
CPSC 532D — 1. SETUP; ERM

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2024

(For syllabus-type material, see the course website.)

This course is about: When should we expect machine learning algorithms to work?
What kind of problems are possible for machine learning models to represent? What
is possible to learn from data?

There are many complementary ways to study these questions. This course takes a
primarily theoretical, mathematical approach, but tries to be guided by experimental
results.

To phrase these questions more precisely, Is linear regression “really
machine learning”?
Obviously Legendre and
Gauss didn’t use that term
in the early 1800s, but one
reasonable definition of
machine learning is
“something you can publish a
NeurIPS paper about,” and
as someone with multiple
NeurIPS papers about linear
regression, that makes the
answer yes.

let’s start by thinking about one of the
simplest and best-understood machine learning models, linear regression. We’ll use
this as an example to set up our more general problem and think about how we can
address those questions.

1.1 linear regression

In the typical linear regression setting, we have m training inputs xi ∈ Rd and
corresponding outputs yi ∈ R. (For one of many possible examples, xi might be a
collection of summary features for a large geographic area, and yi the number of
hectares that burnt in forest fires in a given year.) We’ll denote this as

S =
(
(x1, y1), . . . , (xm, ym)

)
⊂ (Rd × R)m. (1.1)

While I used the term “training set” (because it’s extremely well-established termi-
nology), we actually want to potentially allow repeated data points. Occasionally,
we might also care about the order (e.g. in online learning), so mathematically, we’re
going to use treat S as an m-tuple, not a set.

The usual assumption – which is definitely not always true, but is overwhelmingly
the usual assumption in analyzing these kinds of things – Dm is called a product

distribution, and is a
distribution over (Rd × R)m
of m-length iid sequences.

is that these (x, y) pairs
are independent samples from a distribution D. We also write this S ∼ Dm, meaning
that each of the m entries of S is an independent sample from D.

Our goal is to use S to find a weight vector w You might also want an
offset, w · x + b, but we’ll
usually ignore that, since
you can just add a constant
1 feature to x.

such that w · x ≈ y, for fresh (test)
samples (x, y) ∼ D. Another way to phrase this is that we’re looking for a linear
predictor, i.e. a function hw : Rd → R of the form hw(x) = w · x, such that hw(x) ≈ y.

Statisticians, econometricians, etc. are often most concerned with getting the “right”
w vector. For instance, we might assume y = w∗ · x + Gaussian noise, or written
another way (y | x) ∼ N

(
w∗ · x, σ2

)
, and ask how well we recover w∗, e.g. by showing

that ∥w − w∗∥ goes to zero as m→∞.

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.

1

https://cs.ubc.ca/~dsuth/532D/24w1/

Machine learners are generally more concerned with getting predictions right. We’ll
typically measure this with the squared loss,

E
(x,y)∼D

[
1
2 (w · x − y)2

]
= E

(x,y)∼D

[
1
2 (hw(x) − y)2

]
. (1.2)

Often, recovering the “right” parameter vector, i.e. finding small ∥w − w∗∥,For example, if x ∼ N (µ,Σ)

and y | x ∼ N (w∗ · x, σ2),
let M = µµT + Σ. Then

E(w · x − y)2 =
σ2 + (w − w∗)TM(w − w∗) ≤
σ2 + ∥M∥ ∥w − w∗∥2, where

the operator norm ∥M∥ is
constant for a given problem.

implies
that the predictive error is small (though not always, with nasty enough D).

There are many situations, though, where you can have large ∥w − w∗∥ but small
predictive error. For instance, imagine that the first dimension of x is a person’s
height in metres, and the second dimension is their height in inches, both measured
to arbitrary precision. Because one inch is exactly 2.54 centimetres, the w vectors
(1, 0, . . .) and (0, 1/.0254, . . .) give identical predictions. So do any (w1, w2, . . .) such
that w1 + .0254w2 = 1. There are infinitely many such vectors, and they can be
arbitrarily far from w∗. Statisticians call (versions of) this problem multicollinearity
and talk about how it causes issues with identifiability. For the most part, machine
learners ignore this kind of problem; the different ws give identical predictions
on D. This is in some ways good, because these problems can be far worse with
more complicated kinds of models, such as deep learning; it’s bad in other ways,
since although these examples have identical predictions on D, they can have very
different predictions on other distributions!

Anyway, we’d ideally like to solve the following optimization problem, which mini-
mizes a quantity known variously as the risk, the population loss, or various other
names:

min
w

E
(x,y)∼D

[
1
2 (w · x − y)2

]
= min

h
E

(x,y)∼D

[
1
2 (h(x) − y)2

]
. (1.3)

We don’t have direct access to D, though. Instead, we the most common choice is
to estimate that expectation with an empirical average on the training set (simple
Monte Carlo), and instead solve

min
w

1
2m

m∑
i=1

(w · xi − yi)2 = min
h

1
2m

m∑
i=1

(h(xi) − yi)2. (1.4)

The thing we minimize here is called the training loss, the empirical risk, or various
other names.

As you’ve probably seen before, we can solve this minimization in closed form.
Let X ∈ Rm×d be the matrix whose ith row is xTi , and y ∈ Rm the vector whose

ith entry is yi . Then the objective is 1
2m

∥∥∥Xw − y∥∥∥2
, which is a convex problem

whose objective has gradient 1
mX

T(Xw − y). That’s zero iff XTXw = XTy; if XTX
(which is d × d of rank at most min(n, d)) is invertible, there’s a unique solution
w = (XTX)−1XTy = X†y, where X† is the pseudoinverse. Otherwise, there are
infinitely many minimizers,The metres-and-inches

example above is one such
case: since one column is

0.0254 times the other, X is
not full-rank.

which can be expressed as X†y + z where z is any vector
in the null space of X. The training set predictions for any of these solutions is the
same: Xw = XX†y + Xz = XX†y.

Having found this solution, we have lots of questions to ask: how well did solving
(1.4) do as a proxy for the problem (1.3)? That is, given an estimate ŵ or equivalently
ĥ, what is the loss (1.2) of that predictor? Is it likely to be small, in different
situations? Is it as small as any algorithm could hope to achieve? If we try to
estimate (1.2) for that solution with a test set, how tight should we expect our
estimate to be? If XTX isn’t invertible (always the case if d > n), which of the

2

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

infinitely many minimizers should we pick?

For linear regression in particular, many of these questions can be tackled with basic
linear algebra. You may have seen some of them in statistics courses; Chapter 3 of
the textbook of Bach [Bach24] does some of these analyses framed in the language
of learning theory. This is quite interesting, but we’re not going to pursue that
approach in any more detail in this course, instead generalizing to other problems.

1.2 general problem setup

Our default, general learning problem is as follows:

• Instead of a data distribution D over Rd × R, D is over some domain Z. For
supervised learning, Z is often a product space Z = X × Y of (x, y) pairs, where
x is an input object (e.g. an image) and y is a label (e.g. whether the image
contains a dog). Occasionally, though, we want to learn over some other kind
of space that doesn’t have clear input-outputs.

• We have m independent, identically distributed samples z1, . . . , zm ∼ D, col-
lected in a training “set” S = (z1, . . . , zm) ∼ Dm.

• We have a hypothesis class H. In supervised learning, this is usually a set of
predictors h : X → Ŷ , a space of prediction functions.

– In linear regression, H was the set of d-dimensional linear predictors,
x 7→ 2x + 3 means “the
function which, given the
argument x, returns 2x + 3”;
H is a set of functions. This
is like lambda x: 2*x+3

in Python.

{x 7→ w · x : w ∈ Rd}.

– We could use bounded-norm linear predictors, {x 7→ w · x : ∥w∥ ≤ B}.

– We could use decision trees of a certain depth, decision forests of a certain
size, neural networks of a certain architecture,

– Often, Ŷ = Y , but it might not; for example, it’s common to have a
problem with binary labels so that Y = {0, 1}, but to make probabilistic
predictions in Ŷ = [0, 1], or general confidence predictions in R.

• We have a loss function ℓ : H × Z → R. In supervised learning, this often
takes the form ℓ(h, (x, y)) = l(h(x), y) for some l : Ŷ × Y → R. Some common
examples:

– Squared loss: l(ŷ, y) = 1
2 (ŷ − y)2. (Sometimes the 1

2 isn’t included.)

– Zero-one loss: l(ŷ, y) = 1(ŷ , y), The function 1 returns one
if its boolean argument is
true, and zero if not.

usually used for Y = Ŷ a discrete set of
labels. This corresponds to one minus the accuracy of a predictor.

– Logistic loss: l(ŷ, y) = log(1 + exp(−ŷy)) for Ŷ = R, Y = {−1, 1}. This loss
→ 0 if ŷ → y∞, i.e. if y = 1 and ŷ → ∞, or y = −1 and ŷ → −∞: you’re
very confidently right. It’s log 2 if ŷ = 0, a totally ambiguous prediction.
The loss goes→∞ if ŷ → (−y)∞: you’re very confidently wrong.

– Softmax cross-entropy loss, a multi-class generalization of logistic: here
Y = [k] = {1,2, . . . , k}, Ŷ = Rk is the space of logits, and the loss is

l(ŷ, y) = − log
exp(ŷy)
k∑

j=1
exp(ŷj)

= −ŷy + log
k∑

j=1
exp(ŷj).

• LD(h) = Ez∼D ℓ(h, z) = E(x,y)∼D l(h(x), y) is called the risk, the population loss,
the true loss, etc; this was (1.2) in logistic regression.

3

• LS(h) = 1
m

m∑
i=1

ℓ(h, zi) = 1
m

m∑
i=1

l(h(xi), yi) is the empirical risk, the sample loss, the

training loss (if S is the training set), etc.

• A learning algorithm A is a function that takes in a sample S and returns a
hypothesis in H. Ideally, one with low risk.

Here’s a recap of our notation, and a quick reference for how to translate notations
across some relevant textbooks.

These notes [SSBD14] [MRT18] [Bach24] [Zhang23]
Data distribution D D D D D

Number of samples m m m n n
Sample set S S S Dn Sn

Hypothesis/parameter h ∈ H h ∈ H h ∈ H θ ∈ Θ w ∈ Ω
Prediction on x h(x) h(x) h(x) fθ(x) f (w, x)

Loss of hypothesis ℓ(h, z) ℓ(h, z) – – φ(w, z)
Loss of prediction ly(ŷ) – L(ŷ, y) ℓ(y, ŷ) L(ŷ, y)

Empirical risk LS(h) LS(h) R̂S(h) R̂(θ) φ(w,D)
Population risk LD(h) LD(h) R(h) R(θ) φ(w, Sn)

1.3 empirical risk minimization

The most common general learning algorithm we’ll think about, the general case of
(1.4), is empirical risk minimization:

ERM(S) ∈ arg min
h∈H

LS(h).

If H is infinite, there might
be not be a minimizer. We
usually won’t worry about

this explicitly, but basically
everything we talk about

could be generalized to
approximate minimizers.

If there are ties, by default we think of the algorithm returning any arbitrary choice.

The returned hypothesis, ERM(S), which we will also often denote ĥS, is called an
empirical risk minimizer (“an ERM”).

For example, ERM with the squared loss and H = {x 7→ w · x} does indeed recover
ordinary least squares:

ERM(S) ∈ arg min
h∈{x 7→w·x :w∈Rd }

LS(h)

= arg min
h∈{x 7→w·x :w∈Rd }

1
m

m∑
i=1

ℓ(h, zi)

= arg min
h∈{x 7→w·x :w∈Rd }

1
m

m∑
i=1

lyi (h(xi))In our notation here,
ERM(S) is returning a

function (which makes these
last couple of lines slightly
tedious); we could equally
well have let H be a set of

parameter vectors and define
a loss on parameters,

ℓ(w, (x, y)) = 1
2 (x · w − y)2.

=

x 7→ x · ŵ : ŵ ∈ arg min
w∈Rd

1
m

m∑
i=1

l(w · xi , yi)

=

x 7→ x · ŵ : ŵ ∈ arg min
w∈Rd

1
m

m∑
i=1

1
2

(w · xi − yi)2

 ,

and now ŵ in the last line is probably what your intro stats class wrote down in the
first place as the definition of linear regression.

We know that LS(ERM(S)) is small by definition, but when can we expect LD(ERM(S))
to be small? The first big chunk of this course is about this question in particular.

4

There are several ways to analyze this; the classic way is by making sure we choose
an appropriate hypothesis class H. If H is too simple, you’ll never be able to learn
the pattern you’re looking for, but if it’s too complicated, you’ll overfit and pick one
that seems good by chance, i.e. has good LS(ERM(S)) but bad LD(ERM(S)).

Figure 1.1 illustrates this trade-off for polynomial regression. This is similar to
what you saw in your intro machine learning class; one of the things we’ll do in this
course is formalize this general intuition and prove theorems about it.

0

2

degree 0
train 1.85
test 1.16

degree 1
train 1.71
test 1.22

degree 2
train 0.61
test 0.40

degree 3
train 0.23
test 0.34

degree 4
train 0.15
test 0.39

0

2

degree 5
train 0.15
test 0.39

degree 6
train 0.14
test 0.40

degree 7
train 0.08
test 0.77

degree 8
train 0.08
test 0.66

degree 9
train 0.07
test 3.08

1 0 1

0

2

degree 10
train 0.02
test 67.43

1 0 1

degree 11
train 0.02

test 105.84

1 0 1

degree 12
train 0.02

test 131.03

1 0 1

degree 13
train 0.01

test 43,914.31

1 0 1

degree 14
train 0.00

test 778,473.09

(a) Polynomial regression, h(x) = w0 + w1x + w2x
2 + · · · + wkx

k , for increasing k, to data
points shown in blue. ERM fits are in orange; dashed black lines show E[y | x], a cubic
function. Text gives mean squared error for training and testing sets.

0 2 4 6 8 10 12 14 16
polynomial degree

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

training
testing
irreducible error

(b) Training and test errors from Figure 1.1a.

Figure 1.1: Underfitting to overfitting as H gets bigger.

1.4 error decompositions

Here’s some standard terminology to know to formalize that intuition. For any
estimator ĥS ∈ H (not necessarily just the ERM), we can write

LD(ĥS) − Lbayes︸ ︷︷ ︸
excess error

= LD(ĥS) − inf
h∈H

LD(h)︸ ︷︷ ︸
estimation error

+ inf
h∈H

LD(h) − Lbayes︸ ︷︷ ︸
approximation error

.

5

The excess error is how much worse you are than the irreducible error Lbayes, also
called the Bayes error or the error of the Bayes predictor (see A1 Q2 for more).
No predictor, no matter its form, could do better than this: there’s just inherent
noise in the problem. The general ℓ(h, z) form unfortunately doesn’t make this
easy to define (the domain is H), but for ly(ŷ) we can say something like Lbayes =
infh:X→Ŷ measurable ly(h(x)).

The estimation error, also called the statistical error, is the error that comes about
from using your algorithm ĥS rather than picking the best possible predictor in H.
As m→∞, this should (ideally) go to zero.

The approximation errorCPSC 340 used to use
“approximation error” for the

generalization gap,
LD(h) − LS(h). This was a
nonstandard use; it’s been
changed now in 340, and

you should wipe it from your
memory. :)

doesn’t (directly) depend on the number of samples you
see: it’s a function only of how well your hypothesis class H can do, regardless of
estimation.

For example, in the polynomial regression case of Figure 1.1, using a H of linear
functions results in some approximation error, but not much estimation error
(because linear functions are easy to fit). Using aH of degree-fifteen polynomials has
zero approximation error (it contains the Bayes predictor) but really high estimation
error (too many parameters to fit).

Intuitively, as H gets “bigger,” approximation error decreases but estimation error
increases. Usually, approximation error is pretty problem-specific, but we’ll see at
least a few examples of formal analyses of it later in the course. First, we’ll think
about estimation error bounds.

1.4.1 ERM estimation error

Our usual basic way to prove when ERM generalizes well is to take the following
decomposition, where we compare the loss of ĥS to the loss of some arbitrary
comparator hypothesis h∗ ∈ H. Note that we’ll usually think of h∗ as being roughly
the best predictor in H, but we don’t require that, since it might not exist if H is
infinite; instead we’ll start by just comparing to any arbitrary predictor.

LD(ĥS) − LD(h∗) = LD(ĥS) − LS(ĥS) + LS(ĥS)︸ ︷︷ ︸
0

− LS(h∗) + LS(h∗)︸ ︷︷ ︸
0

−LD(h∗)

=
(
LD(ĥS) − LS(ĥS)

)
+ LS(ĥS) − LS(h∗)︸ ︷︷ ︸
≤ 0: ĥS minimizes LS

+
(
LS(h∗) − LD(h∗)

)

≤ LD(ĥS) − LS(ĥS)︸ ︷︷ ︸
A: ĥS’s overfitting

+ LS(h∗) − LD(h∗)︸ ︷︷ ︸
B: h∗’s “underfitting”

. (1.5)

So, if we can bound A and B, then we can say that ĥS isn’t too much worse than h∗.

Now, as long as our bound on B doesn’t depend on the particular choice of h∗, then
this implies that

LD(ĥS) − inf
h∈H

LD(h) ≤ A + BIf you aren’t familiar with
inf, it’s like min but makes

sense even if there isn’t a
minimizer (it’s the largest

lower bound). For example,
infx∈R:x>0 x = 0 even

though 0 isn’t in that set.

.

The next few weeks will be denoted to bounding A + B, how much worse ĥS is than
the best possible thing in H.

6

REFERENCES

references

[Bach24] Francis Bach. Learning Theory from First Principles. Draft version. Au-
gust 2024.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Founda-
tions of Machine Learning. 2nd edition. MIT Press, 2018.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[Zhang23] Tong Zhang. Mathematical Analysis of Machine Learning Algorithms.
Pre-publication version. 2023.

7

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://tongzhang-ml.org/lt-book/lt-book.pdf

	Linear regression
	General problem setup
	Empirical Risk Minimization
	Error decompositions
	ERM estimation error

