
Sequence Models: RNNs
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 13

https://cs.ubc.ca/~dsuth/440/24w2


Hidden Markov Models for Text Processing
Recall hidden Markov models, with a hidden Markov chain + observations

z1 z2 z3 z4

x1 x2 x3 x4

One (formerly) common application: part-of-speech tagging

Input is a sequence of words
Output is a categorical label for each word

Usual analyses of English have up to about 40 categories
Some dependencies (adverbs need to be “attached” to a verb)

2 / 13



Review: representing words

How do we represent words in a useful way?

One common approach: one-hot
Choose your vocabulary of V possible words
Give the first word the feature vector (1, 0, 0, . . . , 0) ∈ RV

Give the second word the feature vector (0, 1, 0, . . . , 0) ∈ RV , . . .

XW for a V × k matrix W is

−w1−
...

−wn−


Usually implemented as a lookup table (torch.nn.Embedding)

Almost the same: choose uniformly from the unit sphere in Rk

Dot products will be almost zero even with k ≪ V (Johnson–Lindenstrauss lemma)

Latent-factor models like word2vec, GloVe, fasttext
Unsupervised learning of features in Rk that try to “mean something”

3 / 13



Individual-word classifier

We could try to do part-of-speech tagging by looking at one word at a time

Implement as nearest-neighbour, linear classifier, neural net. . .

POS(she) = PRP
POS(desert) = . . .

“Don’t desert me in the desert!”

Problem: this isn’t always enough information to tell!

4 / 13



Hidden Markov-type model for part-of-speech tagging

Hidden states are our part-of-speech tags

p(determiner → adjective) = 0.27, p(determiner → noun) = 0.51

Given a fully-labeled dataset, MLE/MAP training is easy

Training a fully-observed categorical DAG: just count all conditionals

To classify, run a variant of Viterbi decoding to find most likely sequence of tags

Full inference can be helpful: “The old man the boat.”

Problem: the Markov structure / number of states might not be sufficient

Markov structure doesn’t understand many grammatical constraints

Example: often we want to distinguish proper nouns vs. normal ones, but:

“Turkey will make a good sandwich.”
“Turkey will host a political conference.”

5 / 13



More complex graphical models
We could draw a more complex graphical model:

z1 z2 z3 z4

y1 y2 y3 y4

x1 x2 x3 x4

xt are the words, always observed
yt are the POS tags, observed in training but not at inference time
ht are always-hidden states that contain POS information “plus more”

It’ll be hard to do this well with discrete states, tabular transitions

What about continuous state with deep net-parameterized transitions?

Can do this generative model, but learning and inference are now both hard
6 / 13



RNNs
Things are a little easier if we turn to a discriminative model

z0 z1 z2 z3 z4

y1 y2 y3 y4

x1 x2 x3 x4

Usually the hidden states zt = fi(xt, zt−1) are given by deterministic neural nets

The outputs yt ∼ Cat(gi(zi)) have probabilities parameterized by another net

f and g are usually time-invariant (homogeneous): ft = f , gt = g
Allows us to handle sequences of different lengths
Many fewer parameters, or equivalently can tie many parameters
Will be harder (but not impossible) to have behaviour vary through time

7 / 13



RNN inference

No need to “go backwards” on any arrows, so inference is easy:

z0 z1 z2 z3 z4

y1 y2 y3 y4

x1 x2 x3 x4

Typically z0 is a fixed vector

Compute z1 = f(x1, z0) with a network forward pass; sample y1 ∼ Cat(g(z1))

Compute z2 = f(x2, z1) with a network forward pass; sample y2 ∼ Cat(g(z2))

. . .

Constant cost per item in the sequence, but need to go sequentially

8 / 13



RNN learning

Training data: n sequences (x
(i)
1 , . . . , x

(i)

T (i)), (y
(i)
1 , . . . , y

(i)

T (i))

Can train by minimizing (possibly regularized) NLL:

argmin
f,g

−
n∑

i=1

T (i)∑
t=1

log p(y
(i)
t | x(i)1:t, f, g)

Computing gradients is sometimes called backpropagation through time

Exactly the same as usual backprop/autodiff, as long as you handle parameter tying

Usually trained with SGD; all the usual deep learning challenges, plus. . .

9 / 13



RNN learning: extra challenges

Memory cost grows with sequence length

For long sequences, there are a lot of intermediate terms
Changing f affects all the zt at once

Parameter tying often leads to vanishing/exploding gradients

Illustration: say we use a (silly) linear RNN that ignores the inputs:

f(xt, zt−1) = Uzt−1 so zT = UU · · ·Uz0 = UT z0

Usually, zT either diverges exponentially or collapses to zero exponentially

If largest singular value of U is > 1, then ∥zt∥ explodes with t
If largest singular value of U is < 1, then ∥zt∥ → 0 with t

For more realistic RNNs, same problem happens (but a little more complicated)

“Default SGD” tends to not work well

Adam can help
So can gradient clipping: if ∥g∥ > u, use g · u/∥g∥ instead
Special parameterizations for U so that all singular values are 1: mixed results

10 / 13



Deep RNNs

Can have multiple hidden layers per time:

z1,0 z1,1 z1,2 z1,3 z1,4

z2,0 z2,1 z2,2 z2,3 z2,4

y1 y2 y3 y4

x1 x2 x3 x4

Inference goes “up and right“; still a DAG

Might be easier to model having multiple timescales of effects

11 / 13



Bi-Directional RNNs

Sometimes inference “needs to go backward”; regular RNNs can’t do that

“I’ve had a perfectly wonderful evening, but this wasn’t it.” (“paraprosdokian”)
“The old man the boat.” (“garden path sentence”)

z1,0 z1,1 z1,2 z1,3 z1,4

z2,1 z2,2 z2,3 z2,4 z2,e

y1 y2 y3 y4

x1 x2 x3 x4

12 / 13



Summary

Sequence modeling: can use hidden Markov models or similar variants

But a discriminative version, RNNs, is easier to use complex states

Easy inference: forward-only
Easy to compute likelihoods
Optimization challenges: memory, vanishing/exploding gradients

Next time: fancier sequence models to do more varied things

13 / 13


	Sequence Labeling
	RNNs

