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We’ve mentioned a couple times the idea of implementing a polynomial classifier as
a special case of a linear one: in R, a cubic classifier might look like

h(x) = w0 + w1x + w2x
2 + w3x

3

where we have four parameters in w. Notice that we can also write this as

h(x) = w · φ(x), w ∈ R4, φ(x) = (1, x, x2, x3).

Now, consider the set of all cubic functions

F = {x 7→ w · φ(x) = w0 + w1x + w2x
2 + w3x

3 : w ∈ R4}.

We’re going to introduce some machinery to think about F as a function space,
along the lines of the space C(X ) from Definition 10.1. “Kernel” is a

super-overloaded word. This
is not the same thing as in
kernel density estimation,
the kernel of a convolution,
the kernel of a probability
density, the kernel of a linear
map, a CUDA kernel, an
operating system kernel. . .

This will lead to kernel
methods that allow us to optimize over F using basically the same techniques as
optimizing over linear spaces.

11.1 defining function spaces

To think of F as a vector space of functions, let f , f ′ ∈ F correspond to weight
vectors w, w′. Then we can let f + f ′ be the function with weight vector w + w′, and
af that with weight vector aw. This definition makes it a valid vector space:

Definition 11.1. A real vector space is a non-empty set V along with the operations
of vector addition, denoted v + w ∈ V for any v, w ∈ V, and scalar multiplication,
denoted av ∈ V for any v ∈ V and a ∈ R, satisfying the following requirements:

• Vector addition is associative: for all u, v, w ∈ V, u + (v + w) = (u + v) + w.

• Vector addition is commutative: for all v, w ∈ V, v + w = w + v.

• Vector addition has an identity: there is some zero vector 0 ∈ V such that for
all v ∈ V, v + 0 = v.

• Vector addition has inverses: for each v ∈ V, there is some −v ∈ V such that
v + (−v) = 0.

• Compatibility of scalar multiplication: for all a, b ∈ R and v ∈ V, a(bV) =
(ab)V.

• Identity of scalar multiplication: for all v ∈ V, (1)v = v

• Distributive property I: for all a ∈ R and v, w ∈ V, a(v + w) = av + aw.

• Distributive property II: for all a, b ∈ R and v ∈ V, (a + b)v = av + bv.

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.
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A lot of the familiar linear algebra stuff you know and love from Rd applies to any
vector space as well.

Definition 11.2. A real normed vector space is a real vector space V with a norm: a
function V→ R, written ∥v∥, such that:

• Non-negativity: for all v ∈ V, ∥v∥ ≥ 0.

• Positive definitenesss: for every v ∈ V, ∥v∥ = 0 if and only if v = 0.

• Absolute homogeneity: for every a ∈ R and v ∈ V, ∥av∥ = |a| ∥v∥.

• Sub-additivity / triangle inequality: for every v, w ∈ V, ∥v + w∥ ≤ ∥v∥ + ∥w∥.

The norm of a normed vector space induces the metric ρ(x, y) = ∥x − y∥, which we
can check satisfies the formal definition of a metric space:

Definition 11.3. A metric space is a set X along with a function ρ : X × X → R,
called the metric, satisfying the following properties:

• Non-negativity: for all x, y ∈ X , ρ(x, y) ≥ 0.

• Positive definiteness for all x, y ∈ X , ρ(x, y) = 0 if and only if x = y.

• Symmetry: for all x, y ∈ X , ρ(x, y) = ρ(y, x).

• Triangle inequality: for all x, y, z ∈ X , ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Definition 11.4. Consider a sequence x1, x2, . . . in a metric space X .

This sequence has a limit x∞ if for every ε > 0, there exists a positive integer N such
that for all n > N, ρ(xn, x∞) < ε.

This sequence is called Cauchy if, for every ε > 0, there exists a positive integer N
such that for all m, n > N, ρ(xm, xn) < ε.

The metric space X is called complete if all Cauchy sequences in X have limits in X .

Definition 11.5. A real Banach space is a real normed vector space whose norm
induces a complete vector space.

You can check that C(X ) is a Banach space.

There’s one other major structure in Rd that we don’t have yet: dot products.

Definition 11.6. A real inner product space is a real vector space V together with an
inner product, a function V × V→ R written ⟨v, w⟩ satisfying

• Symmetry: for all v, w ∈ V, ⟨v, w⟩ = ⟨w, v⟩.

• Linearity: for all u, v, w ∈ V and a, b ∈ R, ⟨au + bv, w⟩ = a ⟨u, w⟩ + b ⟨v, w⟩.

• Positive-definiteness: if v , 0, then ⟨v, v⟩ > 0.

An inner product space is also a normed vector space with ∥v∥ =
√
⟨v, v⟩, and hence

a metric space with ρ(v, w) = ∥v − w∥ =
√
⟨v − w, v − w⟩.

Definition 11.7. A real Hilbert space is a real inner product space whose induced
metric space is complete.
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11.2 polynomial functions

Now, recall our function space

F = {x 7→ w · φ(x) = w0 + w1x + w2x
2 + w3x

3 : w ∈ R4}

with addition defined by adding weight vectors, and scalar multiplication by scaling
the weight vectors. We can also define an inner product ⟨f , f ′⟩F by w · w′, also
giving the norm ∥f ∥F = ∥w∥. We can check that this satisfies all the conditions we
need, including completeness, for F to define a Hilbert space.

Now, let’s think about a different function class. Choose any c > 0 and define

Fc = {x 7→ w · φ(x) = w0

√
c3 + w1

√
3c2x + w2

√
3cx2 + w3x

3 : w ∈ R4},

then again define addition / scalar multiplication / inner products in terms of these
weight vectors w. The reason for this reparameterization is that we get

φ(x) · φ(x′) = c3 + 3c2xx′ + 3c(xx′)2 + (xx′)3 = (xx′ + c)3,

which makes φ(x) · φ(x′) much easier to compute. The same thing happens in
higher dimensions or with higher polynomial degrees; for degree-ℓ polynomials in
d dimensions, there are O(dℓ) parameters, but we can compute this inner product
ϕ(x) · ϕ(x′) still in O(d) time.

We call this function φ(x) · φ(x′) the kernel function:

k(x, x′) = φ(x) · φ(x′).

We’ll see soon that it’s a very fundamental object.

The set of functions in F and Fc for any c are the same, as functions; addition
and scalar multiplication also agree between all of them. But the inner product
doesn’t! So ∥w∥, and hence ∥f ∥Fc , is different depending on your choice of c. (Larger
c will mean the lower-order coefficients can be smaller in order to express the same
function, and so means that ∥f ∥F is more determined by the coefficient on x3.) This
will be important when we use algorithms that depend on ∥f ∥F .

Now, let’s do something slightly weird. Recall that

φ(x) = (
√
c3,
√
c2x,
√
cx2, x3) ∈ R4.

Elements of Fc are functions corresponding to any w ∈ R4. So what happens if we
think of the element of φ(x) as a weight vector for an element in Fc? This would
give us a function of the form

x′ 7→
√
c3
√
c3 +
√

3c2x
√

3c2x′ +
√

3cx
√

3c(x′)2 + x3(x′)3

= c3 + 3c2xx′ + 3c(xx′)2 + (xx′)3

= (xx′ + c)3 = φ(x) · φ(x′).

That is, if we evaluate the function with weights φ(x) at a point x′, we just get the
kernel back. There isn’t any magic here; we defined F that way in the first place!
Letting fw ∈ F denote the function with weight vector w, this means that

⟨fφ(x), fφ(x′)⟩F = k(x, x′).
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Now, because it’s a vector space, we know that
n∑
i=1

αifφ(xi ) ∈ F for any n, αi ∈ R, and

choice of xi . By the linearity properties of inner product spaces,〈 n∑
i=1

αifφ(xi ), fφ(x)

〉
F

=
n∑
i=1

αi⟨fφ(xi ), fφ(x)⟩F =
n∑
i=1

αik(xi , x).

Since fφ(xi ) ∈ F is a function from X to R, this is the same as taking a linear
combination of the functions, in terms of their pointwise evaluations.

So, we can think of F as having a vector space structure without direct reference
to w, where af + f ′ is defined as the function x 7→ af (x) + f ′(x), and where f (x) =
⟨f , fϕ(x)⟩F (also known as the reproducing property) – at least for any f that’s a
linear combination of fϕ(xi ) for some xi . This will be the basis for our construction
of a reproducing kernel Hilbert space (RKHS) for a generic kernel.

The notation fφ(x) is a little bit cumbersome. Kernels people often use k(x, ·) to denote
this. This notation is justified because k(x, ·) would normally mean the function
t 7→ k(x, t); but that’s exactly what you get when you do fφ(x)(t) = φ(x) ·φ(t) = k(x, t).

11.3 reproducing kernels

Not every function can be a kernel: it needs to be possible to write as an inner
product. So:

Definition 11.8. A function k : X × X → R is a positive definite kernel if and
only if there exists some Hilbert space G and feature map φ : X → G such that
k(x, x′) = ⟨φ(x),φ(x′)⟩G.

Notice that the space, and the map, don’t need to be unique (e.g. you could always
use −φ instead of φ). Sometimes it’s clear what such a map is: for the cubic kernel we
considered above, we used G = R4 and φ(x) = (

√
c3,
√

3c2x,
√

3cx2, x3). Sometimes,
though, it’s not obvious for a given k whether there is such a map or not.

The definition implies that we need k(x, x′) = k(x′ , x), and that k(x, x) ≥ 0. But those
are only necessary, not sufficient.

Theorem 11.9 ([Aro50]).Unfortunately people are
very inconsistent about

terminology around positive
definiteness. For matrices,

“positive semi-definite”
unambiguously means the

eigenvalues are nonnegative,
and “strictly positive

definite” unambiguously
means eigenvalues are all

positive, but “positive
definite” might mean either.
Some people get annoyed if

you try to say “positive
semi-definite kernel

function,” though.

A function k : X × X → R is a positive definite kernel if and

only if for all m ≥ 1 and x1, . . . , xm ∈ X , the kernel matrix


k(x1, x1) . . . k(x1, xm)

...
. . .

...
k(xm, x1) . . . k(xm, xm)

 ∈
Rm×m is positive semi-definite.

Recall that a positive semi-definite matrix can be equivalently characterized as:

• For all α ∈ Rm, αTKα ≥ 0.

• All eigenvalues of K are nonnegative.

• K = LLT for some L ∈ Rm×m.

Proof (sketch). One direction is easy: if k(x, x′) = ⟨ϕ(x),ϕ(x′)⟩G, then

αTKα =
m∑
i=1

m∑
j=1

αi⟨φ(xi),φ(xj )⟩Gαj =

∥∥∥∥∥∥∥
m∑
i=1

αiφ(xi)

∥∥∥∥∥∥∥
2

G

≥ 0.
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To show the other direction, given a k satisfying this property, we’ll construct a
space F : the reproducing kernel Hilbert space.

We’ll start by building a “pre-Hilbert space” F0, containing functions X → R. Start
by defining the functions ϕ(x) = [x′ 7→ k(x, x′)] for all x. Then, let F0 be the set of

all linear combinations of these functions,
m∑
i=1

αiϕ(xi) for any m ≥ 0, x1, . . . , xm ∈ X ,

α1, . . . , αm ∈ R. Define an inner product by〈 m∑
i=1

αiϕ(xi),
n∑

j=1

βjϕ(x′j )
〉
F0

=
m∑
i=1

n∑
j=1

k(xi , x
′
j ).

This satisfies the required linearity and nonnegativity properties to be an inner
product. It also has the reproducing properties that we expect:

⟨ϕ(x),ϕ(x′)⟩F0
= k(x, x′) ⟨f ,ϕ(x)⟩F0

= f (x).

Notice also that this is well-defined in the sense that it’s representation-independent:〈 m∑
i=1

αiϕ(xi), f
′
〉
F0

=
m∑
i=1

αi⟨ϕ(xi), f
′⟩F0

=
m∑
i=1

αif
′(xi),

which doesn’t depend on how we wrote f ′ as a linear combination, just on its values.

The only thing left is that we need F0 to be complete: it’s conceivable that not
all Cauchy sequences have limits in this space. So, we construct the RKHS as the
completion of F0: just add the limits in, defining their inner products as limits of
the inner products of the sequence (which is guaranteed to exist since the sequence

is Cauchy and R is complete). So, not all f ∈ F can be written as
n∑
i=1

αiϕ(xi), but you

can always get arbitrarily close (in the distance defined by ∥·∥F ) to f with things of
that form.

After checking all the details work out, we’ve constructed a Hilbert space and a
feature map for any k.

(There are also other ways to define an RKHS; it turns out each RKHS has a unique
kernel, and each kernel has a unique RKHS, though there could be more than Hilbert
space aligning with the definition.)

11.3.1 Special case: linear kernel

If we use k(x, x′) = x · x′ for x ∈ Rd , then ϕ(x) = [x′ 7→ x′ · x] is just a linear function
with weight x. Also,∥∥∥ϕ(x)

∥∥∥F =
√
⟨ϕ(x),ϕ(x)⟩F =

√
k(x, x) = ∥x∥ .

So everything we’ve done with linear predictors can be thought of as operating in
the RKHS corresponding to a linear kernel. This is often a useful thing to think
about if you’re looking at some complicated kernel expression: see what it’d be with
a linear kernel.
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11.4 optimizing in the rkhs

Theorem 11.10 (Representer theorem). If F is an RKHS with feature map ϕ, then for
any function L : Rm → R and any nondecreasing function R : R→ R ∪ {∞},

arg min
f ∈F

L(f (x1), . . . , f (xm)) + R(∥f ∥)

contains a solution of the form f =
m∑
i=1

αiϕ(xi), where S = (x1, . . . , xm). If R is strictly

increasing, all solutions are of this form.

Notice that arg minf :∥f ∥F ≤B LS(f ) fits this form: use R(t) =

0 t ≤ B

∞ t > B
.

Proof. Let F∥ be the subspace of F spanned by {ϕ(xi)}mi=1, and F⊥ its orthogonal
complement. Then any element of F can be uniquely decomposed into f∥ + f⊥,
where f∥ ∈ F∥, f⊥ ∈ F⊥, and ⟨f∥, f⊥⟩F = 0. Now, since

f (xi) = ⟨f ,ϕ(xi)⟩F = ⟨f∥ + f⊥,ϕ(xi)⟩F = ⟨f∥,ϕ(xi)⟩F + ⟨f⊥,ϕ(xi)⟩F︸        ︷︷        ︸
0

,

the L component only depends on f∥. Also,

∥f ∥2F =
∥∥∥f∥∥∥∥2

F + ∥f⊥∥2F + 2 ⟨f∥, f⊥⟩F︸    ︷︷    ︸
0

=
∥∥∥f∥∥∥∥2

F + ∥f⊥∥2F .

Thus, having a nonzero value of f⊥ does not change L, and cannot help R. If R is
strictly increasing, it can only hurt the overall objective.

That is, any problem will have a solution of the form w =
∑
i
αiϕ(xi). This allows us

to reduce optimization in F – potentially infinite-dimensional – to optimization
over α ∈ Rm.

11.4.1 Example: kernel ridge regression

Consider the problem
min
h∈F

Lsq
S (h) + λ ∥h∥2F (11.1)

for λ > 0. First off, with a linear kernel, this becomes just plain ridge regression
minw Lsq

S (x 7→ w · x) + λ ∥w∥2.

We know that all solutions will be of the form
m∑
i=1

αiϕ(xi), so (11.1) is equivalent to

min
α∈Rm

Lsq
S

∑
i

αiϕ(xi)

 + λ

∥∥∥∥∥∥∥∑i αiϕ(xi)

∥∥∥∥∥∥∥
2

F

. (11.2)

The second term here is just∥∥∥∥∥∥∥∑i αiϕ(xi)

∥∥∥∥∥∥∥
2

F

=
∑
i,j

αik(xi , xj )αj = αTK|Sx
α,
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where K|Sx
∈ Rm×m is the kernel matrix on Sx, as in Theorem 11.9. For the first term,

notice that ∑
i

αik(xi , xj ) = αTK|Sx
ej

where ej ∈ Rm is the jth standard basis vector. Then

Lsq
S

∑
i

αiϕ(xi)

 =
1
m

∑
i

(
αTK|Sx

ei − yi
)2

=
1
m

∥∥∥Kα − y
∥∥∥2
Rm .

Thus the overall problem is

α̂ ∈ arg min
α

1
m
αTK|Sx

K|Sx
α − 2

m
yTK|Sx

α +
1
m
yTy + λαTK|Sx

α

= arg min
α

αTK|Sx
(K|Sx

+ mλI)α − 2yTK|Sx
α.

Setting the gradient to zero gives that we want

K|Sx
(K|Sx

+ mλI)α = K|Sx
y,

which is achieved by
α̂ = (K|Sx

+ mλI)−1y.

When λ > 0 this inverse is guaranteed to exist, since K|Sx
is positive semidefinite, so

K|Sx
+ mλ has all eigenvalues at least mλ.

We can also make predictions on an arbitrary test point with

〈∑
i

α̂iϕ(xi),ϕ(x)
〉
F

=
∑
i

α̂ik(xi , x) = α̂ ·


k(x1, x)

...
k(xm, x)

 .
It’s worth checking for yourself that this agrees with standard ridge regression.

People sometimes call this
transformed version a dual
form, especially e.g. for
kernel ridge regression.
While “dual” isn’t
necessarily a strictly defined
term, note that it’s not a
Lagrange dual.

(You might have to use the Woodbury matrix identity to line them up, since usual
expressions for ridge regression invert a d × d matrix instead of an m × m one. In
340, we called this version the “other normal equations.”)

We often won’t be able to solve things in closed form like we can for kernel ridge
regression. But the representer theorem will still be helpful for any problem of the
right form; we just still might have to run an optimization algorithm like gradient
descent on the α variables.

11.5 other kernels

The most common kernel people use is the Gaussian kernel, also called the “square
exponential” or “exponentiated quadratic” by some communities:

k(x, x′) = exp
(
− 1

2σ2

∥∥∥x − x′∥∥∥2
)
.

My preferred way to prove this is a kernel goes through the following construction:

Proposition 11.11. Let k, k1, k2, . . . be positive definite kernels on X . Then the following
are all also positive definite kernels:

1. γk = (x, x′) 7→ γk(x, x′) for any γ > 0.
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2. k1 + k2 = (x, x′) 7→ k1(x, x′) + k2(x, x′).

3. k1k2 = (x, x′) 7→ k1(x, x′)k2(x, x′).

4. kn = (x, x′) 7→ k(x, x′)n for any nonnegative integer n.

5. k∞ = (x, x′) 7→ limn→∞ kn(x, x′), when the limit always exists.

6. ek = (x, x′) 7→ exp(k(x, x′)).

7. (x, x′) 7→ f (x)k(x, x′)f (x′) for any function f : X → R.

8. (x, x′) 7→ k′(f (x), f (x′)) for any function f : X → X ′ and k′ a kernel on X ′.

Proof. Let ϕ,ϕ1,ϕ2, . . . be the feature maps for these kernels, and K, K1, K2, . . . the
kernel matrices for arbitrary (x1, . . . , xm) ∈ Xm.

1. Use the feature map x 7→ √γφ.

2. αT(K1 + K2)α = αTK1α + αTK2α ≥ 0.

3. This is called the Schur product theorem. Define independent multivariate
normal random vectors V ∼ N (0, K1) and W ∼ N (0, K2). Let V ⊙W be the
elementwise product of V and W; this has covariance matrix K1 ⊙ K2, and
covariances must be psd.

4. Iteratively apply the previous property; also, k0 has feature map x 7→ 1.

5. αTK∞α = αT[limn→∞ Kn]α = limn→∞ α
TKnα ≥ 0.

6. Use exp(k(x, x′)) = limN→∞
N∑
n=0

1
n!k(x, x′)n and the previous properties.

7. Use the feature map x 7→ f (x)ϕ(x).

8. Use the feature map x 7→ ϕ′(f (x)).

To get the Gaussian kernel, notice that

exp
(
− 1

2σ2

∥∥∥x − x′∥∥∥2
)

= exp
(
− 1

2σ2 ∥x∥
2
)

exp
( 1
σ2 x · x

′
)

exp
(
− 1

2σ2

∥∥∥x′∥∥∥2
)

and apply the properties above.

The Gaussian kernel is universal; you can prove this fairly immediately via Stone-
Weierstrass (Theorem 10.10).

The Gaussian is not always the best kernel, particularly in high dimensions. Func-
tions in F for a Gaussian kernel are very smooth; the Matérn kernel is preferred in
some settings where rougher functions are expected. Another good general-purpose
kernel is the distance kernel [SSGF13]

k(x, x′) = ρ(x, O) + ρ(x′ , O) − ρ(x, x′)

where ρ is a (semi)metric, and O ∈ X is some arbitrary center point, perhaps 0. This
kernel isn’t actually universal [SSGF13, Proposition 35], but it is “almost universal”
and works well in various settings.

If you have a good (e.g. deep) feature extractor ψ, using a kernel of the form
k(ψ(x),ψ(x′)) can often be a good idea. This usually won’t be universal, but that
usually doesn’t matter for the particular problem you’re looking at.
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11.5.1 Some properties

Proposition 11.12. Consider a kernel k with RKHS F . Then

Rad
({
f ∈ F : ∥f ∥F ≤ B

} ∣∣∣
Sx

)
≤ B
√
m

√√
1
m

m∑
i=1

k(xi , xi).

Proof. The analysis in Section 5.2.2 carries through exactly when replacing xi with

k(xi , ·) ∈ F , in which case
∥∥∥φ(xi)

∥∥∥2
= ⟨k(xi , ·), k(xi , ·)⟩F = k(xi , xi).

For many kernels, such as the Gaussian, k(x, x) = 1 no matter the choice of x. This
makes it even simpler to handle than for the linear case, since we don’t care about
the data distribution.

This is a case where Rademacher analyses are much better than straightforward uses
of covering numbers, since for infinite-dimensional kernels like the Gaussian the
covering number of the sphere is infinite [Isr15].

Proposition 11.13. Let f ∈ F , the RKHS with kernel k. Then

|f (x)| ≤ ∥f ∥F
√
k(x, x)

∣∣∣f (x) − f (x′)
∣∣∣ ≤ ∥f ∥F √

k(x, x) + k(x′ , x′) − 2k(x, x′).

Proof. We have by the representer property and Cauchy-Schwartz that

|f (x)| =
∣∣∣⟨f ,ϕ(x)⟩F

∣∣∣ ≤ ∥f ∥F ∥∥∥ϕ(x)
∥∥∥F .

Similarly,∣∣∣f (x) − f (x′)
∣∣∣ =

∣∣∣⟨f ,ϕ(x) − ϕ(x′)⟩F
∣∣∣ ≤ ∥f ∥F √

k(x, x) + k(x′ , x′) − 2k(x, x′).

Many more properties of this kind are available. For shift-invariant kernels, k(x, x′) =
κ(x − x′), a lot is available via Fourier properties of κ.

We’ve only scratched the surface here. We’ll touch on kernels again through the rest
of the course, but if you want more, Chapter 7 of [Bach24] goes in some more depth,
and [SC08] is a classic very deep/mathematically thorough reference. Bayesian-
oriented people might also want to see connections to Gaussian Processes [RW06;
KHSS18], which are very much “almost the same thing” from a slightly different
point of view.
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