Sequence Models: Attention, Transformers
CPSC 440/550: Advanced Machine Learning
cs.ubc.ca/~dsuth/440/24w2
University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan—Apr 2025)

1/31

https://cs.ubc.ca/~dsuth/440/24w2

Last time

@ Recurrent neural networks (RNNs): process sentences/whatever in sequence

®® © o

©
@@ ©

e Have a hidden state that updates as they “read”
e Hard to “remember things": dynamics are complicated and state is fixed size
o Closely related problem: vanishing/exploding gradients

~

@ Approach that helps: long short-term memory (LSTM)
o Adds “memory cells” and complicated machinery to use them
@ Approach that helps: state-space models
e Fancy math to help remember, but still fixed-size state, limits dynamics
2/31

Last time: Sequence-to-Sequence RNNs

@ seq2seq variant gives a way to handle variable-length outputs

e Similar idea for multimodal models (e.g. encode image, decode caption

)
®
@ﬂﬂﬂ@@%\@

@ Problem:

e Everything about the input needs to end up in one state
e Easy to “forget” stuff you processed earlier
o Different parts of output care about different parts of input

3/31

Problems with RNNs

@ Hard to "remember” relevant information for long enough

o Fixed amount of state
e Hard to optimize: vanishing/exploding gradients, big memory usage
@ Hard to parallelize: everything depends on everything before

e Not always natural to give an order to some (most?) data types
Graph Flattening

o 0000000
e Q e Default Order

Node Prioritization

|] 0° 00000600

| Ln? Degree Low Degree High

PixelRNN (2016): looks at pixels Graph-Mamba (2024): complicated heuris-

one-by-one, order matters a lot tics to process graph data in “right order”

4/31

https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/2402.00789

Looking back in history

@ What if we didn't have to “remember” everything?

@ Decoder could have skip connections back to every encoder state

m@ @@
0 21 (29 (23 @

N

oNoNoNO

@ But: number of connections depends on input length

@ And (unlike U-nets), "how" they connect may depend on particular input

5/31

Attention

@ We can't “look at” everything. Maybe one old state at a time. .. but which one?
e Fixed choice like "10 steps ago” might not be the right choice
@ Let the model choose, by treating history like a database:
e Each encoder state gets a key
e Decoder makes a query, matches against the keys
e Pass best-matching state's value as context to the decoder

e To be differentiable, we actually use ¢ =), score(ky, ¢)2¢ (nonnegative scores that sum to 1)

6/31

How to get and match keys / queries?

@ Conceptually, could use whatever computation you want

@ In practice: almost always use softmax of scaled dot product

exp(kt - q /\/@)
Sosexplks - q /\/diy)

score(ke, q) =

e Scaling by dimension acts as “temperature,” changes sharpness but not order

@ These days, keys/queries are almost always a linear transformation of input

ki = Wiz qn+t = Wozn4t

o Wi and Wg are weight matrices to learn
o Dimension of the keys/queries is a hyperparameter

7/31

Multi-modal attention bonus!

@ Attention for image captioning:

Figure 3. l.xamplu of attending to the correct object (white indicates the attended n.yons underlines indicated the corresponding word)

-

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background.

1

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear, in the water, trees in the background.

https://arxiv.org/abs/1502.03044

8/31

https://arxiv.org/abs/1502.03044

Biological motivation for attention bonus!

Gaze tracking (https://www.youtube.com/watch?v=QUbiHKucljw)
Selective attention test (https://www.youtube.com/watch?v=vJG698U2Mvo)
Change blindness (https://www.youtube.com/watch?v=EARtANyz98Q)

Door study (https://www.youtube.com/watch?v=FWSxSQsspiQ)

9/31

https://www.youtube.com/watch?v=QUbiHKucljw
https://www.youtube.com/watch?v=vJG698U2Mvo
https://www.youtube.com/watch?v=EARtANyz98Q
https://www.youtube.com/watch?v=FWSxSQsspiQ

Neural Turing Machine, Neural Programmers

@ Many variants of RNNs using different versions of attention

@ Survey from the peak of when people did this:
https://distill.pub/2016/augmented-rnns

_THEHF/ a
[|
A== (4] (=2 }=(4]

—| S

5'—'5
[l—’.:’

Neural Turing Attentional Adaptive

Machines Interfaces Computation Time

have external memory that allow RNNs to focus on allows for varying amounts
they can read and write to parts of their input of computation per step

bonus,‘

B
(A f=[a}=[4]

Neural

Programmers

can call functions, building
programs as they run

10/31

https://distill.pub/2016/augmented-rnns

Outline

© Transformers

11/31

More than meets the eye bonus!

Attention is all you need
A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

... to attend to all positions in the decoder up to and including that position. We need to prevent
... We implement this inside of scaled dot-product attention by masking out (setting to —=) ...

Y% Save DY Cite Cited by 172734 Related articles All 73 versions 99

@ Already one of the most-cited papers of all time
@ The T in GPT; also the basis of basically every other large language model

@ Also in most of the current best models for vision, protein folding, graphs, ...

12/31

Transformer architecture

"Attention is all you need”: ditch the recurrent part of RNNs

Self-attention layers: have a sequence of representations

Each representation depends on all other words in the input

Instead of passing forward the old state, pass a computed value
Mapping sequences (z;) to (z;) is the core structure of e.g. part-of-speech tagging
o We'll also massage setups like seq2seq into this shape, too!

13/31

Self-attention layer

Z1 =, a1Vt

l4]4]8]—]|02].02].9

14 /31

Self-attention layer

21 =), a1V Zo =), Q24U

l4]4]8] |o02]02].906] |14]8]-2 |—>|.9981\.\00§] 0 |

S1,t = Q1 * kt

@ = Wox

k1=WK£)31) :anﬁl V. :anﬁQ k3=WK£)33 , :anﬁ:;
X1 x2 x3 oj1|ojo
1 1 1] 1]0(0 Wiz olo|1]o
Wk Wao
1]-1]11]-1 210 ofofo]1

14/31

Self-attention layer

21 =), a1V Zo =), Q24U 2= a3 0t

la4]a]s8] |o02[02].96] |14]8]-2] [|998[.002 0 | |34|12|54|ﬁ10]01 1 |

s1,6 =q1 -kt a1 =softmax(s1) Szt =q2 ks az = softmax(sz) sp 3//€t /ag = softmaic(33)

WQQZl

Wle Vy = val WKLIJQ VY= an)Q

\ \

as) X2 €3 of1]o]o
1 1 1 1]10]0 Wy ofo]1]o

Wk WQ
1 |-1]111]-1 210 1 ojfo|o]1

14/31

Position encodings

RNNs see sequences in order; CNNs have order built-in

But attention mechanisms “look everywhere”
e Big advantage. .. except they don't get to see the order of the sequence at all!

To tell where a token is in the sequence, we use position encodings

Concatenate features for ¢ onto the input features x; (or weirder schemes)

(]

Original paper uses trigonometric features of the position ¢

[sin(/10000%/4) cos(t/10000%/9) sin(t/10000%/?) cos(t/10000%/) ..]

Later work often learns them: fixed vector for position 1, position 2, ...

Many variations on the exact scheme, but they mostly perform roughly similarly

15/31

Multi-head attention

@ A self-attention layer maps a sequence of inputs to a sequence of outputs

@ What if z4 should depend on both x; and zg in “different ways"?
@ Could carefully make sure that the query-key dot products line up similarly. ..
o Would get out 0.44v; + 0.53vg + rest

@ Or we could look at both of them separately with multi-head attention

@ Run more than one self-attention layer (with separate params), concatenate results

16 /31

Introducing nonlinearity

o Each output of a self-attention layer is z; = Zle ars(Wyxs)

: . T
o Actually, Transformers use a residual connection here: z; = x; + > ., ar Wy,
o The a; s are nonlinear, but 2 is a convex combination of {xy, Wy z1,..., Wyar}

@ We also want to be able to introduce more “fundamental” nonlinearity!

@ Simple scheme: add per-token MLP layers

e

e Each u; = MLP(z;); also use a residual connection, so

MLP(2) = z+ (Wa ReLU(W1 2z + b1) + bg)
e Same parameters across positions; a convolutional layer with filter width 1

17/31

Layer normalization

@ Also use layer normalization after each layer (MLP and self-attention)

@ Computes the mean, std for each layer’'s activations separately for each input

w1 (i) Lah i))2
Iy :dejzz:lzm o, = d—gZ(z&j—uz) + e

i
. 25—
LayerNorm (zél)) = 'M
@ 7y, By are learned scale / shifts; initialized to 1, 0
e Makes sense with wide layers (terrible idea if dy is 1!)

@ Kind of like batch norm but avoids some of its issues

@ something something internal covariate shift

18/31

Transformer encoder

e Each (multi-head self-attention, MLP) chunk is a
Transformer block/layer

@ Repeat these a bunch of times
@ Final result maps a sequence of features to a sequence
of features
e Kind of like an RNN (or a convnet), but the
connectivity pattern is different
@ Can use this architecture directly to solve per-token
prediction problems

e Just put a per-token prediction at the end, like we did
in RNNs

Add & Norm

Feed
Forward

N :-_>| Add & Norm)

Multi-Head
Attention

A_ 2
————|
Positional o)

Encoding
Input

Embedding

!

Inputs

19/31

BERT bonus!

@ Bidirectional Encoder Representation from Transformers
@ Uses an encoder-only architecture to map tokens to token-level features
@ Pre-trained mostly with masked language modeling:

e - —

| Flame || stackers | | make || cars L[%
\ v .. _/\ ST

| faster ‘

BERT-like
language model

| | 1 ‘_J_

i N ¢ . a ~ N b o R

| flame || stickers|| mane <MASK> g0 | faster |
L \ A . .

https://www.linkedin.com/posts/kartikeybartwal_
masked-language-modeling-akin-to-word-puzzles-activity-7185299798697140224-u6JJ
@ Can then fine-tune for a particular task or use embeddings elsewhere
@ Standard approach these days for content moderation, entity retrieval, ...
e https://huggingface.co/blog/modernbert is recent variant 20/31

https://www.linkedin.com/posts/kartikeybartwal_masked-language-modeling-akin-to-word-puzzles-activity-7185299798697140224-u6JJ
https://www.linkedin.com/posts/kartikeybartwal_masked-language-modeling-akin-to-word-puzzles-activity-7185299798697140224-u6JJ
https://huggingface.co/blog/modernbert

seq2seq

How to handle seq2seq-type problems?

Usually frame it as next-token prediction:
= J’aime

I

HoH H H

I

How to predict?

like
like
like
like
like
like

the green
the green
the green
the green
the green
the green

cat.
cat.
cat.
cat.
cat.
cat.

[BOS]
[BOS]
[BOS]
[BOS]
[BOS]
[BOS]

J’aime
J’aime
J’aime
J’aime
J’aime

= le

le = chat

le chat = vert

le chat vert —

le chat vert. =— [E0S]

Just do a linear layer + softmax on last token’s embedding

Doing this, we'd need to re-run on the full sequence at each step

21/31

Transformer decoder

@ Transformers have an encoder-decoder split

@ Encoder is as before: processes I 1like the green
cat ., is same for each output token

@ Decoder gets J’aime le and wants to predict chat
@ In each decoder block:

o Self-attention on J’aime le

o Cross-attention to those and encoder outputs

o Feed-forward layer as before

@ Can train decoder steps in parallel with masked
attention

o Output 3 can look at outputs 1 and 2, but not 3, 4, ...

o Just “remove arrows” in the query-key dot products

Add & Norm

Feed
Forward

Output
Probabilities

Add & Norm

Multi-Head
Attention

Add & Norm

(CAdd & Norm J«—,

Nx

J

Positional
Encoding

Masked
Multi-Head Multi-Head
Attention Attention
2 At
_ —
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Positional
Encoding

22/31

GPT: Generative Pre-trained Transformer bonus!

@ GPT (1): decoder-only but otherwise basically exactly as before

Text Task
Prediction | Classifier

3.1 Unsupervised pre-training

Given an unsupervised corpus of tokens U = {uy, ..., un}, We use a standard language modeling
o v objective to maximize the following likelihood:
L) = 3" log P(uilui i, ..., ui—1;0) m
i

where k is the size of the context window, and the conditional probability P is modeled using a neural
network with parameters ©. These parameters are trained using stochastic gradient descent [51].

®

In our we use a multi-layer Transf decoder [34] for the language model, which is
a variant of the transformer [62]. This model applies a multi-headed self-attention operation over the
input context tokens followed by position-wise feedforward layers to produce an output distribution
over target tokens:

Feed Forward

1ox ho = UW, + W,
% h; = transformer_block(h;—_1)Vi € [1,n])
where U = (u_y, .., u_y) s the context vector of tokens, nis the number of layers, W is the token

embedding matrix, and W, is the position embedding matrix.

3.2 Supervised fine-tuning

After training the model with the objective in Eq. [T} we adapt the parameters to the supervised target
task. We assume a labeled dataset C, where each instance consists of a sequence of input tokens,

1

®
Masked Multi
Self Attention

z',...,z"™, along with a label y. The inputs are passed through our pre-trained model to obtain

the final transformer block’s activation A;, which is then fed into an added linear output layer with

Text & Position Embed |~ Parameters W, to predict y:
P(ylz ™) = sottmax(h"IV,). ®)

https:

//s3-us-west-2.amazonaws . com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

23/31

https://https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT-2

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

2.3. Model

We use a Transformer (Vaswani et al., 2017) based archi-
tecture for our LMs. The model largely follows the details
of the OpenAl GPT model (Radford et al., 2018) with a

few modifications. Layer normalization (Ba et al., 2016)
was moved to the input of each sub-block, similar to a
pre-activation residual network (He et al., 2016) and an
additional layer normalization was added after the final self-
attention block. A modified initialization which accounts
for the accumulation on the residual path with model depth
is used. We scale the weights of residual layers at initial-
ization by a factor of 1/+/N where N is the number of
residual layers. The vocabulary is expanded to 50,257. We
also increase the context size from 512 to 1024 tokens and
a larger batchsize of 512 is used.

bomAS,(

24 /31

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT-3 bonus!

We use the same model and architecture as GPT-2 [RWC*19], including the modified initialization, pre-normalization,
and reversible tokenization described therein, with the exception that we use alternating dense and locally banded sparse
attention patterns in the layers of the transformer, similar to the Sparse Transformer [CGRS19]. To study the dependence

https://arxiv.org/abs/2005.14165

25 /31

https://arxiv.org/abs/2005.14165

GPT-4 and on bonus!

This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4 is a
Transformer-style model [39] pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party providers. The model was
then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [40]. Given both
the competitive landscape and the safety implications of large-scale models like GPT-4, this report
contains no further details about the architecture (including model size), hardware, training compute,
dataset construction, training method, or similar.

https://arxiv.org/pdf/2303.08774.pdf

@ Based on leaks/etc, seems to be pretty similar to GPT-3 but bigger
@ Also incorporating tricks like mixture-of-experts, etc

@ Open-weights models (Llama, DeepSeek, ...) are also all pretty similar

26 /31

https://arxiv.org/pdf/2303.08774.pdf

Transformers vs RNNs/state space models

o RNNs/state space models:
e Process things one at a time; order is “built in” and easy
e Hard to “remember things" from long ago
@ Transformers:
e Easy to “remember things": just go back and look at it
e Doesn't have a built-in order; need to hack it with position features
Positional Description Matters for Transformers Arithmetic

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, Yi Zhang

Transformers, central to the successes in modern Natural Language Processing, often falter on arithmetic tasks despite their
vast capabilities --which paradoxically include remarkable coding abilities. We observe that a crucial challenge is their naive
reliance on positional information to solve arithmetic problems with a small number of digits, leading to poor performance on
larger numbers. Herein, we delve deeper into the role of positional encoding, and propose several ways to fix the issue, either by

27/31

Other tricks bonus!

o Weight decay / L2 regularization

@ Dropout
@ Label smoothing
o Make “true labels” 0.9 probability instead of 1
e Penalizes wrong predictions a little less
e Can help discourage overconfidence
e Optimized with Adam (usually AdamW)
o With a weird learning rate schedule. ..

ooom

ning Rate

28 /31

Vision transformers bonus!

Vision Transformer (ViT)

Transformer Encoder

e g8) a) ¢ @ﬁ
* Extra learnable

[class] embedding [Llnear PI‘O_]CCthn of Flattened Patches

| | |
%w —»l%@%l@ﬁﬂ

https://arxiv.org/abs/2010.11929

29/31

https://arxiv.org/abs/2010.11929

Vision transformers

@ Usually outperform CNNs, if you have enough data

Transfer accuracy [%]

Average-5 ImageNet
90
[[
e ©
95 [_ F
% 85
Q@
[
80
90 @® Transformer (ViT) @® Transformer (ViT)
ResNet (BiT) ResNet (BiT)
Hybrid Hybrid
75
10% 10° 102 10°

Total pre-training compute [exaFLOPs]

https://arxiv.org/abs/2010.11929

bonus,‘

Input Attention

30/31

https://arxiv.org/abs/2010.11929

Summary

Attention allows an RNN decoder to look at previous states

(]

Self-attention is a direct sequence-level layer
o Everything depends on everything; layer params determine how

Combining self-attention layers with per-token MLPs gets you a Transformer
o Excellent performance on many tasks

Next time: more about what happens with these huge models

31/31

	Attention
	Transformers

