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Last time: Univariate Gaussians, Bayesian learning

@ Continuous density estimation with the Gaussian=normal distribution

1 1
T NN(M>02) means  p(z | Maag) = mexp <—M($ - #)2>

Cumulative distribution function (cdf) F(t)
Inverse probability sampling: F~(U) for U ~ Unif([0, 1])
MLE: sample mean, sample variance (with the 1/n)

With fixed variance: conjugate prior for the mean is Gaussian

Gaussian likelihood gives linear regression/square loss; MAP gives ridge regression

Bayesian learning integrates over model uncertainty
o Posterior predictive: p(7 | z,X,y) = [p(g | w)p(w | X,y)dw
o Beta-Bernoulli model: use posterior Beta(n + a,ng + 3)
o Categorical-Dirichlet model: use posterior Dirichlet(n + )
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' : ; onus!
Bayesian Linear Regression L

@ Bayesian perspective gives us variability in w and predictions:

o Posterior density (N = 1)
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Multivariate Gaussian

@ To handle Bayesian linear regression, we're going to need one more tool:
multivariate Gaussians

o (Also useful much more broadly ...)
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Motivating problem: Measuring building air quality

@ Want to measure “air quality” across rooms in a building

o Measure poIIutant concentrations (PM10, CO, O3, ...) in each room over time:

0.2 13 0.1 19 11 0.9 0.1 0.1 11
0.1 03 14 2.0 0.7 03 0.1 0.2 04
0.1 11 0.2 2.1 11 11 0.1 0.3 0.5
2.7 2.6 2.5 5.1 24 2.8 32 2.5 3.1
0.1 0.4 0.2 18 13 0.4 0.1 0.4 1.0
0.1 12 0.2 1.8 14 11 0.7 0.7 0.5

@ We can model this data to identify patterns/problems:

e Some rooms usually have worse air than others
e Some rooms' quality may be correlated with others’ (adjacent, shared air. . .)
e Also temporal correlations, which we won't handle yet
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Start: product of Gaussians

@ Like before, simplest thing to do is to make different dimensions independent

@ Gives joint density

2) _ Hd - Hd _ (== w)®
p(l‘ ’ K, o ) p(x] | ﬂjvo-]) S eXp
j=1

2
o 20j
1< 1
= -3 Z = exp (—2(96 -z - u)>
7j=1 J
o2 0 0
0 o3 0
where X = .
0 0 :
0 0 o2
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Multivariate Gaussians
@ General multivariate Gaussian: X doesn't have to be diagonal

1
x~N(p,X) means p(z|p,X)=——7-7e¢€

@ Many nice properties, like univariate
case

Closed-form, intuitive MLE

Conjugate priors

Many nice analytic properties

Multivariate central limit theorem

personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
o Off-diagonal covariance entries give covariance: Cov(z;,zj) = X;jr
e “Adjacent rooms have similar air qualities”

o Correlation is Cov(z;,x;/)/+/Var(z;) Var(z;) = X5/ /X555
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Covariance matrices

@ The d x d matrix X is called the covariance matrix, Cov(x)
o Also called "variance-covariance matrix"; sometimes written Var(x)

e For any continuous distribution, Var(z) > 0. What about multivariate dists?

e Consider the univariate random variable v"z. We have

d d d
Var(v'z) = Var Z vjz; | = Z Z Cov (vjzj,vjxj)
i=1 i=1j5=1
d
=1

d
= g E v; Cov (azj,xj/) vy = >
i=1

jl

A continuous multivariate random variable requires v Zv > 0 for all v

This is exactly the condition that X is strictly positive-definite

Equivalent condition (see notes on website): all eigenvalues are positive
Equivalent condition: there is some (full-rank) A € R"*" such that & = AAT
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Kinds of covariances

o If 3 = 0?1, level sets of the density are circles

o One parameter
o The X; ~ N(0,0?%) are mutually independent, because

p(x | 0%) =p(z1 | 0%) - p(za | o?)

o If ¥ = diag(o?,...,02) is diagonal: axis-aligned ellipses
e d parameters
o Each X; ~ N(0,0%) is still independent

o For general X, might not be axis-aligned

o d(d+1)/2 parameters — not d?, since 3 is symmetric
e X, can now be correlated
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Degenerate Gaussians

@ If 3 > 0 but not > 0 — it has some zero eigenvalues — we call it degenerate
@ Means that there’s some direction v where vTXv = 0, i.e. v' is constant
e Standard density function doesn't exist (no inverse, i.e. divide-by-zero error)
@ Ford =1, N(u,0) is a point mass: every sample is exactly
@ For d = 2, singular can be a point mass, or all samples can live along a line
Not dlesenvnte 0
e o
o da;} pesener™¢ v
3205 e/ ™ v
° 0000 24 W (< gd) o
v 500
9 [ ]
[ Jldu 0 0 4
J
0% 0
o v

@ In general, has support on a subspace of dimension rank 3
e Has a Gaussian density with respect to that subspace
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Affine transformations
@ For any random vector X, we have that

E[AX + pu] = AR[X] 4+ u
Cov(AX +p) = ACov(X)AT

e Fact (won't prove here; straightforward if you use characteristic functions):
affine transformations of multivariate normals are multivariate normal
So, if X ~N(u,X), then AX + b~ N(Apu+b, AZAT)
Even if X is non-degenerate, AXAT might be singular!
o Examples: A =0, or if X is one-dimensional and Ais5x 1 ...

This immediately gives us a nice sampling algorithm:
o Sample d independent standard normals, Z; ~ N(0, 1)
o Return AZ +pu ~ N(u, AAT)
o Need to find an A such that AAT =
o Can use Cholesky factorization (np.linalg.cholesky) to find a (lower-triangular) A

@ Or (a little slower), eigendecompose X and use Az = > VAvv)
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Marginalizing Gaussians

o If we have a joint dist. over X = (X71,...,Xg), we might care about just X

o p(z;) / / | p,X)dry - -dej- 1dx]+1 ~dzg
@ ...but we can skip that nasty integral by just thinking a little bit!

. . . . X " ¥, X
Let's partition our variables into block matrices, ~N “l, it m])
P [Z] < _uz] [212 .
il |
ii

o Notice that z = [I 0] [ﬂ so
e ol a3 %0 o) we

For example,

NOHOO
IW\]%U‘

O =OO
~N 0N W

—0.2 0
0.1
9.8|, |-0.2 0.1 8.1 —0.
0.1 0.4 0.3 —0.2 .
0.5

1.4 —
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Marginalizing Gaussians

X o| | e e
o If [Z] ~N<[ZJ , {21—2 2z:|>, then X ~ N (pg, X;):

we can just ignore a subset of the variables

I I I I I
2_ -
N 0- s
—2- .
I I I I I
—4 -2 0 2 4
X
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Independence structure in Gaussians
@ For bivariate Gaussians, if 312 = 0 then X is diagonal, and so z1 L =9
@ So, in multivariate Gaussians, z; 1L x; iff X7 =0
o If X #0, z; and xj are correlated: can have all pairs correlated
@ Multivariate Gaussians don't have any nonlinear or “higher-order” interactions

o Example: 47 ]
z ~ N(0,1) 2 7
y ~ Unif({—1,1})
N 07 T
z=uxY
ez ly Cov(z,z) =0,y Lz =27 1
e z~N(0,1), 2z~ N(0,1)
e But they're not jointly normal 1 : T T T |
-4 =2 0 2
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Conditioning in Gaussians

X Mz Za: Eccz ' 2
o If [Z] NN([HJ ) [2; 22]>,then what's X | Z7

By doing a bunch of linear algebra (see PML1 7.3.5), you get

X |(Z =2) NN(“I\Z(Z)v Ez\z)

N:clz(z) = Mg + Emzz_l(z — 1z)

If you know the value of Z, the distribution of X is a different Gaussian
If ¥,. =0, then X | (Z =2z) ~ N(p, X,); another way to see X 1| Z

Notice that while p,|, depends on the value of z, 3. doesn't!
e This property is occasionally surprisingly important
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Outline

© Learning multivariate Gaussians

16 /26



MLE for the mean of a multivariate Gaussian
o If X0 % N (1, S) for £ = 0, we have

s (2 () (),

so our negative log-likelihood for n examples is

;Z": (Xm _ M)T -1 (X@ _ u) n glog 2| + const
=1

p (X(“ | 1, 2) =

@ This is a convex quadratic in yu; setting gradient to zero gives

fe lzxm

3

e Mean along each dimension; it doesn't depend on X
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MLE for the covariance of a multivariate Gaussian
o To get MLE for ¥ we can re-parameterize in terms of precision matrix ®@ = 371,

n

%Z (x(i) — u)T »! (x(i) — u) + glog x|
i=1

13 (00 (50 + Tl

i=1
e Can rearrange this into (see bonus slides)

n

(S,0), — glog ©|, with S = %Z (M - u) (x@ - u)

i=1

T

(©)=73

e S is the sample covariance: if X=X- lin is centred data, S = XTX/n
o (A,B)p=>,;AijBij, i.e. (A x B).sum(), is the Frobenius inner product
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MLE for the covariance of a multivariate Gaussian
o Gradient of f(®) = 5 (S,0), — 51og|®| is (see bonus slides)

Vf(O) = % (s-e)

@ The MLE for a given u is obtained by setting the gradient matrix to zero, giving

n

1 . .
©=S"! o Z=8=- x(’)—u x(l)—uT
PR
@ To have X > 0, we need a positive-definite sample covariance, S > 0
e If S is not positive definite, NLL is unbounded below, and MLE doesn’t exist
o Like requiring “not all values are the same” in univariate Gaussian
o In d-dimensions, you need d linearly independent x(*) values (no “multi-collinearity”)
e This is only possible if n > d! (But might not be true even if it is)

@ Note: many distributions’ MLEs don't correspond with “moment matching”
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Example: Multivariate Gaussians on MNIST

@ Let's try continuous density estimation on (binary) handwritten digits

Xi: vel é

Diagonal X:

General X:
i is the
same (!)
¥ is big
(784 by 784)
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Product of Gaussian densities bonus!

@ This property will be helpful in deriving MAP /Bayesian estimation:
@ Consider a variable z whose pdf is written as product of two Gaussians,

p(z)oc  N(z|p,I)  N(z|p,I)
—_——

density of A'(p1,I) at o

e This product of Gaussian pdfs is a Gaussian with p = 3(p1 + p2) and = = 31
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Product of Gaussian densities bonus!

o

o If p(z) oc N(z | p1, B1) N (2, o),

@ then z is Gaussian with (see PML2 2.2.7.6 — complete the square in the exponent)
covariance ¥ = (71 + 2,17t
mean [ = EZflul + EE;lug

o Consider z() ~ N (1, X) for fixed X and p ~ N (110, Xo):

n
p( | X, 2, o, o) < pps | o, Zo) [T o (2 | 4, 3) (Bayes rule)
=1

= p(pe | 10, 30) [[ plee | 2, %) (symmetry of 20 and p)
i=1
= (product of (n + 1) Gaussians)
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MAP estimation for mean
@ For fixed 3, conjugate prior for mean is a Gaussian:
XDl p~n N, B)  p~ N, Bo) implies p| X, S~ N(pt, ),
where
t=mz + 3!
p =St ume + Ealuo) MAP estimate of u
@ In special case of ¥ = ¢%I and &y = %I, we get
-1 1
»t = (%HAI) -1,
o 5+
n
pt=x" (?HMLE + )\M())

>

@ Posterior predictive is N'(u™, X + XT) — take product of (n + 2) then marginalize
e Many Bayesian inference tasks have closed form
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

@ A common MAP estimate for X is
Y =8+l
where S is the covariance of the data.

o Key advantage: ¥ is positive-definite (eigenvalues are at least \)

@ This corresponds to L1 regularization of precision diagonals (see bonus), also
called trace regularization Tr(©)

d
f(©)=(S,0), —1log|® + 1) O

j=1

NLL times 2/n

@ Note this doesn't set ©;; values to exactly zero

o Log-determinant term becomes arbitrarily steep as the ©;; approach 0
e It's not really the case that “L1 gives sparsity”; it's “L2 + L1 gives sparsity”
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Trace Regularization

@ For MNIST, MAP estimate of precision © with regularizer %Tr((-))

@ Sparsity pattern using this “L1-regularization of the trace”:

100

200

300

400

500

700

@ Doesn't yield a sparse matrix (only zeroes are with pixels near the boundary)

300 400 500 600 700
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Summary

@ Multivariate Gaussians: random vectors, which allow correlations
o Affine transformations of Gaussians are Gaussian
e Can use that to sample

e Marginals, conditionals are also Gaussian
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MLE for the covariance of a multivariate Gaussian bonus!

o To get MLE for ¥ we re-parameterize in terms of precision matrix © = ¥ ~1,

n

% (@ — ) T2 (2 — ) + glog =]

i=1

:% 3 (29 — )Tz — p) + glog (Sl (okay because X is invertible)
i=1

:% iTr ((aj(i) —w)'e@E - ,u)) + glog [l (scalar yT Ay = Tr(y" Ay))
i=1

:% 3 Tx((@® — (et — 1)7O) -  tog 0] (Tr(ABC) = Tx(CAB))
i=1

o |A7Y| =1/|A| (can see e.g. from eigenvalues)
@ The trace is the sum of the diagonal elements: Tr(A4) =), Aj
o Tr(AB) = Tr(BA) when dimensions match: called trace rotation or cyclic property
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MLE for the covariance of a multivariate Gaussian bonus!

@ From the last slide,

b2 = 3 1 (5 - 1) (+9 - ) ) - B1ogio)
i=1

@ We can exchange the sum and trace (trace is a linear operator) to get,

:% Tr (Z(;,;(i) — )zt — M)T@> - glog |O] ZTr(AiB) =Tr (Z AiB>

=l )

:g Tr Z(xl _ ,u,)(w’ _ ,U)T 0| — glog O] (Z AZ’B> = (Z Ai> B
i=1 %

(2

S|

sample covariance, S
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MLE for the covariance of a multivariate Gaussian bonus!

@ So the NLL in terms of the precision matrix © and sample covariance S is

1(8) = £ Tx(56) — 2 log|©), with 5 = iz; (a9 = ) (a9 - M)T

@ Weird-looking but has nice properties:
e Tr(SO) is linear function of ©, with Vg Tr(S©) =S

(it's the matrix version of an inner product s'6; called “Frobenius inner product”)
o Negative log-determinant is strictly convex, and Vg log |0 = ©71
(generalizes Vlog |z| = 1/z for for z > 0)

@ Using these two properties the gradient matrix has a simple form:
n -1
Vi(©)=5(s-07

which is what we use to get the MLE
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