
CPSC 532D, Fall 2024: Assignment 2
due Friday, October 11 at 11:59pm

You can do this with a partner if you’d like (there’s a “find a group” post on Piazza). Read the website
section on academic integrity here for what you’re allowed to do and not do; in particular, cite your
sources (including people you talked to!) and don’t use ChatGPT/etc. If you’re not sure if something is
okay, ask.

Prepare your answers to these questions using LATEX; hopefully you’re reasonably familiar with it, but if
not, try using Overleaf and looking around for tutorials online. Feel free to ask questions if you get stuck
on things on Piazza (but remove any details about the actual answers to the questions. . .make a private
post if that’s tough). If you prefer, the .tex source for this file is available on the course website, and you
can put your answers in \begin{answer} My answer here... \end{answer} environments to make them
stand out; feel free to delete whatever boilerplate you want. Or answer in a fresh document.

Submit your answers as a single PDF on Gradescope: here’s the link. Make sure to use the Gradescope
group feature if you’re working in a group. You’ll be prompted to mark where each question is in your PDF;
make sure you mark all relevant pages for each part (which saves us a surprising amount of grading time).

Please put your name on the first page as a backup, just in case. If something goes wrong, you can also
email your assignment to me directly (dsuth@cs.ubc.ca).
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https://www.cs.ubc.ca/~dsuth/532D/24w1/#policies
https://canvas.ubc.ca/courses/156968/external_tools/54329?display=borderless


1 Questions you should probably get approximately correct [40 points]

(1.1) [8 points] Let A be an algorithm that agnostically PAC learns a hypothesis class H. Show that A also
(realizably) PAC learns H.

Answer: TODO

(1.2) [7 points] Let A : Z∗ → H be an algorithm and ℓ a loss such that there is some function ε : N×(0, 1) →
R such that for all m ∈ N and δ ∈ (0, 1), for all ε > ε(m, δ), it holds for all D that

Pr
S∼Dm,A

(
LD(A(S))− inf

h∈H
LD(h) ≥ ε

)
≤ 1− δ,

where the randomness is over both the choice of sample set S and any internal randomness in the
algorithm A. Further suppose that ε(m, δ) is nonincreasing in m for each fixed δ ∈ (0, 1), and that
limm→∞ ε(m, δ) = 0. Show that A agnostically PAC learns H.

Answer: TODO

(1.3) [10 points] Let A be a learning algorithm, D a probability distribution, and let L denote the random
variable LD(A(S)) for some loss function bounded in [0, 1]. Prove that the following two statements
are equivalent:

1. For every ε, δ > 0, there is some m(ε, δ) such that for all m ≥ m(ε, δ), PrS∼Dm(L > ε) < δ.

2. limm→∞ ES∼Dm L = 0. The expected loss goes to zero asymptotically.

Answer: TODO

(1.4) [15 points] Consider data that is a set of binary attributes, X ⊆ {(0, 1)}d for d ≥ 2, and has Y = {0, 1}.
A binary decision tree is a model that looks generally like

• If x3, then:

– If x12, then:

∗ Return 1

– Otherwise (not x12):

∗ If x1, then

· Return 0

∗ Otherwise (not x1):

· Return 1

• Otherwise (not x3):

– Return 0

Let H be the set of all such trees of depth at most k ≤ d, and let ĥS be any ERM in Hk.
1 Bound |Hk|

as a function of d and k, and hence show that ERM successfully PAC-learns this class for the zero-one
loss based on results from class. State the error bound or sample complexity (either is fine) with
explicit constants, but then give a Op statement in terms of m, k, and d (treating δ as a constant).

You don’t have to try to get the super-tightest-possible bound here, though of course you can if you
want to. But also don’t be absurdly loose (e.g. totally ignoring the depth-k limitation).

1This problem is NP-hard, but specialized algorithms can usually solve an almost-equivalent problem well in practice.
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https://systopia.cs.ubc.ca/decision_trees


Hint: A perfect binary tree of depth k has branches at every “interior” node, i.e. no “early returns.”
Such a tree has 2k leaf nodes at the bottom. One thing you can try is to map Hk onto the set of perfect
binary trees.

Hint: In this kind of bound, it’s okay to think of H as an input-output mapping: if two trees have
different representations, but return the same value for every possible input in X , then you can think
of them as the same hypothesis, because their value of LD − LS must be the same.

Answer: TODO
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2 Sums, means, and maxes of subgaussians [50 points]

In this question, we’re going to explore subgaussians and different versions of Hoeffding’s inequality some
more.

(2.1) [10 points] Let X1 ∈ SG(σ1) and X2 ∈ SG(σ2); do not assume independence. Show that X1 +X2 is
SG(

√
2
√
σ2
1 + σ2

2).

Hint: One form of the ever-useful Cauchy-Schwarz inequality is that E[XY ] ≤
√
E[X2]E[Y 2], even if

X and Y are dependent.

Answer: TODO

(2.2) [15 points] Let X1 ∈ SG(σ1) and X2 ∈ SG(σ2); do not assume independence. Show that X1 +X2 is
SG(σ1 + σ2).

Hint: One way is to use Hölder’s inequality: E[XY ] ≤ E[Xp]1/p E[Y q]1/q for all p, q ∈ [1,∞] with
1/p+ 1/q = 1, i.e. q = p/(p− 1). Do this for a general p, see what you get, then find the optimal p.

Answer: TODO

(2.3) [10 points] Let X1, . . . , Xm each be SG(σ) with mean µ, but do not assume independence. Con-
struct a high-probability bound on their mean, Pr

(
1
m

∑m
i=1 Xi > µ+ something

)
≤ δ, using either

Question (2.1) or (2.2) rather than the notes’ Proposition 3.6 (which assumed independence). How
much worse is what you just got than (Hoeffding’) from the notes when the variables are actually
independent, particularly in terms of its dependence on m? Could you have expected to get a better
result, or can you construct a dependent example where this dependence on m is necessary?

Hint: One of these results is much easier to use than the other one.

Answer: TODO

(2.4) [15 points] So far, we’ve only looked at means of a bunch of random variables. But for uniform
convergence, we care about the worst-case behaviour of errors. We’re going to (or have already,
depending on when you’re reading this. . . ) use the following result in a key way in class.

Let X1, . . . , Xm be zero-mean random variables that are each SG(σ); do not assume independence.2

Prove that

E
[

max
i=1,...,m

Xi

]
≤ σ

√
2 log(m).

Hint: Bound exp(λEmaxi Xi) in terms of something that only depends on m, σ, and λ, by rearranging
into a form that lets you plug in the definition of subgaussianity. Then turn that into a bound on
Emaxi Xi in terms of m, σ, and λ. Then optimize λ in that bound to get something only depending
on m and σ.

Hint: By Jensen’s inequality, exp(EY ) ≤ E exp(Y ).

Hint: One way to upper-bound the max of a bunch of nonnegative numbers is by their sum. Although
this might seem really loose, if the max is a lot bigger than the second-biggest number – e.g. because
they’re on an exponential scale – it’s not too bad.

Answer: TODO

2As far as I know, unlike for the mean, independence actually wouldn’t help here.
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3 Limits of Learning Lipschitz Laws [10 challenge points]

So far, we’ve only seen covering number bounds based on covering norm balls in Rd. Let’s use an analogous
argument with a different kind of result.

Let H = {h : [0, C]d → R : h(0) = 0, ∥h∥Lip ≤ B} for some B ≥ 0, where the Lipschitz constant is with
respect to the usual Euclidean norms. This is a nonparametric class that includes “a lot” of functions.

Consider the “sup-norm”/uniform norm defined as ∥f∥∞ = supx |f(x)|, which induces a metric ρH(h, g) =
∥h− g∥∞. (Recall that h−g is the function that maps x to h(x)−g(x).) It can be shown3 that the covering
number of H with respect to this ρH satisfies

logN(H, η) ≤
(
aBC

η

)d

(3.1)

for some constant a > 0 and all η small enough that the right-hand side is at least 1. Compare this to the
d log 3B

η bound we saw for Euclidean balls.

Consider the absolute-value loss ℓ(h, (x, y)) = |h(x)− y|, and suppose D is such that Pr(x,y)∼D(|y| ≤ Y ) = 1.
Prove a high-probability bound on suph∈H LD(H)− LS(h) with the best rate (in terms of m) you can find;
it should depend on a, B, C, Y , d, m, and the error probability δ. Prove this bound with explicit constants,
but then also summarize it in a Op statement treating everything but m as a constant. Is the rate faster or
slower than the logistic regression bound we saw in class?

Hint: This proof ends up kind of long (at least mine did). Split it into appropriate sub-parts, and maybe
define some helper variables along the way so your expressions don’t get too unwieldy (but then expand out
the final answer). Feel free to make simplifications that make things look nicer at the cost of making the
constants worse, but try to get the m dependence right.

Hint: It’s not possible to find the exactly optimal choice of η here (when d ≥ 2). You’ll probably want to use√
x+ y ≤

√
x+

√
y before picking η, which gives a nicer bound anyway.

Hint: The reverse triangle inequality is often useful.

You don’t have to repeat any portion of the argument which is verbatim identical to the notes, but you can.
If you’re not, be very clear about exactly what you’ve changed.

Answer: TODO

3Example 5.10 of Wainwright’s book shows a lower bound for d = 1, C = 1 and points towards how to do the upper bound.
Just afterwards, he mentions the d > 1 case is analogous. (Unfortunately, he only states it in ≍ notation and I’m not totally
sure whether the constant there is allowed to depend on d or not. The version of (3.1) is definitely valid – see e.g. Lemma 6
here which bounds a more general case with explicit constants – but I’m not certain it’s necessary.) To generalize to C ̸= 1,
consider that if h : [0, C]d → R is B-Lipschitz, then x 7→ h(Cx) is a [0, 1]d → R function which is BC-Lipschitz.
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https://en.wikipedia.org/wiki/Triangle_inequality#Reverse_triangle_inequality
https://go.exlibris.link/9ZMcv9J6
https://ieeexplore.ieee.org/document/7944658
https://ieeexplore.ieee.org/document/7944658
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