
Discriminative models and deep learning
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 22

https://cs.ubc.ca/~dsuth/440/24w2

Last time

Generative classifiers, e.g. Naive Bayes:

Model p(x, y), typically with p(y) and p(x | y)
Use that to model p(y | x)
Use that to make decisions

Discriminative (probabilistic) classifiers, e.g. logistic regression:
Model p(y | x) directly

p(x) or p(x | y) is often much harder to model correctly!
But if we don’t model it, can’t use it (e.g. outlier detection, sampling, . . .)

Use that to make decisions

Discriminative non-probabilistic classifiers, e.g. SVMs:
Learn a decision function directly

Don’t need to try to model p(y | x)
But if we don’t model it, can’t use it (e.g. “decision theory”)

2 / 22

Generative classifiers, usual framework
Can generalize our previous notion of Naive Bayes to categorical data:

Y ∼ Cat(θy) e.g.

Pr(Y = important) = 0.1
Pr(Y = promo) = 0.3
Pr(Y = spam) = 0.4

Pr(Y = other) = 0.2

Xj | (Y = y) ∼ Bern(θj|y) e.g. Pr(“ASAP” ∈ email | Y = important) = 0.05

p(important | x) = p(x | important)p(important)/
∑

y p(x | y)p(y)

Can fit all the parameters Θ = {θy, θ1|1, . . . } with MLE: argmaxΘ p(X,y | Θ)
Or put prior p(Θ), use MAP: argmaxΘ p(Θ | X,y) = argmaxΘ p(X,y | Θ)p(Θ)

e.g. Dirichlet prior for θy, Beta for all the θj|y

Can use any other distributions for Y and X | Y = y in the same way
3 / 22

Multi-class näıve Bayes on MNIST

Binarized MNIST: label is categorical, but images are still product of Bernoullis

Parameter of the Bernoulli for each class:

One sample from each class:

4 / 22

Discriminative, probabilistic, binary classifiers
Model Y | (X = x) ∼ Bern(θx)

Can do “discriminative” MLE/MAP/. . . for θx: argmaxΘ p(y | X,Θ)p(Θ)

One extreme (“galaxy brain”): each θx is a totally separate parameter
Can model absolutely anything, with enough data
You probably don’t have enough data

Other extreme: each θx is the same
You probably have enough data to fit this well!
But it totally ignores x and makes the same decision for everything

Almost always want an in-between: “similar x should have similar θx”

. . . but what does “similar” mean?

Common choice: θx = Pr(Y = 1 | X = x) given by some function θ̂(x)

Can choose θ̂(x) by MLE or MAP: argmax
f

p(y | X, θ̂)p(θ̂)

5 / 22

Logistic regression

Linear models: θx = Pr(Y = 1 | X = x) = σ(w · x)
Defined by parameters w ∈ Rd

Common choice for σ: sigmoid function, giving logistic regression

σ(z) =
1

1 + exp(−z)
−6 −4 −2 0 2 4 6

0.2
0.4
0.6
0.8

z

σ
(z
)

6 / 22

Logistic (negative log-)likelihood
Logistic regression uses

p(y | X, w) =

n∏
i=1

p
(
y(i) | X, w

)
=

n∏
i=1

p
(
y(i) | x(i), w

)
argmax

w
p(y | X, w) = argmin

w
− log p(y | X, w)

= argmin
w

n∑
i=1

− log p(y(i) | x(i), w)

Each − log p(y(i) | x(i), w) term is log
(
1 + exp

(
−ỹ(i)wTx(i)

))
, for ỹ ∈ {−1, 1}:

− log 1

1+exp(−wTx(i))
if y(i) = 1

− log

(
1− 1

1+exp(−wTx(i))

)
if y(i) = 0

=

{
log
(
1 + exp

(
−wTx(i)

))
if y(i) = 1

log
(
1 + exp

(
wTx(i)

))
if y(i) = 0

Usually convenient to use y ∈ {−1, 1} instead of {0, 1} for binary linear classifiers

7 / 22

MLE for logistic regression

MLE is equivalent to minimizing f(w) =
∑n

i=1 log(1 + exp(−y(i)wTx(i)))

Using y(i) ∈ {−1, 1} here
Equivalent to “binary cross-entropy”
Computational cost: need to compute the wTx(i), aka Xw, in time O(nd)
∇f(w) = −XT y

1+exp(y⊙Xw) , with elementwise operations for the y; also O(nd)

Convex function: no bad local minima

No closed-form solution in general from setting ∇f(w) = 0

But can solve with gradient descent or other iterative optimization algorithms

Best choice depends on n, d, desired accuracy, computational setup, . . .

8 / 22

MAP for logistic regression ≈ regularization

MAP with a Gaussian prior, wj ∼ N
(
0, 1

λ

)
, adds 1

2λ∥w∥
2 to the objective

Now “strongly convex”: optimization is usually faster

Typically gives better test error when λ is appropriate

MAP here is argmaxw p(w | X,y) = argmaxw p(y | X, w)p(w)

As opposed to generative MAP, argmaxw p(w | X,y) = argmaxw p(X,y | w)p(w)

9 / 22

Binary näıve Bayes is a linear model

Pr(Y = 1 | X = x) =
p(x | y = 1)p(y = 1)

p(x | y = 1)p(y = 1) + p(x | y = 0)p(y = 0)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
(
− log p(x|y=1)p(y=1)

p(x|y=0)p(y=0)

)
= σ

(
d∑

j=1

log
p(xj | y = 1)

p(xj | y = 0)
+ log

p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

log
θ
xj

j|1(1− θj|1)
1−xj

θ
xj

j|0(1− θj|0)
1−xj

+ log
p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

[
xj log

θj|1
θj|0

+ (1− xj) log
1− θj|1
1− θj|0

]
+ log

p(y = 1)

p(y = 0)

)

= σ

(
d∑

j=1

xj log
θj|1
θj|0

1− θj|0
1− θj|1︸ ︷︷ ︸

wj

+

d∑
j=1

log
1− θj|1
1− θj|0

+ log
p(y = 1)

p(y = 0)︸ ︷︷ ︸
b

)
= σ(wTx+ b)

Not generally the parameters that logistic regression would pick (so, lower likelihoods in logreg model)
10 / 22

Adding intercepts to linear models

Often we only talk about homogeneous linear models, σ(wTx)

More generally inhomogeneous models, σ(wTx+ b), are very useful in practice

Two usual ways to do this:

Treat b as another parameter to fit and put it in all the equations
Add a “dummy feature” X0 = 1; then corresponding weight w0 acts like b

Both of these ways make sense in probabilistic framing, too!

Just be careful about if you want to use the same prior on b/w0 or not

Often makes sense to “not care about y location,” i.e. use improper prior p(w0) ∝ 1

Another generally-reasonable scheme:

First centre the ys so 1
n

∑n
i=1 y

(i) = 0, then put some prior on w0 not being too big

11 / 22

Feature engineering

If we’re using a linear model, we want features that will make sense

For example, how do we use categorical features x?

Usually convert to set of binary features (“one-hot”/“one of k” encoding)

Age City Income

23 Van 26,000
25 Sur 67,000
19 Bur 16,500
43 Sur 183,000

→

Age Van Bur Sur Income

23 1 0 0 26,000
25 0 0 1 67,000
19 0 1 0 16,500
43 0 0 1 183,000

If you see a new category in test data: usually, just set all of them to zero

Also often want to standardize features: subtract mean, divide by variance

May or may not want to do this for one-hots

12 / 22

Recap: tabular versus logistic regression
Tabular parameterization (“galaxy brain”):

Each θx is totally separate
2d parameters when everything is binary
Can model any binary conditional parameter
Tends to overfit unless 2d ≪ n

Logistic regression parameterization of a categorical:
Each θx is given by σ(wTx+ b)
d or d+ 1 parameters (depending on offset)
Can only model linear conditionals
Tends to underfit unless d is big or truth is linear

Totally naive parameterization of a categorical:
Each θx is equal to a single shared θ
One parameter
Can’t model any non-constant effect
Underfits really awfully unless there’s really just no signal

13 / 22

“Fundamental trade-off”

Tabular and logistic models on different sides of the “fundamental trade-off”:

generalization error = train error+generalization error - train error︸ ︷︷ ︸
generalization gap (overfitting)

≥ irreducible error

If irreducible error > 0, small train error implies some overfitting / vice versa

Simple models:

Tend to have small generalization gaps: don’t overfit much
Tend to have larger training error (can’t fit data very well)

Complex models:

Tend to have small training error (fit data very well)
Tend to overfit more

14 / 22

Nonlinear feature transformations

Linear models can have different complexities with non-linear feature transforms:

Transform each x(i) into some new z(i)

Train a logistic regression model on z(i)

At test time, do the same transformation for the test features

Examples: polynomial features, radial basis functions, periodic basis functions, . . .

Can also frame kernel methods in this way

More complex features tend to decrease training error, increase overfitting

Performance is better if the features match the “true” conditionals better!

Gaussian RBF features/Gaussian kernels, with appropriate regularization (λ and
lengthscale σ chosen on a validation set), is often an excellent baseline

15 / 22

Learning nonlinear feature transformations with deep networks

Not always clear which feature transformations are “right”

Generally, deep learning tries to learn good features

Use “parameterized” features, optimize those parameters too
Use a flexible-enough class of features

Fully-connected networks: one-hidden-layer, 1d output version is

f(x) = vTh(Wx)

where W is an m× d matrix (the “first layer” of feature transformation)
h is an element-wise activation function, e.g. ReLU(z) = max{0, z} or sigmoid,
v is a linear function of “activations”

Without h (e.g. h(z) = z), becomes a linear model: vT(Wx) = vTW︸ ︷︷ ︸
1×m

x

Need to fit parameters W and v

16 / 22

Fitting neural networks

f(x) = vTh(Wx): with fixed W , this is a linear model in the transformed features

Can then plug this in to θ̂(x) = σ(f(x)) for binary classification

Can then compute logistic negative log-likelihood

Minimize it with some variant of gradient descent

Deep networks do the same thing; a fully-connected L-layer network looks like

f(x) = hL(WLhL−1(WL−1hL−2(WL−2 · · ·h1(W1x) · · ·)))

or more often, add bias terms

f(x) = hL(bL +WLhL−1(bL−1 +WL−1hL−2(bL−2 + · · ·h1(b1 +W1x) · · ·)))

where each b is a vector with the same dimension as the activations at that layer
If Wj is dj × dj−1, jth layer activations are length dj , bj is also length dj

Can still apply same logistic likelihood, optimize in same way
17 / 22

Convolutional networks

Different architectures make different implicit assumptions about the structure of
how θx changes with x
Convolutional layers: restrict form of W to act like a bank of convolutions

Pooling layers: no-parameter ways to decrease hidden dim / enforce invariances
Traditional architectures end by flattening and feeding into fully-connected layers

Usual convolutions are 2-dimensional on images
But they make sense whenever there’s a notion of neighbourhood

1d convolution on sequences (time series, sentences, . . .)
Graph convolutional networks (will explore on A2)

18 / 22

Convolutional networks

Different architectures make different implicit assumptions about the structure of
how θx changes with x
Convolutional layers: restrict form of W to act like a bank of convolutions
Pooling layers: no-parameter ways to decrease hidden dim / enforce invariances

Max pooling: “there’s an edge around here, I don’t care exactly where”
Average pooling: “most of these patches look like they’re part of an airplane”

Traditional architectures end by flattening and feeding into fully-connected layers

Usual convolutions are 2-dimensional on images
But they make sense whenever there’s a notion of neighbourhood

1d convolution on sequences (time series, sentences, . . .)
Graph convolutional networks (will explore on A2)

18 / 22

Convolutional networks

Different architectures make different implicit assumptions about the structure of
how θx changes with x

Convolutional layers: restrict form of W to act like a bank of convolutions

Pooling layers: no-parameter ways to decrease hidden dim / enforce invariances

Traditional architectures end by flattening and feeding into fully-connected layers

Usual convolutions are 2-dimensional on images

But they make sense whenever there’s a notion of neighbourhood

1d convolution on sequences (time series, sentences, . . .)
Graph convolutional networks (will explore on A2)

18 / 22

Skip connections

Standard fully-connected layer:

fj(x) = hj(bj +Wjfj−1(x))

One form of skip connection:

fj(x) = hj(bj +Wjfj−1(x) +Wj−2)jfj−2(x))

Residual connections (building blocks of ResNets) use a special form:

f2j(x) = h2j (b2j +W2j−1)2jh2j−1(W2j−1f2j−2(x)) + f2j−2(x))

DenseNets look at everything before:

fj(x) = hj

(
bj +

j−1∑
ℓ=0

Wℓ)jfℓ(x)

)

19 / 22

Multi-class classification

All of this gives different ways to parameterize θ̂ in Y | (X = x) ∼ Bern(θ̂(x))

Multiclass classification: Y takes one of k possible values

Is this image of a gorilla, or a drill, or a Burmese mountain dog, or. . .

Swap Bern(θ̂(x)) for Cat(θ̂(x)) and everything is the same!

How to parameterize θ̂(x)? Needs to be nonnegative and sum to one

First, make the last layer of the network output k values instead of 1

Softmax function first makes nonnegative by taking exp, then normalizes:

θc = [softmax(z)]c =
exp(zc)∑k

c′=1 exp(zc′)
∝ exp(zc)

Don’t have to use softmax, other options exist, but this is the default

20 / 22

Beyond multi-class

This framework now allows for other data types, too!

A1 had an example of Poisson regression:

Y | (X = x) ∼ Poisson(λx) Pr(Y = y | X = x) =
λy
xe−λx

y!
1(y ∈ N≥0)

where we used λx = exp(wTx)

Could just as easily use a deep network instead of wTx

Linear regression uses Y | (X = x) ∼ N (wTx, σ2) for some fixed σ2

Could just as easily use a deep network instead of wTx

Could also parameterize σ2 as a function of wTx

Very powerful framework to mix-and-match pieces together with!

21 / 22

Summary

Discriminative classifiers model p(y | x) instead of p(x, y)

Most of modern ML uses discriminative classifiers

Tabular parameterization models all possible conditionals

Parameterized conditionals add some structure

Linear models, like logistic regression, or deep models

“Fundamental trade-off” between fitting and overfitting

Next time: handling continuous x

22 / 22

