
Sequence Models: seq2seq, LSTMs
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 31

https://cs.ubc.ca/~dsuth/440/24w2

Last time
Recurrent neural networks (RNNs): a discriminative model for sequences

z0 z1 z2 z3 z4

y1 y2 y3 y4

x1 x2 x3 x4

z0 is a fixed vector
zt = f(xt, zt−1) computed deterministically with some neural net
For discrete y, yt ∼ Cat(g(zt)) is a multiclass classification problem
Could also use another y distribution, e.g. N (g(zt), σ

2) for continuous scalar labels

Maximum likelihood: argminf,g −
∑n

i=1

∑T (i)

t=1 log p(y
(i)
t | x(i)1:t, f, g)

Optimization challenges, especially for long sequences

Variants: stack multiple hidden layers (deep RNN), bi-directional, . . .

2 / 31

Outline

1 Sequence-to-Sequence (seq2seq)

2 Tokenization

3 LSTMs

4 Multi-modal models

3 / 31

Motivating problem: Machine translation

In machine translation:

Input is text in language A
Output is text in language B with same meaning

Compared to per-pixel labeling:

Input, output sequences probably have different lengths and different “order”
It’s not just “which French word corresponds to this English word”
We probably don’t know the output length

4 / 31

Sequence-to-sequence RNNs

Sequence-to-sequence (seq2seq) models encode a sequence, then decode:

Each encoding sstep takes a word as input, and outputs nothing

Each decoding step takes no input and outputs a word

Different (tied) parameters inside the encoder and the decoder

z0 z1 z2 z3 z4 z5

y1 y2 y3

x1 x2

Switch from encoder to decoder when the input sequence ends

When to stop the decoder? When it generates a special <EOS> word

5 / 31

Sequence-to-sequence loss function

The sequence-to-sequence loss looks like

argmin
f,g

−
n∑

i=1

|y(i)|∑
t=1

log p(y
(i)
t | x(i), f, g)

This is trying to get each label right, not the “whole sequence”

For example, translating in a slightly different way might “break everything”

6 / 31

Variant: dependent predictions
Standard RNN model assumes yt ⊥⊥ yt+1 | zt
This makes inference easy

But our prediction for yt “forgets” what we picked for yt−1

Variant: add edges like this

z0 z1 z2 z3 z4 z5

y1 y2 y3

x1 x2

Fine at training time, since we know the ys

Sampling is also still fine

Decoding the mode is much harder
7 / 31

Beam search

In a model with dependent predictions:

z0 z1 z2 z3 z4 z5

y1 y2 y3

x1 x2

Could try to use complicated dynamic programming from UGMs for decoding

Usual alternative: beam search, a heuristic that usually works okay

Run encoding as normal (it’s deterministic in this model)
Take the best B (beam size) out of V (vocab size) choices for y1

Best: ones with highest probability under this model

Consider all of the BV choices for (y1, y2) that start from the beam, keep the best B
Stop when you hit <EOS> for everything in the beam or get bored

8 / 31

Outline

1 Sequence-to-Sequence (seq2seq)

2 Tokenization

3 LSTMs

4 Multi-modal models

9 / 31

What level to model at?
We’ve been talking about xt as a word

Is “British Columbia” one word or two?
How many words is “New York–New Jersey border”?
What about 地下铁路 (d̀ıxià tiělù) = “subway”?

地(ground) + 下(under) = 地下(underground)
铁(iron) + 路(road) = 铁路(railroad)

Should we really have every word from every language separate in the vocabulary?

What about typos? Uncommon names? Slang we haven’t seen before?

Character-level modeling is way more flexible, but makes sequences really long
Also there are 74,000+ Chinese characters and 3,000+ emoji. . .

Byte-level modeling: put everything in UTF-8, then we only need 256 characters!
Sequences are even longer. . .

Whichever we pick, we usually call the modeling unit a token
10 / 31

Byte-Pair Encoding

Word-level: huge vocabulary, shorter sequences, big out-of-vocab problem

Character-level: smaller vocabulary, longer sequences, still out-of-vocab problem

Byte-level: small vocabulary, even longer sequences, works for any UTF-8 string

Usual in-between: variant of Byte-Pair Encoding

Start out with 256 single bytes
Repeat: for the most commonly co-occurring pair A B, make a new token AB

Stop at a desired vocab size (a few tens of thousands)

Often special treatment for punctuation, spaces, etc

Do we really want dog. instead of dog, .?

Often special treatment for numbers, . . .

11 / 31

Tokenization can be really important!

https://community.openai.com/t/incorrect-count-of-r-characters-in-the-word-strawberry/829618

https://www.reddit.com/r/softwaregore/comments/187tvwr/cenya_moment/ 12 / 31

https://community.openai.com/t/incorrect-count-of-r-characters-in-the-word-strawberry/829618
https://www.reddit.com/r/softwaregore/comments/187tvwr/cenya_moment/

Outline

1 Sequence-to-Sequence (seq2seq)

2 Tokenization

3 LSTMs

4 Multi-modal models

13 / 31

Exponential “forgetting” in RNNs

In a seq2seq RNN, whole input sequence gets encoded into a single hidden state

z0 z1 z2 z3 z4 z5

y1 y2 y3

x1 x2

Everything has to get squeezed into this one fixed-dim vector

Info from a long time ago went through f(xt−1, f(xt−2, f(xt−3, . . .)))

Like gradient explosion/vanishing, “information” can easily vanish too

Three major approaches to avoid this:

Special structures on z with state-space models (S4, H3, Mamba, . . .)
Adding skip connections (leads to attention, . . . , soon)
Refining the update mechanism (LSTMs, GRUs, . . . , next)

14 / 31

State Space Models

A class of models using fancy math to make sure information “sticks around” in z
Often continuous-state and even continuous-time
Requires restricting the evolution of z a lot (usually linear)
Complex (deep) mapping between latent z and observations/labels

Lots of effort over the past 4-ish years to make these work for text

https://arxiv.org/abs/2212.14052 15 / 31

https://arxiv.org/abs/2212.14052

Long short-term memory (LSTM)

Nets’ “long-term memory” is in weights, “short-term memory” in activations

The problem of “forgetting” is that it’s hard to keep things in short-term memory

LSTMs add an explicit mechanism to “write stuff down for later”:

z0, c0 z1, c1 z2, c2 z3, c3 z4, c4

y1 y2 y3 y4

x1 x2 x3 x4

Need a way to decide when to save to, read from, or clear memory cells

In a regular program, this would be some kind of if statement based on inputs

But how can we learn that with gradient methods?

16 / 31

LSTM unit
Idea: represent “hard decisions” as binary values in {0, 1}

To learn them, we’ll turn them into “soft decisions” in [0, 1]

Forget gate asks “should I reset the old memory?”
If Ft = 0, we forget the old value; if Ft = 1, we remember it
We’ll access memory as ct−1 ⊙ F (xt, zt−1); ⊙ is elementwise product
F is a simple net: σ(Wf,xxt +Wf,zzt−1 + bf) where σ is elementwise logistic
sigmoid
We’re handling multiple cells at once, with separate decisions for each

Input gate asks “should I add something to the memory?”
If It = 0, we don’t add anything new; if It = 1, we do
Set ct = F (xt, zt−1)⊙ ct + I(xt, zt−1)⊙ V (xt, zt−1)
I is a simple net: σ(Wi,xxt +Wi,zzt−1 + bi) where σ is logistic sigmoid
V is a simple net: tanh(Wv,xxt +Wv,zzt−1 + bv)

Output gate asks “should I read from memory?”
If Ot = 0 we don’t read out from memory; if Ot = 1, we do
Output value of the cell is zt = O(xt, zt−1)⊙ tanh(ct)
O is a simple net: σ(Wo,xxt +Wo,zzt−1 + bo) where σ is logistic sigmoid

17 / 31

LSTM unit

https://d2l.ai/chapter_recurrent-modern/lstm.html

This whole thing implements f(xt, zt−1, ct−1)
Can still make deep RNNs, bidirectional RNNs, etc etc with these

18 / 31

https://d2l.ai/chapter_recurrent-modern/lstm.html

Gated Recurrent Unit (GRU)

https://d2l.ai/chapter_recurrent-modern/gru.html

Common variant, fewer params with similar performance
19 / 31

https://d2l.ai/chapter_recurrent-modern/gru.html

Successes of LSTMs

The first model that made RNNs work across many applications:

Handwriting recognition, especially cursive https://www.youtube.com/watch?v=mLxsbWAYIpw

Speech recognition and text-to-speech (Google, Apple, Amazon c. 2015-17)

Machine translation (Google, Facebook c. 2016)

iPhone autocorrect (c. 2016)

AIs for Dota 2 (OpenAI 2018), Starcraft 2 (DeepMind 2019), . . .

20 / 31

https://www.youtube.com/watch?v=mLxsbWAYIpw

PixelRNN
PixelRNN model (2016): decompose

p(image) = p(pixel 1)p(pixel 2) | pixel 1)p(pixel 3 | pixel 1, pixel 2) · · ·

https://arxiv.org/abs/1601.06759

Implements p(pixel | context) with an LSTM

Gets exact likelihoods (unlike VAEs), can use discrete pixel values, good model

Relatively slow (process pixel-by-pixel) and order really matters
21 / 31

https://arxiv.org/abs/1601.06759

Outline

1 Sequence-to-Sequence (seq2seq)

2 Tokenization

3 LSTMs

4 Multi-modal models

22 / 31

Encoding-decoding for different data types

seq2seq models use separate “models” for encoding and decoding

Can think of as mapping sentence to vector, followed by vector to sentence

VAEs use separate “models” for encoding and decoding

Can think of as mapping image to vector, followed by vector to image

. . . we can mix-and-match!

23 / 31

Image captioning model

https://arxiv.org/abs/1411.4555

Train the models jointly based on dataset of images + captions

24 / 31

https://arxiv.org/abs/1411.4555

Image captioning

https://mathwithbaddrawings.com/2017/10/18/5-ways-to-troll-your-neural-network/

25 / 31

https://mathwithbaddrawings.com/2017/10/18/5-ways-to-troll-your-neural-network/

Image captioning

https://mathwithbaddrawings.com/2017/10/18/5-ways-to-troll-your-neural-network/

26 / 31

https://mathwithbaddrawings.com/2017/10/18/5-ways-to-troll-your-neural-network/

Image captioning: PDF to LATEX

https://arxiv.org/abs/1609.04938

Unlike generic captioning, there’s a correct answer (though maybe not unique)

27 / 31

https://arxiv.org/abs/1609.04938

Video captioning with LSTMs

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

28 / 31

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

Video captioning with LSTMs

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

29 / 31

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

Video captioning: Lip reading

https://www.youtube.com/watch?v=5aogzAUPilE

Unlike generic captioning, there’s a correct answer
30 / 31

https://www.youtube.com/watch?v=5aogzAUPilE

Summary

Sequence-to-sequence models: simple reframing, gets outputs of arbitrary length

Tokenization is important

Word-level? Character-level? Byte-level? Usually in between

LSTMs: modify the state to include “memory cells”

Soft “gates” to differentiably read, write, reset

Multimodal models

Encode an image, decode a possible caption

Next time: Transformers

31 / 31

	Sequence-to-Sequence (seq2seq)
	Tokenization
	LSTMs
	Multi-modal models

