Discriminative models and deep learning
CPSC 440/550: Advanced Machine Learning
cs.ubc.ca/~dsuth/440/24w2
University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan—-Apr 2025)

1/22

https://cs.ubc.ca/~dsuth/440/24w2

Last time

@ Generative classifiers, e.g. Naive Bayes:

o Model p(z,y), typically with p(y) and p(z | y)
o Use that to model p(y | x)
o Use that to make decisions
e Discriminative (probabilistic) classifiers, e.g. logistic regression:
o Model p(y | x) directly

@ p(x) or p(x | y) is often much harder to model correctly!
@ But if we don't model it, can't use it (e.g. outlier detection, sampling, ...)

o Use that to make decisions
@ Discriminative non-probabilistic classifiers, e.g. SVMs:
e Learn a decision function directly

e Don't need to try to model p(y | x)
e But if we don't model it, can't use it (e.g. “decision theory")

2/22

Generative classifiers, usual framework

@ Can generalize our previous notion of Naive Bayes to categorical data:

Pr(Y = important) = 0.1
Pr(Y = promo) = 0.3
Pr(Y = spam) =04
Pr(Y = other) =0.2

e Y ~ Cat(6,) e.g.

X; | (Y =y) ~ Bern(b;

ily) €8 Pr(“ASAP” € email | Y = important) = 0.05

p(important |) = p(z | important)p(important)/ > , p(z | y)p(y)

Can fit all the parameters © = {0,,0y)1,... } with MLE: argmaxg p(X,y | ©)
Or put prior p(©), use MAP: argmaxg p(© | X,y) = argmaxg p(X,y | ©)p(©)
e e.g. Dirichlet prior for 8,, Beta for all the 0j|y

e Can use any other distributions for Y and X | Y = y in the same way
3/22

Multi-class naive Bayes on MNIST

@ Binarized MNIST: label is categorical, but images are still product of Bernoullis

@ Parameter of the Bernoulli for each class:

@ One sample from each class:

4/22

Discriminative, probabilistic, binary classifiers
Model Y | (X = x) ~ Bern(6,)
Can do “discriminative” MLE/MAP/. . . for 6,: argmaxg p(y | X, ©)p(O)

One extreme (“galaxy brain”): each 0, is a totally separate parameter
e Can model absolutely anything, with enough data
e You probably don't have enough data

Other extreme: each 0, is the same
e You probably have enough data to fit this well!
e But it totally ignores 2 and makes the same decision for everything

Almost always want an in-between: “similar = should have similar 6,"
... but what does “similar" mean?

Common choice: 0, = Pr(Y =1 | X =) given by some function 0(x)
Can choose 0(z) by MLE or MAP: arg;naxp(y | X, 0)p(0)

5/22

Logistic regression

o Linear models: 6, =Pr(Y =1| X =2) =o(w - x)
o Defined by parameters w € R¢

@ Common choice for g: sigmoid function, giving logistic regression

o(z)
cooo
bom 00

6 —4 -2 0 2 4 6

6/22

Logistic (negative log-)likelihood

o Logistic regression uses
n
i=1
argmax p(y | X, w) = argmin — log p(y | X, w)
w w

= arg min Z —log p(yW | 29, w)

v =1

e Each —logp(y™ | x(i),w) term is log (1+exp (—gj(i)wT:L‘(i))), foryge {-1,1}:

log — 1 e (i) 4 ’
log I+exp(—wTz(®) if y 1 _ {log (14 exp (—wTz®)) if y@ =1
—log <1 - W) ify@ =0 log (1 +exp (w'z®)) ify® =0

o Usually convenient to use y € {—1,1} instead of {0,1} for binary linear classifiers

7/22

MLE for logistic regression Ceview

o MLE is equivalent to minimizing f(w) = Y7, log(1 + exp(—yPDwTz®))

o Using ¥y € {—1,1} here

e Equivalent to “binary cross-entropy"”

o Computational cost: need to compute the wTz®, aka Xw, in time O(nd)

o Vf(w)= —XTW, with elementwise operations for the y; also O(nd)
@ Convex function: no bad local minima
@ No closed-form solution in general from setting V f(w) =0
@ But can solve with gradient descent or other iterative optimization algorithms

e Best choice depends on n, d, desired accuracy, computational setup, ...

8/22

MAP for logistic regression = regularization w

o MAP with a Gaussian prior, w; ~ A (0, 1), adds $A|lw|? to the objective
o Now “strongly convex": optimization is usually faster

@ Typically gives better test error when A is appropriate

@ MAP here is arg max,, p(w | X,y) = argmax,, p(y | X, w)p(w)
o As opposed to generative MAP, argmax,, p(w | X,y) = arg max,, p(X,y | w)p(w)

9/22

Binary naive Bayes is a linear model bonus!

pxly=1Dpy=1)
(]ly=1ply=1)+p(x|y=0)py=0)
1 1

- p(ely=0)p(y=0) (@|ly=1)p(y=1)
L+ oGlhv=oro=n) 1+exp (_ log %

Pr(Y =1|X=2) =
(|) =3

)+ ng(y 1)
=) p(y
d 017 1 0 1—z; _
— ZIOg i\]l(3\1)1_1. +10gp(y 1)
= O5j0(1—6j10) 77 p(y = 0)
d
—Oin ply=1)
=7 z;log L= + (1 - ;) log J‘}-{-log
(5 e~ -smon =g] e o=
g O 1= b0 , — 9 ply=1)
=@ z; log 2L]O—i— 1 31+1 .
<]1 J 0 |0 1_63“ Zl 1_61\0 (()
=

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model) -

Adding intercepts to linear models

T

e Often we only talk about homogeneous linear models, o(w' x)

@ More generally inhomogeneous models, o(w"z + b), are very useful in practice

@ Two usual ways to do this:

e Treat b as another parameter to fit and put it in all the equations
e Add a “"dummy feature” Xy = 1; then corresponding weight wq acts like b

Both of these ways make sense in probabilistic framing, too!

Just be careful about if you want to use the same prior on b/wg or not
o Often makes sense to “not care about y location,” i.e. use improper prior p(wg) o 1

Another generally-reasonable scheme:
e First centre the ys so %E:L:l y® =0, then put some prior on wy not being too big

11/22

Feature engineering Ceview

o If we're using a linear model, we want features that will make sense
@ For example, how do we use categorical features x7?

@ Usually convert to set of binary features (“one-hot” /“one of k" encoding)

Age City Income Age Van Bur Sur Income
23 Van 26,000 23 1 0 0 26,000
25 Sur 67,000 — 25 0 0 1 67,000
19 Bur 16,500 19 0 1 0 16,500
43 Sur 183,000 43 0 0 1 183,000

o If you see a new category in test data: usually, just set all of them to zero

@ Also often want to standardize features: subtract mean, divide by variance

@ May or may not want to do this for one-hots

12/22

Recap: tabular versus logistic regression

@ Tabular parameterization (“galaxy brain”):
e Each @, is totally separate
o 27 parameters when everything is binary
e Can model any binary conditional parameter
e Tends to overfit unless 2¢ < n

@ Logistic regression parameterization of a categorical:
o Each 6, is given by o(w'z + b)

d or d + 1 parameters (depending on offset)

Can only model linear conditionals

Tends to underfit unless d is big or truth is linear

o Totally naive parameterization of a categorical:
e Each 6, is equal to a single shared 6
e One parameter
e Can't model any non-constant effect
e Underfits really awfully unless there’s really just no signal

13/22

‘" ” E,VL/
Fundamental trade-off Ceview

@ Tabular and logistic models on different sides of the “fundamental trade-off":

generalization error = train error+-generalization error - train error > irreducible error

generalization gap (overfitting)

o If irreducible error > 0, small train error implies some overfitting / vice versa
@ Simple models:

e Tend to have small generalization gaps: don’t overfit much
o Tend to have larger training error (can't fit data very well)

o Complex models:

o Tend to have small training error (fit data very well)
o Tend to overfit more

14 /22

: : eview
Nonlinear feature transformations W/V

@ Linear models can have different complexities with non-linear feature transforms:
o Transform each z() into some new z(*)
o Train a logistic regression model on z(*)
o At test time, do the same transformation for the test features

Examples: polynomial features, radial basis functions, periodic basis functions, ...

Can also frame kernel methods in this way

More complex features tend to decrease training error, increase overfitting
o Performance is better if the features match the “true” conditionals better!

Gaussian RBF features/Gaussian kernels, with appropriate regularization (A and
lengthscale o chosen on a validation set), is often an excellent baseline

15/22

Learning nonlinear feature transformations with deep networks w

@ Not always clear which feature transformations are “right”

@ Generally, deep learning tries to learn good features
o Use “parameterized” features, optimize those parameters too
o Use a flexible-enough class of features

o Fully-connected networks: one-hidden-layer, 1d output version is
f(z) =vTh(Wz)

where W is an m x d matrix (the “first layer” of feature transformation)
h is an element-wise activation function, e.g. ReLU(z) = max{0, z} or sigmoid,
v is a linear function of “activations”

o Without h (e.g. h(z) = 2), becomes a linear model: vT (Wz) = @x

Ixm
o Need to fit parameters W and v

16 /22

Fitting neural networks Ceview
f(x) = vTh(Wzx): with fixed W, this is a linear model in the transformed features

Can then plug this in to 6(z) = o(f(x)) for binary classification
Can then compute logistic negative log-likelihood

Minimize it with some variant of gradient descent

@ Deep networks do the same thing; a fully-connected L-layer network looks like
f(@) =he(Wrhp1(Wp—1hp—o(Wr—2---hi(Wiz)---)))
or more often, add bias terms
f(z) =hp(br +Wrhr—1(bp—1+ Wr_1hp2(bp—2+ - hi(by + Wix)---)))

where each b is a vector with the same dimension as the activations at that layer
o If Wjis dj x d;j_y1, jth layer activations are length d;, b; is also length d;
@ Can still apply same logistic likelihood, optimize in same way

17/22

. eview
Convolutional networks Cf-_/

@ Different architectures make different implicit assumptions about the structure of

how 6, changes with x
@ Convolutional layers: restrict form of W to act like a bank of convolutions

o
l—%li

x o

//l\\\

o

18/22

: eview
Convolutional networks i
@ Different architectures make different implicit assumptions about the structure of

how 6, changes with x
@ Convolutional layers: restrict form of W to act like a bank of convolutions
@ Pooling layers: no-parameter ways to decrease hidden dim / enforce invariances

2 N i
‘5’ 2 V‘M,U}wrkan«l
[IA] 2

Max pooling: “there's an edge around here, | don't care exactly where”
Average pooling: “most of these patches look like they're part of an airplane”

18/22

. eview
Convolutional networks W/V

Different architectures make different implicit assumptions about the structure of
how 6, changes with x

Convolutional layers: restrict form of W to act like a bank of convolutions

Pooling layers: no-parameter ways to decrease hidden dim / enforce invariances

Traditional architectures end by flattening and feeding into fully-connected layers

Usual convolutions are 2-dimensional on images

But they make sense whenever there's a notion of neighbourhood

o 1d convolution on sequences (time series, sentences, ...)
o Graph convolutional networks (will explore on A2)

18/22

Skip connections W/eyg/

o Standard fully-connected layer:
fi(@) = hj(bj + W;fj-1(2))
@ One form of skip connection:
fi(®) = hj(bj + Wfi-1(x) + Wj-2s; fj-2(2))
@ Residual connections (building blocks of ResNets) use a special form:
f2j(x) = haj (b2j + Waj1525hoj—1(Waj—1faj—2(2)) + faj—2(z))

@ DenseNets look at everything before:

j—1
fi(x) = h; (bj +) " Wes fg(x)>

=0

19/22

Multi-class classification

All of this gives different ways to parameterize f in Y | (X = z) ~ Bern(f(z))
Multiclass classification: Y takes one of k£ possible values

e Is this image of a gorilla, or a drill, or a Burmese mountain dog, or. ..

Swap Bern(é(z)) for Cat(@(z)) and everything is the same!

(]

@ How to parameterize é(az)'? Needs to be nonnegative and sum to one
o First, make the last layer of the network output k values instead of 1

@ Softmax function first makes nonnegative by taking exp, then normalizes:

0. = [softmax(z)]. = __oxp(z) x exp(zc)

k
Zcle eXp(Zc/)
e Don't have to use softmax, other options exist, but this is the default

20/22

Beyond multi-class

This framework now allows for other data types, too!

Al had an example of Poisson regression:

)\y —Az

Y | (X = x) ~ Poisson(\,) PriY =y| X =2)= xZ' 1(y € N>g)

where we used)\, = exp(w'x)

Could just as easily use a deep network instead of w'z

Linear regression uses Y | (X = 2) ~ N (w'x,0?) for some fixed o

Could just as easily use a deep network instead of w'z

2 3s a function of w'z

Could also parameterize o

Very powerful framework to mix-and-match pieces together with!

21/22

Summary

Discriminative classifiers model p(y | =) instead of p(x,y)
e Most of modern ML uses discriminative classifiers

Tabular parameterization models all possible conditionals
Parameterized conditionals add some structure

o Linear models, like logistic regression, or deep models

@ “Fundamental trade-off” between fitting and overfitting

Next time: handling continuous x

22/22

