(«, 3)
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Beta distribution

@ Beta distribution can take many shapes for different o and 3: animation
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https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg
@ Why such a popular choice? Partial reason: it's pretty flexible
o Can prefer 0.5, 0, 0.23561, towards “0 or 1", can be uniform (a =8 =1), ...
e Can't bias towards “0.25 or 0.75", can't say “half the time it'll be exactly 0.5", ...
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https://upload.wikimedia.org/wikipedia/commons/7/78/PDF_of_the_Beta_distribution.gif
https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg

Beta-Bernoulli model
@ Beta is “flexible enough,” but mostly posterior and MAP have really simple forms
@ Posterior when 6 ~ Beta(a, ), X ~ Bern(f):

PO X, a,B8) o p(X | 0,0, 5) p(0 | o, B) = p(X [ )p(0 | @, B)
o 0™ (1 —6)"™ 6>~ (1 —6)° !
_ 9(m+a)71(1 _ 9)(no+ﬁ)*1

which is another beta distribution! (6 | X, «, 8) ~ Beta(a + n1, 8 + no)
@ Why does it have to be a beta? Because o< is unique

o If p(t) oc t* (1 — t)B_l, we necessarily have t ~ Beta(d, 3)
o Make sure this makes sense to you!
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MAP in the Beta-Bernoulli model

@ The posterior with a Bernoulli likelihood and beta prior is beta
@ Thatis, with @ =n1 + a, 8 =ng + 5,

3-1(1 — )P
p(e ‘ X,Oé,ﬂ) = %
B(a, B)
@ Taking the log and setting the derivative to zero gives
v —1 -1
[ — mta or 9€{0,1}

Ga+5—-2 n+a+p-2

o If @ >1, B >1 (always true if ng,n; > 1), then MAP is first expression above
If « =1, 8 =1 (a uniform prior), we get the MLE
If « = 8 =2 (mild preference towards 1/2), we get Laplace smoothing
If « = > 2, we bias more strongly towards 6 = 0.5 than Laplace smoothing
If « =8 < 1, we bias away from 1/2 (towards either 0 or 1)
If « > /3, we bias towards 1
As n — o0, the prior stops mattering and MAP — MLE
@ But using a prior means we behave better when we have relatively small n
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Existence of MAP estimate under beta prior

@ Our MAP estimate for Beta(«a, 3) prior and Bernoulli likelihood was

nm+a-—1

= mta-Dtm+i-D)

o We assumed that ny +a>1,ng+8>1

@ But what if we don’t have these?

@ By checking likelihood, get pretty quickly that:

If ny +a > 1 and n0+5§1,é:1
frni+a<landng+8>160=0

If n1 +a <1 and ng+ 8 < 1, density is infinite at both f=0and =1
If n1 + a =1 and ng + 8 = 1, anything in [0, 1] works
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Hyper-parameters and (cross)-validation @gf

@ We call the parameters of the prior, a and 3, the hyper-parameters
o Parameters that “affect the complexity of the model”
@ 340 examples: degree of a polynomial, depth of a decision tree, neural network
architecture, regularization weight, number of rounds of gradient boosting
e Also anything hard to fit with your learning algorithm, e.g. gradient descent step size
@ Trying to fit & and 3 based on training likelihood doesn’t work: would just
become MLE by making o, 8 — 1
o Default 340-type approach: use a validation set (or cross-validation)
e Split X into “training” and “validation” sets
e For different values of o and f3:
o Find the MAP on the training set, evaluate its validation likelihood
e Pick the hyper-parameters with highest validation likelihood
o Approximates maximizing the held-out generalization error on totally-new data
@ 340 covers many things that can go wrong, like overfitting to the validation set
e Happens all the time, including in UBC PhD theses and in top conferences!
@ CPSC 532D covers this more mathematically :)
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Summary

Maximum likelihood estimation (MLE):
o Estimates 6 by finding the setting that maximizes the data likelihood, p(X | 6)
e For Bernoulli, just § = (number of 1s)/(number of examples)

Maximum a posteriori (MAP) estimation:

e Maximizes posterior probability of parameters given data
e Can avoid bad behaviour of MLE, but requires choosing a prior

Probability review: product rule, marginalization, Bayes rule, o for probabilities

Beta distribution: “cooperates well” with Bernoulli likelihood

o Next time: everything(ish) from 340 but with probabilities
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