
Gaussians and Bayesian learning
CPSC 440/550: Advanced Machine Learning

cs.ubc.ca/~dsuth/440/24w2

University of British Columbia, on unceded Musqueam land

2024-25 Winter Term 2 (Jan–Apr 2025)

1 / 25

https://cs.ubc.ca/~dsuth/440/24w2

So far

We’ve covered binary and categorical random variables

Plus a few continuous things to use as priors: beta and Dirichlet

Use in density estimation

Generative model: estimate joint density p(x, y), can use for p(y | x)
Discriminative model: parameterize p(y | x) as a function of x, do density estimation
Bernoulli likelihood for binary classification, categorical (with softmax) for multiclass

Talked about priors for MAP learning

Enough to do some really complicated things

But still missing some important aspects!

What about when outputs y aren’t binary/categorical?

2 / 25

Motivating problem: phone battery life

How long until my phone dies?

Could model it as “0-30 minutes”, “31-60 minutes”, “1-2 hours”, . . .
Or “0-1 minutes”, “1-2 minutes”, “2-3 minutes”, . . .
Probably more sensible to think of it as a continuous quantity

Usually reviews, ads/reviews give a point estimate:

But of course the actual time varies

“If it’s at 31% now, what’s the probability it’ll still have charge in four hours?”

3 / 25

General problem: continuous density estimation

Can view the basic version of this as a density estimation of a continuous variable

X =

12 hr 37 min 12.3 s

17 hr 31 min 54.9 s

14 hr 17 min 48.3 s

9 hr 51 min 20.0 s

 density estimator−−−−−−−−−−−→ p(X = 11 hr 17 min 31.8 s) = 0.12
p(X = 13 hr 1 min 18.1 s) = 1.41

This is a density, not a probability!

For continuous distributions, the probability of getting any exact number is zero

Probability of being in an interval [a, b] is
∫ b
a p(x)dx

4 / 25

Continuous density estimation
Other applications of continuous density estimation:

Modeling sizes (birth weight of babies, size of zucchini grown in this field, . . .)
Modeling how long it takes to do this step of a manufacturing process
Modeling income, maybe age, . . .
Modeling blood pressure, cholesterol level, . . .
Modeling grades
. . .

Often useful even if it’s “really” categorical
UBC grades are whole integers between 0 and 100
But “83“ and “84” are much more similar to each other than “61” or “97”
Usually easier to predict “83.8” and round
(With enough data, “best” model could handle individual numbers separately)

Bernoulli/categorical distributions can model basically any binary/categorical data

This is not true for continuous data: lots of possible shapes!

We’ll start with a simple case: Gaussian/normal distributions
5 / 25

Univariate Gaussian distribution

A Gaussian random variable, written X ∼ N (µ, σ2), has density

p(x | µ, σ2) =
1√
2π σ

exp

(
−(x− µ)2

2σ2

)
The mean µ = E[X] can be any real number
The variance σ2 = Var(X) can be any positive number

Sometimes allow σ = 0; X becomes a point mass, Pr(X = µ) = 1

φ μ
,σ

2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

x)
0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

https://en.wikipedia.org/wiki/Normal_distribution

6 / 25

https://en.wikipedia.org/wiki/Normal_distribution

Why use a Gaussian?
Your data might actually be Gaussian

Great reason to use if it’s true! Unfortunately usually not true

Central limit theorem: many sums of random variables converge to a Gaussian
Very often a useful justification for saying e.g. x̄ = 1

n

∑n
i=1 x

(i) is roughly Gaussian
Usually doesn’t mean that the data itself is Gaussian
Only when your data is approx. the sum of many independent factors

It’s the distribution with maximum entropy for a given mean and variance
In some sense, “makes the fewest assumptions” to match given mean and variance

We’ll return to this soon when we cover exponential families

For complicated problems, matching mean and variance isn’t enough

Gaussians make many computations and lots of theory much easier
Often “good enough to be useful”
Very common building block in more advanced methods

7 / 25

Why not use a Gaussian?

MLE a pretty good fit sensitive to outliers can only handle one mode

truncation, asymmetry, outliers 8 / 25

Gaussian inference

Decoding the mode: the density exp
(
− 1

2σ2 (x− µ)2
)
is maximized if x = µ

Computing the likelihood of iid data: (now a density, not a probability!)

p(X | µ, σ2) =

n∏
i=1

1√
2πσ

exp

(
−(x(i) − µ)2

2σ2

)

=
1

(
√
2πσ)n

exp

(
− 1

2σ2

n∑
i=1

(x(i) − µ)2

)

Probability of X in an interval: using the cumulative distribution function (cdf),

Pr(a ≤ X ≤ b | µ, σ2) =

∫ b

a
p(x | µ, σ2)dx = Pr(X ≤ b | µ, σ2)−Pr(X ≤ a | µ, σ2)

If a = b, this is zero (except in the degenerate σ = 0 case)

9 / 25

Cumulative distribution functions (cdf)

Often use the cdf F (t) = Pr(X ≤ t) =
∫ t
−∞ p(x)dx

F (t) is always between 0 and 1
For Gaussians, it’s a monotonically increasing function

For any distribution it’s nondecreasing: can’t go down, but could stay flat

x

0.8

0.6

0.4

0.2

0.0

1.0

−5 −3 1 3 5−1 0 2 4−2−4

Φ
μ,
σ
2
(x
)

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

https://en.wikipedia.org/wiki/Normal_distribution

For Gaussian, doesn’t have an elementary closed form
Sometimes written with “error function” 2√

π

∫ x

0
e−t2dt, but doesn’t really help. . .

Get numerically (scipy.stats.norm.cdf, torch.distributions.Normal.cdf)
10 / 25

https://en.wikipedia.org/wiki/Normal_distribution

Sampling based on CDFs
How to sample from a continuous density?
We want a function that, based on u ∼ Unif([0, 1]),

50% of the time, returns a sample with F (x) ≤ 0.5
10% of the time, returns a sample with 0.173 < F (x) ≤ 0.273
1% of the time, returns a sample with 0.8413 ≤ F (x) ≤ 0.8513

That is, we want F (x) to be uniform on [0, 1]
Proof: let U = F (X) for any random variable X with invertible cdf F . Then

Pr(U ≤ u) = Pr(F (X) ≤ u) = Pr(X ≤ F−1(u)) = F (F−1(u)) = u =

∫ u

0

1 du

If we use x = F−1(u), then F (x) = F (F−1(u)) = u is uniform!
Inverse transform method for sampling from a 1d continuous density with cdf F :

Take u ∼ Unif([0, 1]); return F−1(u)

For Gaussians, no nice form; compute F−1 (the “quantile function”) numerically
If can’t directly compute the inverse, can do binary search (CDFs are monotonic)

(Box-Muller transform is more efficient, but Gaussian-specific)
11 / 25

https://en.wikipedia.org/wiki/Box-Muller_transform

MLE for univariate Gaussians
The negative log likelihood (NLL) for n iid samples is

− log p(X | µ, σ2) = − log

(
1

(
√
2πσ)n

exp

(
− 1

2σ2

n∑
i=1

(x(i) − µ)2

))

= n log σ +
1

2σ2

n∑
i=1

(x(i) − µ)2 + const

For any σ, convex in µ; setting derivative to zero gives sample mean,

µ̂ =
1

n

n∑
i=1

x(i)

Plugging in µ̂, setting σ derivative to zero gives σ2 MLE as the sample variance

σ̂2 =
1

n

n∑
i=1

(x(i) − µ̂)2

This step is actually not convex! Need to check that it’s still the optimum
If all x(i) are the same, get σ̂ = 0; if you require positive σ, then there’s no MLE 12 / 25

Conjugate prior for the mean

For fixed variance, conjugate prior for the mean is Gaussian

If x(i) ∼ N (µ, σ2) are iid, and µ ∼ N (m, v), then

µ | X,m, v, σ2 ∼ N (m̃, ṽ), m̃ =
vn

vn+ σ2
µ̂MLE+

σ2

vn+ σ2
m, ṽ =

(
n

σ2
+

1

v

)−1

Derived by completing the square; see “Gaussians with Conjugate Priors” note

m̃ is a convex mixture of the prior and the MLE

When n = 0, it’s the prior mean; when n → ∞, it’s the MLE
MAP is also m̃ (maximizes the posterior density)

ṽ is half the harmonic mean of v (prior variance) and σ2

n (MLE variance)

When n = 0, it’s the prior variance; when n → ∞, it’s zero

Will return to priors for the variance later

13 / 25

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

Supervised learning with Gaussians: generative models

Can do Gaussian Näıve Bayes with categorical labels: for example,

y ∼ Cat(θ) xj | y ∼ N (µj , σ
2
j)

Everything works just like for binary/categorical data

e.g. to fit, do the MLE on each dimension separately for each class

Can’t really do Näıve Bayes with continuous labels!

y ∼ N (µy, σ
2
y) xj | y ∼ anything

Only have one sample per y (almost surely); can’t really fit the x distributions

We’ll return to Gaussian generative models after multivariate Gaussians

14 / 25

Supervised learning with Gaussians: discriminative models

Like before, we can take y | x ∼ N (µx, σ
2
x) for µx, σ

2
x functions of x

Negative log likelihood becomes

− log p(y | X) = −
n∑

i=1

log

(
1√
2πσx

exp

(
− 1

2σ2
x

(
µx − y(i)

)2))

=

n∑
i=1

log σx +
1

2σ2
x

(
µx − y(i)

)2
+ constant

Linear regression uses µx = wTx, σx = σ independent of x

Becomes scaled square loss, plus a constant

Deep models with square loss also use µx = fθ(x), σx = σ independent of x

But can also use σx = gθ(x) to fit!

Often share some layers for computation of µx and σx

Some challenges with this approach; will discuss a bit more soon

15 / 25

https://arxiv.org/abs/1906.03260

Linear regression

The usual L2-regularized least squares (“ridge regression”) model:

y | x,w ∼ N
(
wTx(i), σ2

)
wj

iid∼ N
(
0,

1

λ

)
− log p(w | X,y) =

n∑
i=1

1

2σ2

(
wTx(i) − y(i)

)2
+

d∑
j=1

λ

2
w2
j + const

=
1

2σ2
∥Xw − y∥2 + λ

2
∥w∥2

Setting the gradient to zero, if λ > 0 there’s a unique MAP estimate

ŵ =

(
XTX+

λ

σ2
Id

)−1

XTy = XT

(
XXT +

λ

σ2
In

)−1

y

and for a new sample x̃, we have ỹ | x̃, ŵ ∼ N (ŵTx̃, σ2)
16 / 25

Predictive uncertainty
MAP estimation allows us to have predictive uncertainty

y | x,w ∼ N
(
wTx(i), σ2

)
wj

iid∼ N
(
0,

1

λ

)

4 2 0 2 4
30

20

10

0

10

20

30

Good for modeling “irreducible uncertainty” (also called “aleatoric”)
. . . if E[y | x] is roughly linear, and y − E[y | x] is “Gaussian enough”!
Bad if y | x is multimodal, unbounded, has heavy tails, . . .
Also assumes that variance doesn’t depend on x (“homoskedastic”)

17 / 25

Predictive uncertainty

MAP doesn’t take into account uncertainty in our model w

Also called “epistemic uncertainty”
Var[y | x] = σ2 doesn’t depend on n

Do these predictive uncertainties (with n = 2) seem reasonable?

4 2 0 2 4

20

0

20

40

4 2 0 2 4 4 2 0 2 4

Would like to incorporate uncertainty about w into our predictions

18 / 25

Bayesian learning
MAP estimation commits to the single “best” choice of w for its predictions:

ŵ ∈ argmax
w

p(y | X, w) ỹ ∼ p(ỹ | x̃, ŵ)

“Fully Bayesian learning” marginalizes out the choice of w:

p(ỹ | x̃,X,y) =

∫
w
p(ỹ, w | x̃,X,y) dw

=

∫
w
p(ỹ | x̃,X,y, w) p(w | x̃,X,y) dw

=

∫
w
p(ỹ | x̃, w) p(w | X,y) dw

Last line uses standard conditional independence assumptions:
ỹ doesn’t depend on the training data if we know w
x̃ doesn’t give us any information about w

We weight the predictions of every possible model w by posterior p(w | X,y)
19 / 25

Posterior predictive distribution

Bayesian learning is based on

p(ỹ | x̃,X,y) =

∫
w
p(ỹ | x̃, w) p(w | X,y) dw

We call this the posterior predictive distribution

Could evaluate model quality with
∏ntest

i=1 p(ỹ(i) | x̃(i),X,y)

If we have to make a single prediction:

The mode argmaxỹ p(ỹ | x̃,X,y) would maximize the accuracy, for discrete y
The mean E[ỹ | x̃,X,y] would minimize the expected square loss
Might do something else to minimize a different notion of loss

20 / 25

Bayesian Linear Regression

Bayesian perspective gives us variability in w and predictions:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Will need slightly more mathematical tools to get there; next week! 21 / 25

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Bayesian learning in the Bernoulli-Beta model

Consider flipping coins with x | θ ∼ Bern(θ) and prior θ ∼ Beta(α, β)

We showed before that the posterior for θ is θ | X ∼ Beta(α+ n1, β + n0)

We can use this to find the posterior predictive, which will be Bernoulli:

p(x̃ = 1 | X, α, β) =

∫
θ
p(x̃ = 1 | θ)︸ ︷︷ ︸

prediction

p(θ | X, α, β)︸ ︷︷ ︸
posterior

dθ

=

∫
θ
θ pβ(θ | α+ n1, β + n0) dθ

= E
θ∼Beta(α+n1,β+n0)

[θ] =
α+ n1

α+ n1 + β + n0
=

n1 + α

n+ α+ β

By comparison: MAP gave the more-confident θ̂ =
n1 + α− 1

n+ α+ β − 2

With uniform prior α = β = 1, MAP is MLE n1/n; Bayesian learning is n1+1
n+2

22 / 25

Bayesian learning in the Categorical-Dirichlet model
If X | θ ∼ Cat(θ) and θ | α ∼ Dir(α), we saw before that

p(θ | X,α) ∝ p(X | θ)p(θ | α) ∝ θn1
1 · · · θnk

k θα1−1
1 · · · θnk−1

1

= θ
(n1+α1)−1
1 · · · θ(nk+αk)−1

k

θ | X,α ∼ Dir(n+α) where n ∈ Rd, nj =

n∑
i=1

1
(
x(i) = j

)

MAP: θ̂ = argmax
θ

p(θ | X) ∝ n+α− 1

Bayesian learning uses the posterior predictive distribution,

p(x = c | X,α) =

∫
θ
p(x = c | θ) p(θ | X,α) dθ

=

∫
θ
θc p(θ | X,α) dθ = E

θ∼Dir(n+α)
[θc] ∝ n+α

23 / 25

Bayesian learning versus MAP

MAP estimation corresponds to using a regularizer

Bayesian learning

averages over models (like we saw with random forests in 340)
weighting each model by its posterior density: its likelihood times a prior (regularizer)

Can help learn with very complicated models, while controlling overfitting

One big disadvantage: this integration can be computationally hard!

Even for simple cases like our motivating problem of Bayesian linear regression; more
next time

24 / 25

Ingredients of Bayesian inference

1 Likelihood p(x | θ)
The most important part: model for what the data looks like

2 Prior p(θ)

What do we think the parameters might be, before looking at any data?

These imply by the rules of probability:

Posterior p(θ | X)

What do we think the parameters might be, after looking at the data?
MAP uses θ̂ that maximizes this; Bayesian learning uses whole distribution

Posterior predictive p(x̃ | X)

What do we think the data distribution looks like, after seeing the training data?
Marginalizes over all possible parameters

25 / 25

Proof of uniformity of CDF value

Let X be any continuous variable with cdf F (x), and define U = F (X)

For any u ∈ [0, 1],

Pr(U ≤ u) = Pr(F (X) ≤ u) = Pr(X ≤ F−1(u)) = F (F−1(u)) = u

This is exactly the cdf of a Unif([0, 1]) distribution:∫ u

0
1 dt = u

Equivalent way to see: p(u) = d
du Pr(U ≤ u) = du

du = 1

26 / 25

Inverse transform sampling for discrete (or mixed) variables

CDFs make sense for discrete, continuous, even mixed variables
0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

https://en.wikipedia.org/wiki/Cumulative_distribution_function

Discrete values give “jumps” at Pr(X ≤ x), when Pr(X = x) > 0

CDF is always “right-continuous with left-limits” (RCLL/càdlàg)

Define quantile function as Q(u) = min{x : u ≤ F (x)}, which is F−1 if F is
continuous

Our “roulette wheel sampling” for categorical distributions is exactly inverse
transform sampling: u ∼ Unif([0, 1]), return Q(u)

27 / 25

https://en.wikipedia.org/wiki/Cumulative_distribution_function

Details on MLE for Gaussians

After plugging in µ̂ = 1
n

∑n
i=1 x

(i), left with

− log p(X | µ, σ2) = n log σ +
1

2σ2

n∑
i=1

(
x(i) − µ̂

)2
+ const

∝ log σ +
σ̂2

2σ2
+ const for σ̂2 =

1

n

n∑
i=1

(
x(i) − µ̂

)2
Only (finite) stationary points have

1

σ
− σ̂2

σ3
= 0 so, since σ > 0, σ2 = σ̂2

Nonconvex (∂2

∂σ2 < 0 if σ2 > 3σ̂2), but enough to check stationary points + limits

limσ→0

[
log σ + σ̂2

2σ2

]
= ∞ when σ̂2 > 0

The 1
σ2 term diverges positively faster than the log σ diverges negatively

Write as

(
1

2σ2

)(
σ
2
log σ + σ̂

2
)
, have lim

σ→0

log σ

σ−2
= lim

σ→0

σ−1

−2σ−3
= lim

σ→0

−σ2

2
= 0 so limit is σ̂2

2σ2 → ∞

limσ→∞

[
log σ + σ̂2

2σ2

]
= ∞+ 0

28 / 25

	Appendix

