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Admin

Sign up for Piazza from the link on cs.ubc.ca/~dsuth/440

Lecture recordings are linked from Piazza

CBTF quiz booking should be available by the end of this week

Will post instructions on Piazza once it’s available

Again, I expect everyone to get in off the waitlist

But it’ll take a bit to confirm and sort through everything

Assignment 1 will be out tonight

If you’re on the waitlist (and want to join the class), do the assignment

Office hours starting next week – will link calendar from Piazza
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Last time: binary density estimation

Density estimation: going from data → probability model

Inference: “doing things” with a probability model

Computing probabilities of “derived events”
Computing likelihoods
Finding the mode
Sampling

Bernoulli distribution: simple parameterized probability model for binary data

If X ∼ Bern(θ), then for x ∈ {0, 1} we have

Pr(X = x | θ) =

{
θ if x = 1

1− θ if x = 0
= θ1(x=1)(1− θ)1(x=0) = θx(1− θ)1−x

Also write this as p(x | θ) or even p(x), if context is clear
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Outline

1 Maximum likelihood estimation (MLE)

2 MAP estimation
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MLE: binary density estimation

We know how to use a Bernoulli model (inference) for a bunch of tasks

How can we train a Bernoulli model (learning) from data?

X =


1
0
0
1
0

 MLE−−−→ θ = 0.4

Recall X collects the data points x(1), . . . , x(n)

We assume these are iid samples from a random variable X

Classic way: maximum likelihood estimation (MLE)
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The likelihood function

The likelihood function is a function from parameters θ
to the probability (density) of the data under those parameters

L(θ) = p(X | θ), which for Bernoullis we saw is θn1(1− θ)n0

Here’s the likelihood for X = (1, 0, 1), i.e. θ2(1− θ):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

θ

L
(θ
)

L(0.5) = p(1, 0, 1 | θ = 0.5) = 1
2 · 1

2 · 1
2 = 0.125

L(0.75) = 3
4 · 3

4 · 1
4 ≈ 0.14: X is more likely for θ = 0.75 than θ = 0.5

L(0) = 0 = L(1): X is impossible for θ = 0 or 1, since we have some 1s and some 0s
Maximum is at θ = 2/3 – back to this in a second

Likelihood is not a distribution over θ, i.e.
∫
L(θ) dθ ̸= 1

We do have
∫
p(X | θ) dX = 1, but that’s not really relevant if we only have one X
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Maximizing the likelihood

Maximum likelihood estimation (MLE): pick the θ with the highest likelihood

“Find the parameters θ where the data X would have been most likely to be seen”

For Bernoullis, the MLE is θ̂ =
n1

n
=

n1

n1 + n0

“If you flip a coin 50 times and get 23 heads, guess that Pr(heads) = 23
50”

Code: theta = np.mean(X) takes O(n) time

Let’s derive this result

It’s going to seem overly complicated for this really simple result
But the steps we use will be applicable to much harder situations
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MLE for Bernoullis
Notationally, we can write maximizing the likelihood as

θ̂ ∈ argmax
θ

L(θ) = argmax
θ

θn1(1− θ)n0

argmaxx f(x) means “the set of x that maximize f”: might be more than one!
Usually, instead of maximizing the likelihood we maximize the log-likelihood

Same solution set, since if α > β then logα > log β (log is strictly monotonic)
See “Max and Argmax” notes from the course site

Usually easier mathematically (also numerically much more stable)

θ̂ ∈ argmax
θ

n1 log(θ) + n0 log(1− θ)

The maximum will have a zero derivative:

0 =
n1

θ
− n0

1− θ

and so n1(1− θ) = n0θ or n1 = (n0 + n1)︸ ︷︷ ︸
n

θ or θ =
n1

n
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MLE for Bernoullis

We’re looking for

θ̂ ∈ argmax
θ

logL(θ) = argmax
θ

n1 log(θ) + n0 log(1− θ)

Derivative of n1 log(θ) + n0 log(1− θ) is zero only if θ = n1
n0+n1

= n1
n

But is this actually a maximum?

Yes: it’s a concave function (second derivative is negative): −n1
θ2

− n0
(1−θ)2

≤ 0

What if n1 = 0 or n0 = 0? Then we just divided by zero!

log(0) = −∞ makes things complicated; go back to plain likelihood θn1(1− θ)n0

If (n1 = 0, n0 > 0), find θ = 0; if (n1 > 0, n0 = 0), get θ = 1

So same n1/n formula still works
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MLE for binary data estimation

Given iid binary data X, we can train/learn a probability model with MLE:

X
MLE−−−→ θ̂ =

1

n

n∑
i=1

x(i)

Given this Bern(θ̂) model, can then ask inference questions
“If I eat lunch with three randomly selected UBC students, what’s the probability
any of them are COVID-positive?”

One minus the probability none of them are: 1− (1− θ)3 ≈ (1− (1− θ̂)3)
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Outline

1 Maximum likelihood estimation (MLE)

2 MAP estimation
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Problems with MLE

Often (including here), the MLE is asymptotically optimal as n → ∞
In particular, if we see X ∼ Bern(θ∗), then θ̂ converges to the true θ∗ as n → ∞
These kinds of properties are covered in honours/grad stat classes

But for small n, it can do really bad things

Before we considered x(1) = 1, x(2) = 0, x(3) = 1, with θ̂MLE ≈ 0.67
If we see an x(4) = 1, we get an MLE of 0.75
If we see an x(4) = 0, get an MLE of 0.5
If you get an “unlucky” X, the MLE might be really bad

For Bernoullis, this sensitivity decreases quickly with n

But for more complex models, the MLE can tend to overfit
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Problems with MLE

Imagine instead we’d seen a (barely-different) dataset, x(1) = 1, x(2) = 1, x(3) = 1

Then the MLE is θ̂ = 1

Now imagine we see a test dataset with a 0 in it

Our likelihood of that test dataset is zero, because 1− θ̂ = 0

Serious overfitting to this small dataset
If your drug works for everyone in a trial of three people, does it always work?

Common solution (340 does this for Naive Bayes): Laplace smoothing

θ̂Lap =
n1 + 1

(n1 + 1) + (n0 + 1)
=

n1 + 1

n+ 2

MLE for a dataset with an extra “imaginary” 0 and 1 in it; avoids zero counts

This is a special case of MAP estimation
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Following a MAP
In MLE we maximize the probability of the data given the parameters:

θ̂ ∈ argmax
θ

p(X | θ)

“Find the θ that makes X have the highest probability given θ”

But. . . this is kind of weird

Data could be most likely for a really weird θ: get overfitting
If θ allows highly-complex models, could be one that just memorizes the data exactly

What we really want is the “best” θ

“After seeing the data X, which θ is most likely?”

θ̂ ∈ argmax
θ

p(θ | X)

This is called maximum a posteriori (MAP) estimation
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Probability review (MAKE SURE YOU KNOW ALL OF THIS)

Product rule: Pr(A ∩B) = Pr(A | B) Pr(B)
Rearrange into conditional probability formula: Pr(A | B) = Pr(A ∩B)/Pr(B)
Order doesn’t matter for joints: Pr(A ∩B) = Pr(B∩)
Using twice, get Bayes rule: Pr(A | B) = Pr(B | A) Pr(A)/Pr(B)

Flips order of conditionals, depending on the marginals Pr(A) and Pr(B)

Marginalization rule:
If X is discrete: Pr(A) =

∑
x Pr (A ∩ (X = x))

If X is continuous: Pr(A) =
∫
p (A ∩ (X = x)) dx

These two rules are close friends:

p(a) =
∑
b

p(a, b) =
∑
b

p(a | b)p(b); p(a | b) = p(b | a)p(a)
p(b)

=
p(b | a)p(a)∑
a′ p(b | a′)p(a′)

Still work if you condition everything:
p(a, b | c) = p(a | b, c)p(b | c) and p(a | c) =

∑
b p(a, b| c)

See probability notes on the course site if you need them (catch up quick!)
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Maximum a Posteriori (MAP) estimation

Posterior probability is “what we believe after seeing the data”: p(θ | X)

Using Bayes rule,

p(θ | X) =
p(X | θ)p(θ)

p(X)
∝ p(X | θ) p(θ)

Constant in terms of θ Likelihood Prior

To use this, we need a prior distribution for θ

What we believe about θ before seeing the data
If we’re flipping coins: might want p(θ) higher for values close to/exactly equal to 1

2
For COVID, maybe a separate study estimated Lower Mainland rate at 0.04

Then could use a prior that prefers θ not too different from that number

In CPSC 340, priors on linear models’ weights correspond to regularizers

Choose smaller p(θ) for models more likely to overfit
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MAP for Bernoulli with a discrete prior

Consider x(1) = 1, x(2) = 1, x(3) = 0, where MLE is 2
3

Using a prior that looks like Gives posterior proportional to
Pr(θ = 0 ) = 0.05 Pr(θ = 0 | X) ∝ (0 · 0 · 1 ) · 0.05 = 0
Pr(θ = 0.25) = 0.2 Pr(θ = 0.25 | X) ∝ (0.25 · 0.25 · 0.75) · 0.2 ≈ 0.01
Pr(θ = 0.5 ) = 0.5 Pr(θ = 0.5 | X) ∝ (0.5 · 0.5 · 0.5 ) · 0.5 ≈ 0.06
Pr(θ = 0.75) = 0.2 Pr(θ = 0.75 | X) ∝ (0.75 · 0.75 · 0.25) · 0.2 ≈ 0.03
Pr(θ = 1 ) = 0.05 Pr(θ = 1 | X) ∝ (1 · 1 · 0 ) · 0.05 = 0

So our MAP estimate is θ̂ = 0.5

. . . using this choice of prior, which favours a fair coin

Notice that p(X) didn’t matter: it’s the same for all θ
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Digression: proportional-to (∝) notation
In math, the notation f(θ) ∝ g(θ) means
“there is some κ > 0 such that f(θ) = κg(θ) for all θ”
There are many possible κ: we have both 10θ2 ∝ θ2 and

√
πθ2 ∝ θ2

For probability distributions, if p ∝ g, the constant κ is unique

This is because we know that probability distributions sum/integrate to 1:
Say θ is discrete, and p(θ) = κg(θ) ∝ g(θ)

We know that
∑

θ p(θ) = 1, so
∑

θ κg(θ) = 1: thus κ = 1/ (
∑

θ g(θ))

Plugging back in, this means p(θ) =
g(θ)∑
θ′ g(θ′)

Plugging in on the previous slide, we could find that e.g.

Pr(θ = 0.5 | X) ≈ 0.06

0 + 0.01 + 0.06 + 0.03 + 0
≈ 60%

Using ∝ can make our life a lot easier!
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Continuous distributions

Recall that θ could be any number between 0 and 1

But our previous prior only allowed θ ∈ {0, 0.25, 0.5, 0.75, 1}
Instead, it’d be nicer to allow any value of θ from [0, 1]

Usually want a continuous distribution
Convenient to work with their probability density function (pdf)

A function p(θ) with p(θ) ≥ 0 and
∫∞
−∞ p(θ)dθ = 1

Note: can have p(θ) > 1 for some θ!

Get probabilities by integrating over a range: Pr(0.45 ≤ θ ≤ 0.55) =

∫ 0.55

0.45

p(θ) dθ

Probability of any individual θ is 0: Pr(θ = 0.5) =

∫ 0.5

0.5

p(θ) dθ = 0

Note that if p ∝ g, 1 =
∫
p(θ)dθ = κ

∫
g(θ)dθ

Proportionality constant is still unique, p(θ) = g(θ)/
∫
g(θ′)dθ′
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Continuous posteriors

Recall the posterior, likelihood, prior are related as

p(θ | X) ∝ p(X | θ) p(θ)

If we have a continuous prior on θ, p(θ) is a probability density

But even so, for binary X, likelihood p(X | θ) is a probability:

p(X | θ) = Pr(X(1) = x(1), . . . , X(n) = x(n) | θ)

Later, for continuous X, likelihood will also be a density function

p(θ | X) is also a posterior density
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What prior to use for Bernoulli?
Want a continuous distribution on [0, 1] that works well with a Bernoulli likelihood

Most common choice is the beta distribution:

p(θ | α, β) ∝ θα−1(1− θ)β−1 for 0 ≤ θ ≤ 1, α > 0, β > 0

Density is 0 if θ /∈ [0, 1]
Looks like a Bernoulli likelihood, with (α− 1) ones and (β − 1) zeroes
But a key difference: the argument is θ, not α or β
Probability distribution over θ ∈ [0, 1] – “probability over probabilities”

We know what’s hidden in the ∝ sign:

p(θ | α, β) = θα−1(1− θ)β−1∫
θα−1(1− θ)β−1dθ

Beta function B(α, β)
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Beta distribution
Beta distribution can take many shapes for different α and β: animation

https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg

Why such a popular choice? Partial reason: it’s pretty flexible
Can prefer 0.5, 0, 0.23561, towards “0 or 1”, can be uniform (α = β = 1), . . .
Can’t bias towards “0.25 or 0.75”, can’t say “half the time it’ll be exactly 0.5”, . . .
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Beta-Bernoulli model

Beta is “flexible enough,” but mostly posterior and MAP have really simple forms

Posterior when θ ∼ Beta(α, β), X ∼ Bern(θ):

p(θ | X, α, β) ∝ p(X | θ, α, β) p(θ | α, β) = p(X | θ)p(θ | α, β)
∝ θn1(1− θ)n0 θα−1(1− θ)β−1

= θ(n1+α)−1(1− θ)(n0+β)−1

which is another beta distribution! (θ | X, α, β) ∼ Beta(α+ n1, β + n0)

Why does it have to be a beta? Because ∝ is unique

If p(t) ∝ tα̃−1(1− t)β̃−1, we necessarily have t ∼ Beta(α̃, β̃)
Make sure this makes sense to you!
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MAP in the Beta-Bernoulli model
The posterior with a Bernoulli likelihood and beta prior is beta
That is, with α̃ = n1 + α, β̃ = n0 + β,

p(θ | X, α, β) =
θα̃−1(1− θ)β̃−1

B(α̃, β̃)

Taking the log and setting the derivative to zero gives

θ =
α̃− 1

α̃+ β̃ − 2
=

n1 + α− 1

n+ α+ β − 2
or θ ∈ {0, 1}

If α̃ > 1, β̃ > 1 (always true if n0, n1 ≥ 1), then MAP is first expression above
If α = 1, β = 1 (a uniform prior), we get the MLE
If α = β = 2 (mild preference towards 1/2), we get Laplace smoothing

If α = β > 2, we bias more strongly towards θ̂ = 0.5 than Laplace smoothing
If α = β < 1, we bias away from 1/2 (towards either 0 or 1)
If α > β, we bias towards 1
As n → ∞, the prior stops mattering and MAP → MLE

But using a prior means we behave better when we have relatively small n
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Existence of MAP estimate under beta prior

Our MAP estimate for Beta(α, β) prior and Bernoulli likelihood was

θ̂ =
n1 + α− 1

(n1 + α− 1) + (n0 + β − 1)

We assumed that n1 + α > 1, n0 + β > 1

But what if we don’t have these?

By checking likelihood, get pretty quickly that:

If n1 + α > 1 and n0 + β ≤ 1, θ̂ = 1
If n1 + α ≤ 1 and n0 + β > 1, θ̂ = 0
If n1 + α < 1 and n0 + β < 1, density is infinite at both θ̂ = 0 and θ̂ = 1
If n1 + α = 1 and n0 + β = 1, anything in [0, 1] works
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Hyper-parameters and (cross)-validation

We call the parameters of the prior, α and β, the hyper-parameters
Parameters that “affect the complexity of the model”

340 examples: degree of a polynomial, depth of a decision tree, neural network
architecture, regularization weight, number of rounds of gradient boosting

Also anything hard to fit with your learning algorithm, e.g. gradient descent step size

Trying to fit α and β based on training likelihood doesn’t work: would just
become MLE by making α, β → 1
Default 340-type approach: use a validation set (or cross-validation)

Split X into “training” and “validation” sets
For different values of α and β:

Find the MAP on the training set, evaluate its validation likelihood

Pick the hyper-parameters with highest validation likelihood
Approximates maximizing the held-out generalization error on totally-new data

340 covers many things that can go wrong, like overfitting to the validation set
Happens all the time, including in UBC PhD theses and in top conferences!

CPSC 532D covers this more mathematically :)
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Summary

Maximum likelihood estimation (MLE):

Estimates θ by finding the setting that maximizes the data likelihood, p(X | θ)
For Bernoulli, just θ̂ = (number of 1s)/(number of examples)

Maximum a posteriori (MAP) estimation:

Maximizes posterior probability of parameters given data
Can avoid bad behaviour of MLE, but requires choosing a prior

Probability review: product rule, marginalization, Bayes rule, α for probabilities

Beta distribution: “cooperates well” with Bernoulli likelihood

Next time: everything(ish) from 340 but with probabilities
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