Sequence Models: RNNs
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2
University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan—-Apr 2025)

1/13


https://cs.ubc.ca/~dsuth/440/24w2

Hidden Markov Models for Text Processing

@ Recall hidden Markov models, with a hidden Markov chain + observations

21 @ /2_3\ zZ4

T T

@ One (formerly) common application: part-of-speech tagging

@ O 00O

sells seashells || on the seashore

@ Input is a sequence of words
o OQutput is a categorical label for each word
e Usual analyses of English have up to about 40 categories
o Some dependencies (adverbs need to be “attached” to a verb)
2/13



Review: representing words w

@ How do we represent words in a useful way?

@ One common approach: one-hot
o Choose your vocabulary of V' possible words
o Give the first word the feature vector (1,0,0,...,0) € RV
o Give the second word the feature vector (0,1,0,...,0) € RV, ...
Wy —
XW for a V x k matrix W is
—w,, —
o Usually implemented as a lookup table (torch.nn.Embedding)
@ Almost the same: choose uniformly from the unit sphere in R*
o Dot products will be almost zero even with k¥ < V' (Johnson—Lindenstrauss lemma)

o Latent-factor models like word2vec, GloVe, fasttext

o Unsupervised learning of features in R* that try to “mean something”
3/13



Individual-word classifier

@ We could try to do part-of-speech tagging by looking at one word at a time
@ Implement as nearest-neighbour, linear classifier, neural net. ..

e POS(she) = PRP
o POS(desert) = ...

o “Don’t desert me in the desert!”

@ Problem: this isn't always enough information to tell!

4/13



Hidden Markov-type model for part-of-speech tagging

Hidden states are our part-of-speech tags

p(determiner — adjective) = 0.27, p(determiner — noun) = 0.51
Given a fully-labeled dataset, MLE/MAP training is easy
e Training a fully-observed categorical DAG: just count all conditionals

To classify, run a variant of Viterbi decoding to find most likely sequence of tags
o Full inference can be helpful: “The old man the boat.”

Problem: the Markov structure / number of states might not be sufficient

Markov structure doesn't understand many grammatical constraints

Example: often we want to distinguish proper nouns vs. normal ones, but:

o “Turkey will make a good sandwich.”
e “Turkey will host a political conference.”

5/13



More complex graphical models

@ We could draw a more complex graphical model:

ONONONO
L &4

Z9 \ny Z4
e x; are the words, always observed

e y; are the POS tags, observed in training but not at inference time
e h; are always-hidden states that contain POS information “plus more”

o It'll be hard to do this well with discrete states, tabular transitions
@ What about continuous state with deep net-parameterized transitions?
@ Can do this generative model, but learning and inference are now both hard

6/13



RNNs

@ Things are a little easier if we turn to a

o

iscriminative model

= fi(xy, z—1) are given by determlnistic neural nets
@ The outputs y¢ ~ Cat(g;(z;)) have probabilities parameterized by another net

@

E--—
@@%@

[OROR0.

@ Usually the hidden states z;

~—

e f and g are usually time-invariant (homogeneous): fy=f, gt =g
e Allows us to handle sequences of different lengths
e Many fewer parameters, or equivalently can tie many parameters
o Will be harder (but not impossible) to have behaviour vary through time

7/13



RNN inference

@ No need to "go backwards” on any arrows, so inference is easy:
é

Compute z1 = f(x1,20) with a network forward pass; sample y; ~ Cat(g(z1))

@

E--—®
G-
()

Typically zq is a fixed vector

Compute z9 = f(x2,21) with a network forward pass; sample yo ~ Cat(g(z2))

Constant cost per item in the sequence, but need to go sequentially

8/13



RNN learning

Training data: n sequences (z\”,. .. ,% ), (7, ,y:(;gz )

e Can train by minimizing (possibly regularlzed) NLL:
n T®
argmm—ZZlogp \xlt,f, )
i=1 t=1

Computing gradients is sometimes called backpropagation through time
o Exactly the same as usual backprop/autodiff, as long as you handle parameter tying

Usually trained with SGD; all the usual deep learning challenges, plus. ..

9/13



RNN learning: extra challenges

@ Memory cost grows with sequence length

e For long sequences, there are a lot of intermediate terms
e Changing f affects all the z; at once

e Parameter tying often leads to vanishing/exploding gradients
o lllustration: say we use a (silly) linear RNN that ignores the inputs:

flag,zem1) =Uziq so 2p=UU---Uz=U"2

e Usually, zr either diverges exponentially or collapses to zero exponentially

o If largest singular value of U is > 1, then ||z¢|| explodes with ¢
o If largest singular value of U is < 1, then ||z¢]| — 0 with ¢

o For more realistic RNNs, same problem happens (but a little more complicated)
@ "Default SGD” tends to not work well

e Adam can help
o So can gradient clipping: if ||g|| > u, use ¢ - u/||g|| instead
o Special parameterizations for U so that all singular values are 1: mixed results

10/13



Deep RNNs

@ Can have multiple hidden layers per time:

o¥c
OO0
-G

®
ot
@
®

@ Might be easier to model having multiple timescales of effects

@@

@ Inference goes “up and right”; still a DAG

11/13



Bi-Directional RNNs

@ Sometimes inference “needs to go backward”; regular RNNs can't do that

o “I've had a perfectly wonderful evening, but this wasn't it.” (“paraprosdokian”)
e “The old man the boat.” (“garden path sentence”)

oG
@ &

12/13



Summary

@ Sequence modeling: can use hidden Markov models or similar variants

@ But a discriminative version, RNNs, is easier to use complex states
o Easy inference: forward-only

o Easy to compute likelihoods

o Optimization challenges: memory, vanishing/exploding gradients

@ Next time: fancier sequence models to do more varied things

13/13



	Sequence Labeling
	RNNs

