Multivariate models; Generative classifiers CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan-Apr 2025)

Admin

- Tutorials start this week
- Totally optional; you can go to any section
 - In the unlikely event that it's full, prioritize seats for those registered for that section
- Office hours calendar linked from Piazza Thursday and Friday this week
- Basically everyone should be off the waitlist now; will get stragglers in too
 - This is just all a very manual process
- Quiz this week Wednesday–Saturday; schedule a slot now
 - A lot of you haven't!
- Don't leave assignment 1 to the last minute!
 - Due Friday 11:59pm (no longer 5pm)

Last time: MLE and MAP for Bernoulli model

- Bernoulli distribution: simple parameterized probability model for binary data
- If $X \sim \mathrm{Bern}(\theta)$, then for $x \in \{0,1\}$ we have

$$\Pr(X = x \mid \theta) = \begin{cases} \theta & \text{if } x = 1\\ 1 - \theta & \text{if } x = 0 \end{cases} = \theta^{\mathbb{1}(x=1)} (1 - \theta)^{\mathbb{1}(x=0)} = \theta^x (1 - \theta)^{1-x}$$

- Also write this as $p(x \mid \theta)$ or even p(x), if context is clear
- Maximum likelihood estimate (MLE): $\arg \max_{\theta} p(\mathbf{X} \mid \theta)$, just $\hat{\theta} = n_1/n$
- Maximum a posteriori (MAP) estimate: adds a prior $p(\theta)$ to choose $\arg\max_{\theta} p(\theta \mid \mathbf{X}) = \arg\max_{\theta} p(\mathbf{X} \mid \theta) p(\theta)$
 - Beta (α, β) prior acts like $\alpha 1$ "fake" one observations, $\beta 1$ "fake" zeros

Outline

- Product of Bernoullis
- Quantity Classifiers

Motivation: modeling traffic congestion

- We want to model traffic congestion in a big city
- Simple version: measure which intersections are busy on different days:

loc 1	loc 2	loc 3	loc 4	loc 5	loc 6	loc 7	loc 8	loc 9
0	1	0	1	1	1	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	1	1	1	0	0	1
0	1	0	1	1	1	0	0	0
1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	0	0	1
0	1	0	1	1	1	1	1	0

- We'd like a model of this data, to identify problems or to route buses efficiently
 - "Location 4 is always busy," "location 1 is rarely busy"
 - "locations 7 and 8 are always the same," "location 2 is busy when location 7 is busy"
 - "There's a 25% chance you hit a busy spot if you take intersections 1 and 8"

Multivariate binary density estimation

- We can view this as multivariate binary density estimation:
 - Input: n iid samples of binary vectors $x^{(1)}, \ldots, x^{(n)}$ in $\{0,1\}^d$
 - Output: a model that can assign a probability to any binary vector $x \in \{0,1\}^d$

loc 1	loc 2	loc 3	loc 4	loc 5	loc 6	loc 7	loc 8	loc 9	(//
0	1	0	1	1	1	0	0	1	$p((0,\ldots,0)) = 0.0001$
0	0	1	1	0	0	0	0	0	
0	1	0	1	1	1	0	0	1	estimator
0	1	0	1	1	1	0	0	0	\vdots (2 ⁹ total values):
1	1	1	1	1	1	1	1	1	m//1 1)) 0.000
0	0	0	1	1	0	0	0	1	$p((1,\ldots,1)) = 0.002$
0	1	0	1	1	1	1	1	0	

- Another example: "are there >10% covid cases in area j?"
- Notation (memorize):
 - ullet We have n examples, each with d number of features
 - $x^{(4)}$ is a vector of length d, with elements $x_1^{(4)}$ to $x_d^{(4)}$
 - ullet X_3 is the third dimension of a random vector X; x_3 is a value X_3 might take

Product of Bernoullis model

- There are many possible models for binary density estimation
 - Each one makes different assumptions; we'll see lots of options
- We'll start with a very simple "product of Bernoullis" model
 - Here we assume that all the dimensions are independent
 - If d=4, this means $p(x_1,x_2,x_3,x_4)=p(x_1)p(x_2)p(x_3)p(x_4)$
- We treat our d dimensional problem as d separate univariate problems

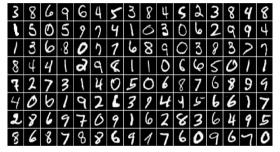
	loc 1	loc 2	loc 3		loc 1	loc 2		loc 3
-	0	1	0		0	1	_	0
	0	0	1		0	0		1
$\mathbf{X} =$	0	1	0	$\xrightarrow{\text{reframe}} \mathbf{X}_1 =$	0	\mathbf{v} 1	v	0
$\Lambda =$	0	1	0	\longrightarrow $\mathbf{A}_1 =$	0	$\mathbf{X}_2 = egin{array}{ccc} 1 \end{array}$	$\mathbf{X}_3 =$	0
	1	1	1		1	1		1
	0	0	0		0	0		0
	0	1	0		0	1		0

Product of Bernoullis: inference and learning

- Advantage of doing this: it makes inference and learning really easy
- For most tasks: just do it on each variable, then combine results
- Joint probability: $Pr(X_1=1, X_2=0,..., X_d=1) = Pr(X_1=1) Pr(X_2=0) \cdots Pr(X_d=1) = \theta_1(1-\theta_2) \cdots \theta_d$
- Marginal probability: $Pr(X_2=1)=\theta_2$, $Pr(X_2=1,X_3=1)=Pr(X_2=1)$ $Pr(X_3=1)=\theta_2\theta_3$
- Conditional probabilities: $p(x_2 \mid x_3) = p(x_2)$
- ullet Mode: set x_1 from $rg \max_{x_1} p(x_1)$, ..., x_d from $rg \max_{x_d} p(x_d)$
- ullet Sampling: sample x_1 from $p(x_1)$, ..., x_d from $p(x_d)$
- MLE: $\hat{\theta}_1=rac{n_{11}}{n}=rac{ ext{number of times }X_1 ext{ is }1}{n}$, ..., $\hat{ heta}_d=rac{n_{d1}}{n}$; MAP is similar
 - np.mean(X, axis=0); takes $\mathcal{O}(nd)$ time
 - ullet Or $\mathcal{O}(\mathtt{nnz}(X))$ if X is a sparse matrix with $\mathtt{nnz}(X) \leq nd$ nonzero entries

Running example: MNIST digits

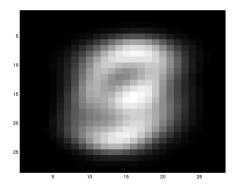
- We'll often use a basic dataset, MNIST digits, as an example
 - n = 60,000 images; each is a 28×28 grayscale image of a handwritten number
 - For binary density estimation: d=784 for each pixel, rounded to $\{0,1\}$



- In CPSC 340, we wanted a function that takes in an image and says "this is a 7"
- In density estimation, we want a probability distribution over images
 - ullet What's the probability that some 28×28 grayscale image is a handwritten digit?
 - Unsupervised density estimation (ignoring the class label) for now
 - Sampling from the density should produce a novel image of a digit

Product of Bernoullis on MNIST

- If we fit a product of Bernoullis to MNIST:
 - Have 784 parameters: each pixel location is $\mathrm{Bern}(\theta_j)$
 - The MLE $\hat{\theta}_i$ is just the portion of the time pixel j "has ink"
- Viewing the $\hat{\theta}_i$ shaped into an image:



• More likely to have writing near the centre of the image

Product of Bernoullis on MNIST

- Is this a good fit to MNIST?
- One way to check: look at samples from the model

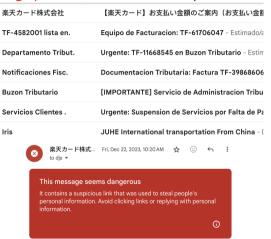
- This is a terrible model the sample don't look like the data at all
- In the data, the pixels are far from independent
 - For example, adjacent pixels are highly correlated with each other
- Even though the assumption is usually wrong,
 a product of Bernoullis is often "good enough to be useful"
 - Especially as a component of a model, instead of the whole thing
- We'll see several ways to relax the independence assumption later in the course

Outline

- Product of Bernoullis
- Quantity Classifiers

Motivation: spam filtering

Spam used to be a huge problem, until ML-based spam detectors



- Can frame as supervised learning
 - Learn a function from e-mails to "is this spam"

Data collection and feature extraction

- Collect a lot of emails
- Get users to label them as spam $(y^{(i)} = 1)$ or not $(y^{(i)} = 0)$
- ullet Extract features of each email, e.g. bag of words: $x_j^{(i)} = \mathbb{1}(\mathsf{word}\ j \ \mathsf{in}\ \mathsf{email}\ i)$

CPSC	440	vicodin		spam?
0	0	0		1
1	1	0		0
0	0	1		1
1	1	0		0
	0 1 0 1	CPSC 440 0 0 1 1 0 0 1 1	CPSC 440 vicodin 0 0 0 1 1 0 0 0 1 1 1 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$

- $y^{(i)}$ is label of ith example; collected in vector y (length n)
- $x_j^{(i)}$ is jth feature of ith example
- $x^{(i)}$ is the vector (length d) of features for ith example
- X collects all the inputs, shape $n \times d$ in practice, use a sparse format!
- ullet X_j is random variable for the jth feature of random sample; X is random vector

Generative classifiers

- Early '00s: best spam filtering methods used generative classifiers
- Treat supervised learning as density estimation
- Learning: fit a model for $p(x_1, \ldots, x_d, y)$
 - "Data-generating process" for the features and labels together
- Inference: compute conditionals $p(y \mid x_1, \dots, x_d)$
 - Is $p(y = 1 \mid x_1, \dots, x_d) > p(y = 0 \mid x_1, \dots, x_d)$?
- Should we plug in our new fancy product of Bernoullis as our density estimator?
- Probably not it assumes Y is independent of $X_1, \ldots, X_d!$
- So predictions wouldn't depend on the features at all!

Naïve Baves

- Product of Bernoullis assumes X_1, \ldots, X_d, Y are all mutually independent
- ullet Naïve Bayes assumes x_j are mutually independent given y
- ullet X_1,\ldots,X_d are (mutually) independent if

$$p(x_1,\dots,x_d)=p(x_1)\cdots p(x_d) \quad \text{ for all possible values } x_1,\dots,x_d$$

ullet X_1,\ldots,X_d are (mutually) conditionally independent given y if

$$p(x_1, \dots, x_d \mid y) = p(x_1 \mid y) \cdots p(x_d \mid y)$$
 for all possible values x_1, \dots, x_d, y

- Features independent per class: use a different product of Bernoullis for each class
- To fit, need conditional univariate density estimates

$$p(x_1, \dots, x_d, y) = p(x_1, \dots, x_d \mid y)p(y) = p(x_1 \mid y) \cdots p(x_d \mid y)p(y)$$

Naïve Bayes inference

- Given model, can compute $p(x_1, \ldots, x_d, y) = p(x_1 \mid y) \cdots p(x_d \mid y) p(y)$
- To classify: have $p(y \mid x) \propto p(x,y)$ probabilistic predictions
 - \bullet We maximize probability of correct answer if we take $\arg\max_{y}p(y\mid x)$
- But probabilities make it easy to do more variations!
- Probably cost of missing a spam email < cost of flagging a non-spam email

Prediction \Truth	y=0: Good email	y=1: Spam		
$\hat{y} = 0$: Good email	0	1		
$\hat{y}=1$: Spam	50	0		

• Can minimize expected cost: letting $\rho(x) = p(y=1 \mid x)$ be the prediction,

$$\begin{split} \mathbb{E}[C(\hat{y},y)] &= \rho(x) \, C(\hat{y},1) + (1-\rho(x)) \, C(\hat{y},0) \\ &= \begin{cases} (1-\rho(x)) \cdot 0 + \rho(x) \cdot 1 & \text{if } \hat{y} = 0 \\ (1-\rho(x)) \cdot 50 + \rho(x) \cdot 0 & \text{if } \hat{y} = 1 \end{cases} = \begin{cases} \rho(x) & \text{if } \hat{y} = 0 \\ 50(1-\rho(x)) & \text{if } \hat{y} = 1 \end{cases} \end{split}$$

so we predict $\hat{y}=1$ only if $50(1-\rho(x))\leq\rho(x)$, i.e. $\rho(x)\geq\frac{50}{51}\approx98\%$

Naïve Bayes inference

- Can also do other inference tasks:
- What's $p(x_1,\ldots,x_d)$?
- What are the "most spammy" features? $\arg\max_{x_1,\ldots,x_d} p(x_1,\ldots,x_d \mid y=1)$
- How can I minimally change my spam email to make it look not like spam?
- Generate data with ancestral sampling:
 - Sample \tilde{y} from p(y), then \tilde{x} from $p(x \mid \tilde{y})$

Training naïve Bayes: conditional binary density estimation

Recall that under naïve Bayes assumption,

$$p(x_1, \dots, x_d, y) = p(x_1, \dots, x_d \mid y)p(y) = p(x_1 \mid y) \cdots p(x_d \mid y)p(y)$$

- For binary X_i and Y: p(y) is just binary density estimation
- Can parameterize $p(x_j \mid y) = \Pr(X_j = x_j \mid Y = y)$ as conditionally Bernoulli:

$$\Pr(X_j = 1 \mid Y = 1) = \theta_{j|1}$$
 $\Pr(X_j = 1 \mid Y = 0) = \theta_{j|0}$

- Two parameters per feature: $\theta_{i|y}$ is probability of X_i being 1 given Y=y
- $X_j \mid Y = 0$ is $Bern(\theta_{j|0})$, and $X_j \mid Y = 1$ is $Bern(\theta_{j|1})$
- MLE is given by "counting conditionally":

$$\hat{\theta}_{j|1} = \frac{\sum_{i=1}^{n} \mathbb{1}(x_{j}^{(i)} = 1) \mathbb{1}(y^{(i)} = 1)}{n_{1}} = \frac{n_{x_{j}=1,y=1}}{n_{y=1}} \qquad \hat{\theta}_{j|0} = \frac{n_{x_{j}=1,y=0}}{n_{y=0}}$$

• Should be intuitive, but worth writing out for yourself to check the steps make sense!

Generative classifiers

- ullet Training phase: density estimation: fit a model for p(x,y)
- Usually: first fit a model for p(y)
 - For binary y, just use a Bernoulli and do MLE/MAP

 $\mathcal{O}(n)$ time

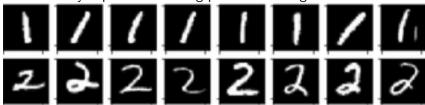
- ullet Next, for each class c, fit $p(x \mid y=c)$ using examples from class c
 - For naı̈ve Bayes, fit $p(x_1 \mid y = c)$, ..., $p(x_d \mid y = c)$ separately
 - \bullet For binary data, fits a product of Bernoullis for class c

 $\mathcal{O}(n_{y=c}\,d)$ time

- Total: $\mathcal{O}(n + n_{y=1}d + \cdots + n_{y=k}d) = \mathcal{O}(n + nd) = \mathcal{O}(nd)$ time
 - ullet Can reduce to $\mathcal{O}(\text{number of nonzero entries})$ with sparse format
- Testing phase: use $p(y \mid x) \propto p(x,y)$ to get probability of each class for x
- Usually: predict $\arg\max_{y} p(y \mid x) = \arg\max_{y} p(x, y)$
 - "What's the most likely y, after seeing x?" (Like MAP!)

Naïve Bayes on MNIST

• Let's make a binary supervised learning problem: distinguish 1 from 2



- There are 6,742 1s, and 5,958 2s
 - With MLE, get $p(y=1) = 6742/(6742 + 5958) \approx 0.53$
- MLE parameters for Naïve Bayes, $p(x_j | y)$ for each class (arranged as an image):



Naïve Bayes on MNIST

• Sample class \tilde{y} from p(y), then features from $p(x \mid \tilde{y})$:

- Clearly different from the dataset, but at least there's some structure
- We don't need a perfect model for naïve Bayes to classify well
 - Might be enough to see 2 is more likely than 1, even if it's a bad model of each class
 - Naïve Bayes is a terrible estimator of email distribution, but "good enough" classifier

Summary

- Product of Bernoullis:
 - Extremely simple way to handle multivariate data
 - Assumes all variables are independent
 - Very strong assumption gives really easy inference/learning but bad models
- Generative classifiers: model p(x,y), then use $p(y \mid x)$ to classify
- ullet Naïve Bayes: assume that dimensions of x are independent given y

Next time: discriminating (but in a good way)