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We haven’t yet really talked in this course about any optimization algorithms to
actually implement our learning algorithms ERM, RLM, or SRM.

By far the most common optimization algorithm used in machine learning is
(stochastic) gradient descent and its variants. Due to time this year, we’re only
going to talk about full-batch gradient descent, and point to papers that discuss
stochastic variants. (This is a major area of research in the intersection between
learning theory and optimization, which these days are becoming more integrated.)
For much much more about optimization, some good resources are graduate courses
by Michael Friedlander (CPSC 536M) and Mark Schmidt (CPSC “5XX”), the books of
Boyd and Vandenbreghe [BV04], Nocedal and Wright [NW06], and Bubeck [Bub15],
and the recent survey of Garrigos and Gower [GG23]. Chapter 14 of Shalev-Shwartz
and Ben-David [SSBD14] also gives an approachable account of projected stochastic
subgradient descent, which generalizes what we’re talking about here.

13.1 gradient descent

Gradient descent tries to find minw f (w) for some function f , such as LS(fw). Here
w should be some finite-dimensional parameter; in kernel methods, we’d typically
use the representer theorem, though there’s also something called “kernel gradient
descent.”

We start at some initial point w1, often either 0 or a sample from, say, N (0, σ2I). We
then update according to the rule

wt+1 = wt − ηt∇f (wt);

ηt > 0 is known as either the “learning rate” or the “step size,” although note that
it’s not actually the size of the step since ∥wt+1 − wt∥ = ηt ∥∇f (wt)∥.

One way to motivate this is to say that we should only “trust” the gradient direction
locally, and then should re-check it regularly. Another way is to notice that this
update actually minimizes the local quadratic approximation given by If instead of 1

2η ∥w − wt∥2
we use
1
2 (w −wt)∇2f (wt) (w −wt),
i.e. the second-order Taylor
expansion, this is called
Newton’s method. Each step
of Newton’s method often
improves your loss much
more than gradient descent,
but each step is also much
more computationally
expensive.

g(w) = f (wt) + ⟨∇f (wt), w − wt⟩ +
1

2η
∥w − wt∥2 ;

if f is 1
η
-strongly convex, then g will be a global lower bound for f . Even if not,

though, it’ll be an okay approximation locally.

We repeat this until we decide to stop, after T steps, and then return a result:

this might be wT (the “last iterate”), w̄ = 1
T

T∑
t=1

wt (the “average iterate”), wt̂ for

t̂ ∈ arg mint∈[T] f (wt) (the “best iterate”), the best iterate according to a validation
set, or some other scheme.

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.
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We’ll usually assume that ηt is some constant η, independent of the data, and that
we optimize for a fixed number of steps T, also chosen independently of the data.
In practice, other schemes are probably better; for instance, it’s often better to use
a backtracking scheme to adaptively choose ηt, or to otherwise have some kind of
learning rate schedule that decreases over time.

13.2 β-smooth functions

A common assumption in optimization is that the target function is β-smooth:

Definition 13.1.Note that this is not what
analysts mean when they

say a “smooth function” (i.e.
infinitely differentiable).

We say a function f is β-smooth if it is differentiable everywhere,
and its gradient ∇f is β-Lipschitz.

Proposition 13.2. If f is twice-differentiable, it is β-smooth iff for all w in the interior
of its domain, all eigenvalues of the Hessian of f at x have absolute value at most β:
−βI ⪯ ∇2f (w) ⪯ βI.The notation A ⪰ 0 means

“is positive-semi-definite”;
A ⪰ B means that A − B is

positive-semi-definite.

Proof. When f is twice-differentiable and β-smooth, we have by Taylor’s theorem
that for any vector δ,

∇f (w + δ) = ∇f (w) + ∇2f (w)δ + O(∥δ∥2).

Thus by the triangle inequality,∥∥∥∇2f (w)δ
∥∥∥ ≤ ∥∇f (w + δ) − ∇f (w)∥ + O(∥δ∥2).

Divide through by ∥δ∥ and apply that ∇f is β-Lipschitz:∥∥∥∇2f (w)δ
∥∥∥

∥δ∥
≤ ∥
∇f (w + δ) − ∇f (w)∥

δ
+ O(∥δ∥) ≤ β + O(∥δ∥).

Now suppose v is a (unit-norm) eigenvector of ∇2f (w) with eigenvalue λ, and plug
in δ = tv for a scalar t, so that ∥δ∥ = |t|. Then

∥∥∥∇2f (w) tv
∥∥∥ = ∥λtv∥ = |λ| |t|. This gives

us that |λ| ≤ β + O(t). Taking t → 0 gives that |λ| ≤ β.

The other direction is a vector-valued version of Lemma 4.8.

Proposition 13.3. Suppose f is β-smooth. Then for any w and w′ in its domain,∣∣∣f (w′) − f (w) − ⟨∇f (w), w′ − w⟩
∣∣∣ ≤ 1

2
β
∥∥∥w − w′∥∥∥2

:

its deviation from its tangent planes is upper-bounded by a quadratic.

Proof. Use x0 for w and x1 for w′. Then for any x0, x1, let xα = (1 − α)x0 + αx1
for all α ∈ (0,1), and define g : [0,1] → R by g(α) = f (xα). Notice that g ′(α) =
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⟨∇f (xα), x1 − x0⟩, and so by the fundamental theorem of calculus we have

f (x1) − f (x0) = g(1) − g(0) =

1∫
0

g ′(α)dα

=

1∫
0

⟨∇f (xα) − ∇f (x0) + ∇f (x0)︸                  ︷︷                  ︸
0

, x1 − x0⟩dα

= ⟨∇f (x0), x1 − x0⟩ +

1∫
0

⟨∇f (xα) − ∇f (x0), x1 − x0⟩dα.

Thus

|f (x1) − f (x0) − ⟨∇f (x0), x1 − x0⟩| =

∣∣∣∣∣∣∣∣
1∫

0

⟨∇f (xα) − ∇f (x0), x1 − x0⟩dα

∣∣∣∣∣∣∣∣
≤

1∫
0

|⟨∇f (xα) − ∇f (x0), x1 − x0⟩|dα

≤
1∫

0

∥∇f (xα) − ∇f (x0)∥ ∥x1 − x0∥dα

≤
1∫

0

β ∥xα − x0∥ ∥x1 − x0∥dα;

since xα − x0 = (1 − α)x0 + αx1 − x0 = α(x1 − x0), this is

|f (x1) − f (x0) − ⟨∇f (x0), x1 − x0⟩| ≤ β ∥x1 − x0∥2
1∫

0

αdα =
1
2
β ∥x1 − x0∥2 .

Lemma 13.4 (Descent lemma). Let w+ = w − η∇f (w) for a β-smooth function f , where
η < 2/β. Then f (w) − f (w+) ≥ η(1 − 1

2ηβ) ∥∇f (w)∥2, and hence either ∇f (w) = 0 or
f (w+) < f (w).

Proof. By Proposition 13.3, we have

f (w+) ≤ f (w) + ⟨∇f (w), w+ − w⟩ +
1
2
β
∥∥∥w+ − w

∥∥∥2

= f (w) − η⟨∇f (w),∇f (w)⟩ +
1
2
β
∥∥∥−η∇f (w)

∥∥∥2

= f (w) − η
(
1 − 1

2
ηβ

)
∥∇f (w)∥2 .

Since we assumed η < 2/β, 1 − ηβ/2 > 0. The claim follows.

So, this means that gradient descent with a small-enough learning rate is a “descent
method”: each step decreases the objective.
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For convex functions, a point with ∇f (w) = 0 is a global min. But for nonconvex
functions, we can only say that it’s a stationary point: it might be a local but non-
global minimizer, or a saddle point. (A local max could only happen if we happened
to initialize exactly on it.)

13.3 aside : convex functions

For convex functions in particular (with a slightly smaller learning rate), we can use
the following lemma to help in a proof of overall convergence: this lemma relates
the improvement of the descent lemma to how much closer a step gets us to some
“target point” (presumably the minimizer) w∗:

Lemma 13.5. Let f be a convex, β-smooth function, and suppose that η ≤ 1/β. Let w, w∗

be arbitrary points in the interior of the domain of f . Then

f (w+) − f (w) ≤ 1
2η

[
∥w − w∗∥ −

∥∥∥w − η∇f (w) − w∗
∥∥∥] .

Proof. The first-order characterization of convexity implies that f (w∗) ≥ f (w) −
⟨∇f (w), w∗ − w⟩, or equivalently f (w) ≤ f (w∗) + ⟨∇f (w), w − w∗⟩. Thus, starting
from Lemma 13.4 and using η ≤ 1/β,

f (w+) ≤ f (w) − η
(
1 − 1

2
βη

)
∥∇f (w)∥2

≤ f (w) − 1
2
η∥∇f (w)∥2

≤ f (w∗) + ⟨∇f (w), w − w∗⟩ − 1
2
η∥∇f (w)∥2

= f (w∗) +
1

2η

[
2η⟨∇f (w), w − w∗⟩ − η2 ∥∇f (w)∥2

]
= f (w∗) +

1
2η

[
∥w − w∗∥2 − ∥w − w∗∥2 + 2η⟨∇f (w), w − w∗⟩ − η2 ∥∇f (w)∥2

]
= f (w∗) +

1
2η
∥w − w∗∥2 −

1
2η

[
∥w − w∗∥2 − 2η⟨∇f (w), w − w∗⟩ + η2 ∥∇f (w)∥2

]
= f (w∗) +

1
2η
∥w − w∗∥2 −

1
2η

∥∥∥(w − w∗) − η∇f (w)
∥∥∥2

= f (w∗) +
1

2η

(
∥w − w∗∥2 −

∥∥∥w+ − w∗
∥∥∥2

)
.

Proposition 13.6. Let f be convex and β-smooth, with η ≤ 1/β. Then the procedure
that initializes at w0 and then sets wt = wt−1 − η∇f (wt) satisfies for all T ≥ 1 that

f (wT) − f (w∗) ≤ 1
2ηT

∥w0 − w∗∥2 ,

and also that

f

 1
T

T∑
t=1

wt

 − f (w∗) ≤ 1
2ηT

∥w0 − w∗∥2 .
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Proof. For each step t,

f (wt) − f (w∗) ≤ 1
2η

(
∥wt−1 − w∗∥2 − ∥wt − w∗∥2

)
.

Using the descent lemma and then Lemma 13.5, we know that

f (wT) − f (w∗) ≤ 1
T

T∑
t=1

(f (wt) − f (w∗))

≤ 1
2ηT

T∑
t=1

(
∥wt−1 − w∗∥2 − ∥wt − w∗∥2

)
=

1
2ηT

[
∥w0 − w∗∥2 − ∥w1 − w∗∥2 + ∥w1 − w∗∥2 − · · · − ∥wT − w∗∥2

]
=

1
2ηT

(
∥w0 − w∗∥2 − ∥wT − w∗∥2

)
≤ 1

2ηT
∥w0 − w∗∥2 .

By Jensen’s inequality, f
(

1
T

T∑
t=1

wt

)
≤ 1

T

T∑
t=1

f (wt), and so the same bound applies.

13.3.1 Aside: SGD non-convex convergence

The analysis above can be pretty-easily extended to SGD; see e.g. Chapter 14 of
Shalev-Shwartz and Ben-David [SSBD14] or the recent survey of Garrigos and Gower
[GG23]. It can be generalized further, though more complicatedly, to show that even
SGD eventually reaches a stationary point, even for non-convex functions:

Proposition 13.7 (Corollary 1 of [KR23]). Let infx f (x) ≥ f inf ∈ R be β-smooth. Let
ĝt | xt be independent such that E[ĝt | xt] = ∇f (xt) and

E[∥ĝt∥2 | xt] ≤ 2A(f (xt) − f inf) + B ∥∇f (xt)∥2 + C

for some A, B, C ≥ 0. Fix ε > 0, and pick η = min
{

1√
βAT

, 1
βB ,

ε
2βC

}
. Initialize stochastic

gradient descent at x1, with δ1 = f (x1) − f inf, and xt+1 = xt − ηĝt. As long as T ≥
12δ1β

ε2 max
{
B, 12δ1A

ε2 , 2C
ε2

}
, it holds that min1≤t≤T E[∥∇f (xt)∥] ≤ ε.

That is, the best iterate achieves ε suboptimality (in expectation) with O(1/ε4) steps.
The assumption on ĝt is satisfied for example if the ĝt have a bounded variance, or
if we use subsampling for a Lipschitz loss, or various other settings.

13.4 are deep networks β-smooth?

Is f (w) = LS(hw) for hw a class of deep networks β-smooth?

Consider the very simple network

hW,v(x) = v · σ(Wx),
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where σ is itself β-smooth. Then the square loss for a single data point is

f (W, v) = (vTσ(Wx) − y)2 = vTσ(Wx)σ(Wx)Tv − 2yσ(Wx)Tv + y2,

and we have

∇vf (W, v) = 2(σ(Wx)Tv − y)σ(Wx)If this is unfamiliar, try
looking at individual partial

derivatives to see that they
line up.

∇2
vf (W, v) = 2σ(Wx)σ(Wx)T.

The Jacobian with W is more annoying, since we’d have to flatten W and reshape
and stuff.Autodiff is nice. . . . But the overall Hessian of f with respect to its input parameters will have
∇2
vf as a block in it, and so its largest eigenvalue will depend on W: if σ is the ReLU

or something similar, then large values of W will result in much larger Hessians.
Thus the loss is only going to be fully β-smooth if you bound the set of possible Ws,
but for any particular parameters it’s going to be “locally” smooth.

Notice that the descent lemma doesn’t actually need a global upper bound on the
smoothness, just along the path from xt to xt+1. So, intuitively, we should roughly
expect (stochastic) gradient descent to reach a stationary point of the loss as long
as ∇2f doesn’t blow up, i.e. in typical situations as long as none of the parameters
blows up.

Aside: edge of stability

So, if we’re optimizing a deep network with a fixed learning rate η, whether the
descent lemma applies or not – whether gradient descent is “stable” or not – depends
on whether η < 2

β
, or more relevantly β < 2

η
, for the “local” value of β.Note that the “local β”

might be larger than
max(∇2f (xt),∇2f (xt+1):

you might go through a
sharper point on the way.

For instance, consider
f (x) = |x| on the reals:

f ′′(x) = 0 for all x , 0, but
the descent lemma might not
apply when you switch signs,

since you go through 0
which has “infinite second

derivative.”

We can roughly

get this local value of β by just checking the largest eigenvalue of ∇2f (xt), and see
whether it stays in a “stable” regime or not.

Cohen et al. [Coh+21] demonstrated that in fact, optimization typically exhibits
“progressive sharpening” where β increases up to 2/η, then hovers around there on
the “edge of stability” [also see Fox23]. Damian, Nichani, and Lee [DNL23] have
recently proposed a mechanism for how this happens, based on Taylor expansions
of the training process.

13.5 is a stationary point enough?

One model we can look at is deep linear nets, f (x) = wdWd−1 · · ·W2W1x. These are
just linear models, but they’re nonconvex and hierarchical and so exhibit some of
the same behaviour as regular deep nets. It’s reasonable to expect that, generally
speaking, if something doesn’t work on deep linear nets, it won’t work on deep
nonlinear nets either.

To see that they’re nonconvex: consider just a depth two model on scalars, f (x) =
vwx for v, w ∈ R. Consider square loss with the training set S = ((1,1)). Then
LS(f ) = (vw − 1)2, whose minimizers are

{(v, w) : vw = 1} = {(v, 1/v) : v , 0}.

But this is not a convex set: it’s a line in R2 with the point (0, 0) cut out of it. The set
of minimizers of convex functions must be convex, so therefore LS is not convex.

It turns out that for deep linear nets:
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• Fortunately, all local minima in deep linear nets are global minima [Kaw16;
LvB18].

• Unfortunately, stationary points can also be saddle points – including poten-
tially “bad” saddles with λmin(∇2f ) = 0 even though they’re not local minima.
(For example, x3 has a saddle point like this at x = 0; they can be even worse
in high dimensions.)

• Fortunately, in general, gradient descent almost surely converges to local
minimizers, not saddles (or local maxes) [LSJR16].

• Unfortunately, doing so can take exponential time [Du+17].

• Fortunately, this doesn’t happen for deep linear networks, under some condi-
tions [ACGH19].

Unfortunately, there are bad local minima in nonlinear networks. For a very simple
example, consider the network h : R→ R given by h(x) = ReLU(wx), where w ∈ R;
use square loss with a single example, (1, 1). Then the loss is

ℓ(hw, (1, 1)) =

(w − 1)2 w ≥ 0

1 w ≤ 0
.

−3 −2 −1 0 1 2 3
0

1

2

3

w

ℓ(
h
w
,(

1,
1)

)

Any negative input is a (non-strict) local min (since f (w) ≥ f (v) for all v in a
neighbourhood of w), but it’s not a global min (since f (1) = 0). Thus, if you start
gradient descent with a negative w, it’s just stuck. In fact, bad (strict) local minima
can appear for almost any activation function [DLS20], and with more units, the
loss landscape has such points almost all the time.

But, do bad local minima exist for realistic networks, with realistic data? Even if
they do, does SGD find them?

This is very much still an active topic of research, but we’ll see next that, in one
unrealistic (but not too ridiculous) setting, gradient descent always finds a local
minimum.
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and Aarti Singh. “Gradient Descent Can Take Exponential Time to
Escape Saddle Points”. NeurIPS. 2017. arXiv: 1705.10412.

[Fox23] Curtis Fox. “A study of the edge of stability in deep learning”. MSc.
Thesis. University of British Columbia, 2023.

[GG23] Guillaume Garrigos and Robert M. Gower. Handbook of Convergence
Theorems for (Stochastic) Gradient Methods. 2023. arXiv: 2301.11235.

[Kaw16] Kenji Kawaguchi. “Deep Learning without Poor Local Minima”. NeurIPS.
2016. arXiv: 1605.07110.

[KR23] Ahmed Khaled and Peter Richtárik. Better Theory for SGD in the
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