
Sequence Models: Attention, Transformers
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 31

https://cs.ubc.ca/~dsuth/440/24w2


Last time
Recurrent neural networks (RNNs): process sentences/whatever in sequence

z0 z1 z2 z3 z4

y1 y2 y3 y4

x1 x2 x3 x4

Have a hidden state that updates as they “read”
Hard to “remember things”: dynamics are complicated and state is fixed size
Closely related problem: vanishing/exploding gradients

Approach that helps: long short-term memory (LSTM)
Adds “memory cells” and complicated machinery to use them

Approach that helps: state-space models
Fancy math to help remember, but still fixed-size state, limits dynamics

2 / 31



Last time: Sequence-to-Sequence RNNs

seq2seq variant gives a way to handle variable-length outputs

Similar idea for multimodal models (e.g. encode image, decode caption)

z0 z1 z2 z3 z4 z5 z6 z7

y1 y2 y3

x1 x2 x3 x4

Problem:

Everything about the input needs to end up in one state
Easy to “forget” stuff you processed earlier
Different parts of output care about different parts of input

3 / 31



Problems with RNNs

Hard to “remember” relevant information for long enough

Fixed amount of state

Hard to optimize: vanishing/exploding gradients, big memory usage

Hard to parallelize: everything depends on everything before

Not always natural to give an order to some (most?) data types

PixelRNN (2016): looks at pixels
one-by-one, order matters a lot

Graph-Mamba (2024): complicated heuris-
tics to process graph data in “right order”

4 / 31

https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/2402.00789


Looking back in history

What if we didn’t have to “remember” everything?

Decoder could have skip connections back to every encoder state

z0 z1 z2 z3 z4 z5 z6 z7

y1 y2 y3

x1 x2 x3 x4

But: number of connections depends on input length

And (unlike U-nets), “how” they connect may depend on particular input

5 / 31



Attention
We can’t “look at” everything. Maybe one old state at a time. . . but which one?

Fixed choice like “10 steps ago” might not be the right choice

Let the model choose, by treating history like a database:
Each encoder state gets a key
Decoder makes a query, matches against the keys
Pass best-matching state’s value as context to the decoder

z0 z1 z2 z3 z4 z5

y1

x1 x2 x3 x4

k1 k2 k3 k4
q1

c1

To be differentiable, we actually use c =
∑

t score(kt, q)zt (nonnegative scores that sum to 1)

6 / 31



How to get and match keys / queries?

Conceptually, could use whatever computation you want

In practice: almost always use softmax of scaled dot product

score(kt, q) =
exp(kt · q /

√
dkq)∑

s exp(ks · q /
√

dkq)

Scaling by dimension acts as “temperature,” changes sharpness but not order

These days, keys/queries are almost always a linear transformation of input

kt = WKzt qN+t = WQzN+t

WK and WQ are weight matrices to learn
Dimension of the keys/queries is a hyperparameter

7 / 31



Multi-modal attention

Attention for image captioning:

https://arxiv.org/abs/1502.03044

8 / 31

https://arxiv.org/abs/1502.03044


Biological motivation for attention

Gaze tracking (https://www.youtube.com/watch?v=QUbiHKucljw)

Selective attention test (https://www.youtube.com/watch?v=vJG698U2Mvo)

Change blindness (https://www.youtube.com/watch?v=EARtANyz98Q)

Door study (https://www.youtube.com/watch?v=FWSxSQsspiQ)

9 / 31

https://www.youtube.com/watch?v=QUbiHKucljw
https://www.youtube.com/watch?v=vJG698U2Mvo
https://www.youtube.com/watch?v=EARtANyz98Q
https://www.youtube.com/watch?v=FWSxSQsspiQ


Neural Turing Machine, Neural Programmers

Many variants of RNNs using different versions of attention

Survey from the peak of when people did this:
https://distill.pub/2016/augmented-rnns

10 / 31

https://distill.pub/2016/augmented-rnns


Outline

1 Attention

2 Transformers

11 / 31



More than meets the eye

Already one of the most-cited papers of all time

The T in GPT; also the basis of basically every other large language model

Also in most of the current best models for vision, protein folding, graphs, . . .

12 / 31



Transformer architecture

“Attention is all you need”: ditch the recurrent part of RNNs

Self-attention layers: have a sequence of representations

Each representation depends on all other words in the input

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6

Instead of passing forward the old state, pass a computed value

Mapping sequences (xt) to (zt) is the core structure of e.g. part-of-speech tagging

We’ll also massage setups like seq2seq into this shape, too!

13 / 31



Self-attention layer

0 1 2 3 1 1 1 1 1 2 3 -4

x1 x2 x3

6 -2 4 0 2 6

k1 = WKx1 k2 = WKx2 k3 = WKx3

1 1 1 1

1 -1 1 -1
WK

1 1 2 -1 3 -8

q1 = WQx1 q2 = WQx2 q3 = WQx3

1 1 0 0

0 -2 0 1
WQ

0 1 2 3 1 1 1 1 1 2 3 -4

v1 = WV x1 v2 = WV x2 v3 = WV x3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

WV

4 4 8

s1,t = q1 · kt

14 8 -2

s2,t = q2 · kt

34 12 54

s3,t = q3 · kt

.02 .02 .96

a1 = softmax(s1)

.998 .002 0

a2 = softmax(s2)

0 0 1

a3 = softmax(s3)

0.98 1.96 2.95 3.93

z1 =
∑

t a1,tvt

.002 1 1.998 2.995

z2 =
∑

t a2,tvt

1 2 3 -4

z3 =
∑

t a3,tvt

14 / 31



Self-attention layer

0 1 2 3 1 1 1 1 1 2 3 -4

x1 x2 x3

6 -2 4 0 2 6

k1 = WKx1 k2 = WKx2 k3 = WKx3

1 1 1 1

1 -1 1 -1
WK

1 1 2 -1 3 -8

q1 = WQx1 q2 = WQx2 q3 = WQx3

1 1 0 0

0 -2 0 1
WQ

0 1 2 3 1 1 1 1 1 2 3 -4

v1 = WV x1 v2 = WV x2 v3 = WV x3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

WV

4 4 8

s1,t = q1 · kt

14 8 -2

s2,t = q2 · kt

34 12 54

s3,t = q3 · kt

.02 .02 .96

a1 = softmax(s1)

.998 .002 0

a2 = softmax(s2)

0 0 1

a3 = softmax(s3)

0.98 1.96 2.95 3.93

z1 =
∑

t a1,tvt

.002 1 1.998 2.995

z2 =
∑

t a2,tvt

1 2 3 -4

z3 =
∑

t a3,tvt

14 / 31



Self-attention layer

0 1 2 3 1 1 1 1 1 2 3 -4

x1 x2 x3

6 -2 4 0 2 6

k1 = WKx1 k2 = WKx2 k3 = WKx3

1 1 1 1

1 -1 1 -1
WK

1 1 2 -1 3 -8

q1 = WQx1 q2 = WQx2 q3 = WQx3

1 1 0 0

0 -2 0 1
WQ

0 1 2 3 1 1 1 1 1 2 3 -4

v1 = WV x1 v2 = WV x2 v3 = WV x3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

WV

4 4 8

s1,t = q1 · kt

14 8 -2

s2,t = q2 · kt

34 12 54

s3,t = q3 · kt

.02 .02 .96

a1 = softmax(s1)

.998 .002 0

a2 = softmax(s2)

0 0 1

a3 = softmax(s3)

0.98 1.96 2.95 3.93

z1 =
∑

t a1,tvt

.002 1 1.998 2.995

z2 =
∑

t a2,tvt

1 2 3 -4

z3 =
∑

t a3,tvt

14 / 31



Position encodings

RNNs see sequences in order; CNNs have order built-in

But attention mechanisms “look everywhere”

Big advantage. . . except they don’t get to see the order of the sequence at all!

To tell where a token is in the sequence, we use position encodings

Concatenate features for t onto the input features xt (or weirder schemes)

Original paper uses trigonometric features of the position t[
sin(t/10 0002/d) cos(t/10 0002/d) sin(t/10 0004/d) cos(t/10 0004/d) · · ·

]
Later work often learns them: fixed vector for position 1, position 2, . . .

Many variations on the exact scheme, but they mostly perform roughly similarly

15 / 31



Multi-head attention

A self-attention layer maps a sequence of inputs to a sequence of outputs

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6

What if z4 should depend on both x1 and x6 in “different ways”?

Could carefully make sure that the query-key dot products line up similarly. . .

Would get out 0.44v1 + 0.53v6 + rest

Or we could look at both of them separately with multi-head attention

x1 x2 x3 x4 x5 x6

z1,a z2,a z3,a z4,a z5,a z6,az1,b z2,b z3,b z4,b z5,b z6,b

Run more than one self-attention layer (with separate params), concatenate results

16 / 31



Introducing nonlinearity

Each output of a self-attention layer is zt =
∑T

s=1 at,s(WV xs)

Actually, Transformers use a residual connection here: zt = xt +
∑T

s=1 at,sWV xs

The at,s are nonlinear, but zt is a convex combination of {xt,WV x1, . . . ,WV xT }
We also want to be able to introduce more “fundamental” nonlinearity!

Simple scheme: add per-token MLP layers

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6

u1 u2 u3 u4 u5 u6

Each ut = MLP(zt); also use a residual connection, so

MLP(z) = z + (W2ReLU(W1z + b1) + b2)

Same parameters across positions; a convolutional layer with filter width 1

17 / 31



Layer normalization

Also use layer normalization after each layer (MLP and self-attention)

Computes the mean, std for each layer’s activations separately for each input

µ
(i)
ℓ =

1

dℓ

dℓ∑
j=1

z
(i)
ℓ,j σ

(i)
ℓ =

√√√√ 1

dℓ

dℓ∑
i=1

(
z
(i)
ℓ,j − µ

(i)
ℓ

)2
+ ε

LayerNorm
(
z
(i)
ℓ

)
j
= γℓ,j

z
(i)
ℓ,j − µ

(i)
ℓ

σ
(i)
ℓ

+ βℓ,j

γℓ, βℓ are learned scale / shifts; initialized to 1, 0

Makes sense with wide layers (terrible idea if dℓ is 1!)

Kind of like batch norm but avoids some of its issues

something something internal covariate shift

18 / 31



Transformer encoder

Each (multi-head self-attention, MLP) chunk is a
Transformer block/layer

Repeat these a bunch of times

Final result maps a sequence of features to a sequence
of features

Kind of like an RNN (or a convnet), but the
connectivity pattern is different

Can use this architecture directly to solve per-token
prediction problems

Just put a per-token prediction at the end, like we did
in RNNs

19 / 31



BERT

Bidirectional Encoder Representation from Transformers
Uses an encoder-only architecture to map tokens to token-level features
Pre-trained mostly with masked language modeling:

https://www.linkedin.com/posts/kartikeybartwal_

masked-language-modeling-akin-to-word-puzzles-activity-7185299798697140224-u6JJ

Can then fine-tune for a particular task or use embeddings elsewhere
Standard approach these days for content moderation, entity retrieval, . . .

https://huggingface.co/blog/modernbert is recent variant 20 / 31

https://www.linkedin.com/posts/kartikeybartwal_masked-language-modeling-akin-to-word-puzzles-activity-7185299798697140224-u6JJ
https://www.linkedin.com/posts/kartikeybartwal_masked-language-modeling-akin-to-word-puzzles-activity-7185299798697140224-u6JJ
https://huggingface.co/blog/modernbert


seq2seq

How to handle seq2seq-type problems?

Usually frame it as next-token prediction:

I like the green cat. [BOS] =⇒ J’aime

I like the green cat. [BOS] J’aime =⇒ le

I like the green cat. [BOS] J’aime le =⇒ chat

I like the green cat. [BOS] J’aime le chat =⇒ vert

I like the green cat. [BOS] J’aime le chat vert =⇒ .

I like the green cat. [BOS] J’aime le chat vert. =⇒ [EOS]

How to predict? Just do a linear layer + softmax on last token’s embedding

Doing this, we’d need to re-run on the full sequence at each step

21 / 31



Transformer decoder

Transformers have an encoder-decoder split

Encoder is as before: processes I like the green

cat., is same for each output token

Decoder gets J’aime le and wants to predict chat

In each decoder block:

Self-attention on J’aime le

Cross-attention to those and encoder outputs
Feed-forward layer as before

Can train decoder steps in parallel with masked
attention

Output 3 can look at outputs 1 and 2, but not 3, 4, . . .
Just “remove arrows” in the query-key dot products

22 / 31



GPT: Generative Pre-trained Transformer

GPT (1): decoder-only but otherwise basically exactly as before

https:

//s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

23 / 31

https://https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf


GPT-2

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

24 / 31

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


GPT-3

https://arxiv.org/abs/2005.14165

25 / 31

https://arxiv.org/abs/2005.14165


GPT-4 and on

https://arxiv.org/pdf/2303.08774.pdf

Based on leaks/etc, seems to be pretty similar to GPT-3 but bigger

Also incorporating tricks like mixture-of-experts, etc

Open-weights models (Llama, DeepSeek, . . . ) are also all pretty similar

26 / 31

https://arxiv.org/pdf/2303.08774.pdf


Transformers vs RNNs/state space models

RNNs/state space models:

Process things one at a time; order is “built in” and easy
Hard to “remember things” from long ago

Transformers:

Easy to “remember things”: just go back and look at it
Doesn’t have a built-in order; need to hack it with position features

27 / 31



Other tricks

Weight decay / L2 regularization

Dropout

Label smoothing
Make “true labels” 0.9 probability instead of 1
Penalizes wrong predictions a little less
Can help discourage overconfidence

Optimized with Adam (usually AdamW)
With a weird learning rate schedule. . .

28 / 31



Vision transformers

https://arxiv.org/abs/2010.11929

29 / 31

https://arxiv.org/abs/2010.11929


Vision transformers

Usually outperform CNNs, if you have enough data

https://arxiv.org/abs/2010.11929

30 / 31

https://arxiv.org/abs/2010.11929


Summary

Attention allows an RNN decoder to look at previous states

Self-attention is a direct sequence-level layer

Everything depends on everything; layer params determine how

Combining self-attention layers with per-token MLPs gets you a Transformer

Excellent performance on many tasks

Next time: more about what happens with these huge models

31 / 31


	Attention
	Transformers

