Discriminative models and deep learning CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan-Apr 2025)

### Last time

• Generative classifiers, e.g. Naive Bayes:

- Model p(x,y), typically with p(y) and  $p(x \mid y)$
- Use that to model  $p(y \mid x)$
- Use that to make decisions
- Discriminative (probabilistic) classifiers, e.g. logistic regression:
  - $\bullet \ \operatorname{Model} \, p(y \mid x) \ \operatorname{directly} \\$ 
    - p(x) or  $p(x \mid y)$  is often much harder to model correctly!
    - But if we don't model it, can't use it (e.g. outlier detection, sampling, ...)
  - Use that to make decisions
- Discriminative non-probabilistic classifiers, e.g. SVMs:
  - Learn a decision function directly
    - Don't need to try to model  $p(y \mid x)$
    - But if we don't model it, can't use it (e.g. "decision theory")

#### Generative classifiers, usual framework

• Can generalize our previous notion of Naive Bayes to categorical data:

• 
$$Y \sim \operatorname{Cat}(\boldsymbol{\theta}_y)$$
  
•  $Y \sim \operatorname{Cat}(\boldsymbol{\theta}_y)$   
e.g.  $\begin{array}{c} \Pr(Y = \texttt{important}) = 0.1 \\ \Pr(Y = \texttt{promo}) = 0.3 \\ \Pr(Y = \texttt{spam}) = 0.4 \\ \Pr(Y = \texttt{other}) = 0.2 \end{array}$ 

•  $X_j \mid (Y = y) \sim \text{Bern}(\theta_{j|y})$  e.g.  $\Pr(\text{"ASAP"} \in \text{email} \mid Y = \texttt{important}) = 0.05$ 

- $p(\texttt{important} \mid x) = p(x \mid \texttt{important}) p(\texttt{important}) / \sum_y p(x \mid y) p(y)$
- Can fit all the parameters  $\Theta = \{ \theta_y, \theta_{1|1}, \dots \}$  with MLE:  $\arg \max_{\Theta} p(\mathbf{X}, \mathbf{y} \mid \Theta)$
- Or put prior p(Θ), use MAP: arg max<sub>Θ</sub> p(Θ | X, y) = arg max<sub>Θ</sub> p(X, y | Θ)p(Θ)
   e.g. Dirichlet prior for θ<sub>y</sub>, Beta for all the θ<sub>j|y</sub>
- Can use any other distributions for Y and  $X \mid Y = y$  in the same way

# Multi-class naïve Bayes on MNIST

- Binarized MNIST: label is categorical, but images are still product of Bernoullis
- Parameter of the Bernoulli for each class:



• One sample from each class:



# Discriminative, probabilistic, binary classifiers

- Model  $Y \mid (X = x) \sim \operatorname{Bern}(\theta_x)$
- Can do "discriminative" MLE/MAP/... for  $\theta_x$ :  $\arg \max_{\Theta} p(\mathbf{y} \mid \mathbf{X}, \Theta) p(\Theta)$
- One extreme ("galaxy brain"): each  $heta_x$  is a totally separate parameter
  - Can model absolutely anything, with enough data
  - You probably don't have enough data
- Other extreme: each  $\theta_x$  is the same
  - You probably have enough data to fit this well!
  - But it totally ignores  $\boldsymbol{x}$  and makes the same decision for everything
- Almost always want an in-between: "similar x should have similar  $\theta_x$ "
- ... but what does "similar" mean?
- Common choice:  $\theta_x = \Pr(Y = 1 \mid X = x)$  given by some function  $\hat{\theta}(x)$
- Can choose  $\hat{\theta}(x)$  by MLE or MAP:  $\arg \max p(\mathbf{y} \mid \mathbf{X}, \hat{\theta}) p(\hat{\theta})$

### Logistic regression

- Linear models:  $\theta_x = \Pr(Y = 1 \mid X = x) = \sigma(w \cdot x)$
- Defined by parameters  $w \in \mathbb{R}^d$
- Common choice for  $\sigma$ : sigmoid function, giving logistic regression

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$(i) = \frac{1}{1 + \exp(-z)}$$

$$(i) = \frac{0.8}{5}$$

$$(i) = \frac{0.8}{0.4}$$

$$(i) = \frac{0.8}{5}$$

$$(i) = \frac{0.8}{0.4}$$

$$(i) = \frac{0.8}{5}$$

$$(i) = \frac{0.8$$

# Logistic (negative log-)likelihood

• Logistic regression uses

$$p(\mathbf{y} \mid \mathbf{X}, w) = \prod_{i=1}^{n} p\left(y^{(i)} \mid \mathbf{X}, w\right) = \prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)}, w\right)$$
$$\underset{w}{\operatorname{arg\,max}} p(\mathbf{y} \mid \mathbf{X}, w) = \underset{w}{\operatorname{arg\,min}} - \log p(\mathbf{y} \mid \mathbf{X}, w)$$
$$= \underset{w}{\operatorname{arg\,min}} \sum_{i=1}^{n} - \log p(y^{(i)} \mid x^{(i)}, w)$$

• Each  $-\log p(y^{(i)} \mid x(i), w)$  term is  $\log \left(1 + \exp \left(-\tilde{y}^{(i)} w^{\mathsf{T}} x^{(i)}\right)\right)$ , for  $\tilde{y} \in \{-1, 1\}$ :

$$\begin{cases} -\log\frac{1}{1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)} & \text{if } y^{(i)} = 1\\ -\log\left(1-\frac{1}{1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)}\right) & \text{if } y^{(i)} = 0 \end{cases} = \begin{cases} \log\left(1+\exp\left(-w^{\mathsf{T}}x^{(i)}\right)\right) & \text{if } y^{(i)} = 1\\ \log\left(1+\exp\left(w^{\mathsf{T}}x^{(i)}\right)\right) & \text{if } y^{(i)} = 0 \end{cases}$$

• Usually convenient to use  $y \in \{-1,1\}$  instead of  $\{0,1\}$  for binary linear classifiers

## MLE for logistic regression



- MLE is equivalent to minimizing  $f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{(i)}w^{\mathsf{T}}x^{(i)}))$ 
  - Using  $y^{(i)} \in \{-1,1\}$  here
  - Equivalent to "binary cross-entropy"
  - Computational cost: need to compute the  $w^{\mathsf{T}}x^{(i)}$ , aka  $\mathbf{X}w$ , in time  $\mathcal{O}(nd)$

•  $\nabla f(w) = -\mathbf{X}^{\mathsf{T}} \frac{\mathbf{y}}{1 + \exp(\mathbf{y} \odot \mathbf{X} w)}$ , with elementwise operations for the y; also  $\mathcal{O}(nd)$ 

- Convex function: no bad local minima
- No closed-form solution in general from setting  $\nabla f(w)=0$
- But can solve with gradient descent or other iterative optimization algorithms
  - Best choice depends on n, d, desired accuracy, computational setup,  $\ldots$

# MAP for logistic regression $\approx$ regularization



- MAP with a Gaussian prior,  $w_j \sim \mathcal{N}\left(0, \frac{1}{\lambda}\right)$ , adds  $\frac{1}{2}\lambda \|w\|^2$  to the objective
  - Now "strongly convex": optimization is usually faster
- Typically gives better test error when  $\lambda$  is appropriate
- MAP here is  $\arg \max_w p(w \mid \mathbf{X}, \mathbf{y}) = \arg \max_w p(\mathbf{y} \mid \mathbf{X}, w) p(w)$ 
  - As opposed to generative MAP,  $\arg \max_w p(w \mid \mathbf{X}, \mathbf{y}) = \arg \max_w p(\mathbf{X}, \mathbf{y} \mid w) p(w)$

#### Binary naïve Bayes is a linear model

Ρ

$$\begin{aligned} \mathbf{r}(Y=1 \mid X=x) &= \frac{p(x \mid y=1)p(y=1)}{p(x \mid y=1)p(y=1) + p(x \mid y=0)p(y=0)} \\ &= \frac{1}{1 + \frac{p(x \mid y=0)p(y=0)}{p(x \mid y=1)p(y=1)}} = \frac{1}{1 + \exp\left(-\log\frac{p(x \mid y=1)p(y=1)}{p(x \mid y=0)p(y=0)}\right)} \\ &= \sigma\left(\sum_{j=1}^{d}\log\frac{p(x_{j} \mid y=1)}{p(x_{j} \mid y=0)} + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}\log\frac{\theta_{j|1}^{x_{j}}(1-\theta_{j|1})^{1-x_{j}}}{\theta_{j|0}^{x_{j}}(1-\theta_{j|0})^{1-x_{j}}} + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}\left[x_{j}\log\frac{\theta_{j|1}}{\theta_{j|0}} + (1-x_{j})\log\frac{1-\theta_{j|1}}{1-\theta_{j|0}}\right] + \log\frac{p(y=1)}{p(y=0)}\right) \\ &= \sigma\left(\sum_{j=1}^{d}x_{j}\underbrace{\log\frac{\theta_{j|1}}{\theta_{j|0}}\frac{1-\theta_{j|0}}{1-\theta_{j|1}}}_{w_{j}} + \underbrace{\sum_{j=1}^{d}\log\frac{1-\theta_{j|1}}{1-\theta_{j|0}}}_{p(y=0)} + \log\frac{p(y=1)}{p(y=0)}\right) = \sigma(w^{\mathsf{T}}x+b) \end{aligned}$$

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model)



#### Adding intercepts to linear models

- Often we only talk about homogeneous linear models,  $\sigma(w^{\mathsf{T}}x)$
- More generally inhomogeneous models,  $\sigma(w^{\mathsf{T}}x+b)$ , are very useful in practice
- Two usual ways to do this:
  - Treat b as another parameter to fit and put it in all the equations
  - Add a "dummy feature"  $X_0 = 1$ ; then corresponding weight  $w_0$  acts like b
- Both of these ways make sense in probabilistic framing, too!
- ullet Just be careful about if you want to use the same prior on  $b/w_0$  or not
  - $\bullet\,$  Often makes sense to "not care about y location," i.e. use improper prior  $p(w_0)\propto 1$
- Another generally-reasonable scheme:
  - First centre the ys so  $\frac{1}{n}\sum_{i=1}^n y^{(i)}=0$ , then put some prior on  $w_0$  not being too big

#### Feature engineering



- If we're using a linear model, we want features that will make sense
- For example, how do we use categorical features x?
- Usually convert to set of binary features ("one-hot" / "one of k" encoding)

| Age | City | Income   | Age  | Van | Bur | Sur | Income  |
|-----|------|----------|------|-----|-----|-----|---------|
| 23  | Van  | 26,000   | 23   | 1   | 0   | 0   | 26,000  |
| 25  | Sur  | 67,000 — | → 25 | 0   | 0   | 1   | 67,000  |
| 19  | Bur  | 16,500   | 19   | 0   | 1   | 0   | 16,500  |
| 43  | Sur  | 183,000  | 43   | 0   | 0   | 1   | 183,000 |

- If you see a new category in test data: usually, just set all of them to zero
- Also often want to standardize features: subtract mean, divide by variance
- May or may not want to do this for one-hots

# Recap: tabular versus logistic regression

- Tabular parameterization ("galaxy brain"):
  - Each  $\theta_x$  is totally separate
  - $2^d$  parameters when everything is binary
  - Can model any binary conditional parameter
  - $\bullet~$  Tends to overfit unless  $2^d \ll n$
- Logistic regression parameterization of a categorical:
  - Each  $\theta_x$  is given by  $\sigma(w^{\mathsf{T}}x+b)$
  - d or d+1 parameters (depending on offset)
  - Can only model linear conditionals
  - Tends to underfit unless  $\boldsymbol{d}$  is big or truth is linear
- Totally naive parameterization of a categorical:
  - Each  $\theta_x$  is equal to a single shared  $\theta$
  - One parameter
  - Can't model any non-constant effect
  - Underfits really awfully unless there's really just no signal

### "Fundamental trade-off"

• Tabular and logistic models on different sides of the "fundamental trade-off":

generalization error = train error+generalization error - train error  $\geq$  irreducible error generalization gap (overfitting)

- If irreducible error > 0, small train error implies some overfitting / vice versa
- Simple models:
  - Tend to have small generalization gaps: don't overfit much
  - Tend to have larger training error (can't fit data very well)
- Complex models:
  - Tend to have small training error (fit data very well)
  - Tend to overfit more

eview

## Nonlinear feature transformations



- Linear models can have different complexities with non-linear feature transforms:
  - Transform each  $\boldsymbol{x}^{(i)}$  into some new  $\boldsymbol{z}^{(i)}$
  - Train a logistic regression model on  $\boldsymbol{z}^{(i)}$
  - At test time, do the same transformation for the test features
- Examples: polynomial features, radial basis functions, periodic basis functions, ...
- Can also frame kernel methods in this way
- More complex features tend to decrease training error, increase overfitting
  - Performance is better if the features match the "true" conditionals better!
- Gaussian RBF features/Gaussian kernels, with appropriate regularization ( $\lambda$  and lengthscale  $\sigma$  chosen on a validation set), is often an excellent baseline

# Learning nonlinear feature transformations with deep networks



- Not always clear which feature transformations are "right"
- Generally, deep learning tries to learn good features
  - Use "parameterized" features, optimize those parameters too
  - Use a flexible-enough class of features
- Fully-connected networks: one-hidden-layer, 1d output version is

$$f(x) = v^{\mathsf{T}} h(Wx)$$

where W is an  $m \times d$  matrix (the "first layer" of feature transformation) h is an element-wise activation function, e.g.  $\operatorname{ReLU}(z) = \max\{0, z\}$  or sigmoid, v is a linear function of "activations"

- Without h (e.g. h(z) = z), becomes a linear model:  $v^{\mathsf{T}}(Wx) = \underbrace{v^{\mathsf{T}}W}_{} x$
- $\bullet~$  Need to fit parameters  $W~{\rm and}~v$

## Fitting neural networks



- $f(x) = v^{\mathsf{T}}h(Wx)$ : with fixed W, this is a linear model in the transformed features
- Can then plug this in to  $\hat{\theta}(x) = \sigma(f(x))$  for binary classification
- Can then compute logistic negative log-likelihood
- Minimize it with some variant of gradient descent
- Deep networks do the same thing; a fully-connected L-layer network looks like

$$f(x) = h_L(W_L h_{L-1}(W_{L-1} h_{L-2}(W_{L-2} \cdots h_1(W_1 x) \cdots)))$$

or more often, add bias terms

$$f(x) = h_L(b_L + W_L h_{L-1}(b_{L-1} + W_{L-1}h_{L-2}(b_{L-2} + \dots + h_1(b_1 + W_1 x) \dots)))$$

where each b is a vector with the same dimension as the activations at that layer • If  $W_j$  is  $d_j \times d_{j-1}$ , jth layer activations are length  $d_j$ ,  $b_j$  is also length  $d_j$ 

• Can still apply same logistic likelihood, optimize in same way

## Convolutional networks



- Different architectures make different implicit assumptions about the structure of how  $\theta_x$  changes with x
- $\bullet$  Convolutional layers: restrict form of W to act like a bank of convolutions



## Convolutional networks



- Different architectures make different implicit assumptions about the structure of how  $\theta_x$  changes with x
- $\bullet$  Convolutional layers: restrict form of W to act like a bank of convolutions
- Pooling layers: no-parameter ways to decrease hidden dim / enforce invariances



Max pooling: "there's an edge around here, I don't care exactly where" Average pooling: "most of these patches look like they're part of an airplane"

## Convolutional networks



- Different architectures make different implicit assumptions about the structure of how  $\theta_x$  changes with x
- $\bullet$  Convolutional layers: restrict form of W to act like a bank of convolutions
- Pooling layers: no-parameter ways to decrease hidden dim / enforce invariances
- Traditional architectures end by flattening and feeding into fully-connected layers
- Usual convolutions are 2-dimensional on images
- But they make sense whenever there's a notion of neighbourhood
  - 1d convolution on sequences (time series, sentences, ...)
  - Graph convolutional networks (will explore on A2)

#### Skip connections



• Standard fully-connected layer:

$$f_j(x) = h_j(b_j + W_j f_{j-1}(x))$$

• One form of skip connection:

$$f_j(x) = h_j(b_j + W_j f_{j-1}(x) + W_{j-2 \to j} f_{j-2}(x))$$

• Residual connections (building blocks of ResNets) use a special form:

$$f_{2j}(x) = h_{2j} \left( b_{2j} + W_{2j-1 \to 2j} h_{2j-1} (W_{2j-1} f_{2j-2}(x)) + f_{2j-2}(x) \right)$$

• DenseNets look at everything before:

$$f_j(x) = h_j\left(b_j + \sum_{\ell=0}^{j-1} W_{\ell \neq j} f_\ell(x)\right)$$

#### Multi-class classification

- All of this gives different ways to parameterize  $\hat{\theta}$  in  $Y \mid (X = x) \sim \text{Bern}(\hat{\theta}(x))$
- Multiclass classification: Y takes one of k possible values
  - Is this image of a gorilla, or a drill, or a Burmese mountain dog, or...
- Swap  $\operatorname{Bern}(\hat{\theta}(x))$  for  $\operatorname{Cat}(\hat{\theta}(x))$  and everything is the same!
- How to parameterize  $\hat{ heta}(x)$ ? Needs to be nonnegative and sum to one
- First, make the last layer of the network output k values instead of  $\mathbf{1}$
- $\bullet$  Softmax function first makes nonnegative by taking  $\exp,$  then normalizes:

$$\theta_c = [\text{softmax}(\mathbf{z})]_c = \frac{\exp(z_c)}{\sum_{c'=1}^k \exp(z_{c'})} \propto \exp(z_c)$$

• Don't have to use softmax, other options exist, but this is the default

## Beyond multi-class

- This framework now allows for other data types, too!
- A1 had an example of Poisson regression:

$$Y \mid (X = x) \sim \text{Poisson}(\lambda_x) \qquad \Pr(Y = y \mid X = x) = \frac{\lambda_x^y e^{-\lambda_x}}{y!} \mathbb{1}(y \in \mathbb{N}_{\geq 0})$$

where we used  $\lambda_x = \exp(w^{\mathsf{T}}x)$ 

- Could just as easily use a deep network instead of  $w^{\mathsf{T}}x$
- Linear regression uses  $Y \mid (X = x) \sim \mathcal{N}(w^{\mathsf{T}}x, \sigma^2)$  for some fixed  $\sigma^2$
- $\bullet$  Could just as easily use a deep network instead of  $w^{\mathsf{T}} x$
- $\bullet$  Could also parameterize  $\sigma^2$  as a function of  $w^{\mathsf{T}} x$
- Very powerful framework to mix-and-match pieces together with!

# Summary

- Discriminative classifiers model  $p(y \mid x)$  instead of p(x,y)
  - Most of modern ML uses discriminative classifiers
- Tabular parameterization models all possible conditionals
- Parameterized conditionals add some structure
  - Linear models, like logistic regression, or deep models
- "Fundamental trade-off" between fitting and overfitting

 $\bullet\,$  Next time: handling continuous x