
CPSC 532D — 15. IMPLICIT REGULARIZATION AND MARGINS

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2024

We’ve seen some examples so far of settings where there’s more than one empirical
risk minimizer; this often happens with interpolation, when you can achieve LS(h) =
0 in more than one way, some of which are awful, but A often picks decent ones. In
particular, we saw some explicit examples with polynomial regression.

One way to choose between ERMs (or near-ERMs) is regularized loss minimization,
where we prefer solutions with e.g. a small norm. But often we don’t do that, and
we just run gradient descent to minimize LS(h). Doing this doesn’t just get us any
arbitrary ERM; it gets us a particular one, decided on by our choice of algorithm.
The idea that our optimization algorithm or other such “implementation details”
can actually choose for us which of the “equally valid solutions” we end up with It’s also sometimes called the

implicit bias of the
algorithm, in the sense that
the algorithm has a certain
inductive bias towards
certain kinds of solutions.
That can sometimes cause
confusion with the concept
of the same name from social
science, though, and just
generally kind of imply that
it’s “bad” when actually
often the presence of this
implicit regularization is
“good.”

is
called the implicit regularization of the algorithm: we don’t explicitly write down a
regularizer, but the choice of algorithm has a similar effect.

In our discussion of neural tangent kernels, we mentioned that we could solve the
ODE for gradient flow to say which ERM we end up at in (14.8). We didn’t prove
this, though, and it only applied to “kernel gradient flow” which is not really the
algorithm we usually use. What happens for actual problems, with finite learning
rates?

15.1 gradient descent for linear regression

Let’s think about optimizing the function

f (w) = Lsq
S (x 7→ w · x) =

1
m

∥∥∥Xw − y
∥∥∥2

,

where X ∈ Rm×d is the matrix stacking up Sx and y ∈ Rm is the vector form of Sy .

It’s possible to use this form to handle kernels, too. If there’s a finite-dimensional
embedding φ, we could just collect φ(xi) in rows of X and find w. This agrees with “kernel

gradient descent” as in
Chapter 14 for
finite-dimensional kernels.

If we instead
write fα(x) =

∑
i
αik(xi , x) and do gradient descent on α, notice the training set loss

becomes LS(fα) = 1
m

∥∥∥Kα − y
∥∥∥2

) and so the rest of the analysis will apply with X = K
– which will potentially give a different solution than the kernel gradient descent
version. Implicit regularization is highly algorithm-specific.

In any case, we have

∇f (w) =
2
m

XT(Xw − y),

which notice is 2
m

∥∥∥XTX
∥∥∥-smooth, so f is convex and β-smooth, thus small-learning-

rate gradient descent finds a global optimum (Proposition 13.6). In the traditional
m > d case when X is full-rank, there’s a unique solution to this problem, typically
with Xw , y but always having XT(Xw − y) = 0. In high-dimensional settings d > m,

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.

1

https://cs.ubc.ca/~dsuth/532D/24w1/


though, it’s possible to achieve Xw = y (interpolation) in infinitely many ways.
There’s a more explicit (but

longer) analysis for least
squares, which gives some

more details without relying
on any general gradient
descent analyses, in last

year’s notes.

Which one does gradient descent find?

Proposition 15.1. Let X ∈ Rm×d be of rank m (implying d ≥ m), and y ∈ Rm. Suppose
that l(h, (x, y)) = ly(h(x)) for a differentiable function ly such that ly(ŷ) → 0 implies
ŷ → y.

Consider any iterative optimization method which begins at a point w0 and then has
updates of the form wt+1 − wt ∈ span{∇LS(x 7→ wk · x) : 0 ≤ k ≤ t}. If this method
converges to a global minimizer w∞ of LS(x 7→ w · x), then

w∞ = XT(XXT)−1y + (I − XT(XXT)−1X)w0 = arg min
w:Xw=y

∥w − w0∥ .

Proof. XXT is m × m of rank m, and so (XXT)−1 exists; then X(XT(XXT)−1y) = y.
The matrix XT(XXT)−1 is the pseudoinverse of X, written X†; this then implies that
LS(x 7→ (X†y) · x) = 0. Since w∞ is optimal, we must have Xw∞ = y.

Now, for any w we have that

∇wLS(hw) =
1
m

m∑
i=1

l′yi (w · xi)xi ∈ span{xi : i ∈ [m]}.

This is true for each step, no matter the learning rate; it is also true e.g. if we do
stochastic gradient descent based on choosing a subset of the data at each step.For general SGD with

unbiased gradients, it will be
true for the expected

update, even if not for the
actual update.

Thus
the iterates of gradient descent must all be of the form

wt = w0 +
∑
i

α
(t)
i xi = w0 + XTα(t);

they can only ever move in the subspace spanned by the data, and otherwise stay
where they started. Thus, this must also be true for the limiting point: w∞ =
w0 + XTα for some α ∈ Rm.

Thus, we know that
X(w0 + XTα) = y

or equivalently
XXTα = y − Xw0.

Since we know already that XXT is invertible, we have that

α = (XXT)−1(y − Xw0)

w∞ = w0 + XT(XXT)−1(y − Xw0)

= XT(XXT)−1y + (I − XT(XXT)−1X)w0.

This second matrix is the orthogonal projection onto the null space of X, which can
be seen e.g. by considering the SVD. The result follows by Lemma 15.2.

Aside: closest interpolator

Lemma 15.2. Let X ∈ Rm×d , y ∈ Rm, and let Π⊥ be the orthogonal projection onto the
null space of X. Then

arg min
w:Xw=y

∥w − w0∥ = X†y + Π⊥w0.

2

https://www.cs.ubc.ca/~dsuth/532D/23w1/notes/17-implicit-reg.pdf
https://www.cs.ubc.ca/~dsuth/532D/23w1/notes/17-implicit-reg.pdf
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse


Proof. First, the set of possible interpolators must all have y = Xw, hence X†y =
X†Xw. X†X is exactly the orthogonal projection onto the row space of X: letting
the compact SVD of X be UΣVT, X† = VΣ−1UT, and X†X = VΣ−1UTUΣVT =
VΣ−1ΣVT = VVT, which has (VVT)T = VVT and (VVT)2 = VVTVVT = VVT. Notice
also that Π⊥ = I − VVT. Thus, X†y = VVTw for any interpolator, and so the set of
interpolators is the set {X†y + q : VVTq = 0}. For any such solution,∥∥∥X†y + q − w0

∥∥∥2
=
∥∥∥VVT(X†y + q − w0)

∥∥∥2
+
∥∥∥(I − VVT)(X†y + q − w0)

∥∥∥2

=
∥∥∥X†y − VVTw1

∥∥∥2
+
∥∥∥q − (I − VVT)w0

∥∥∥2
.

The choice of q does not affect the first term, while the second is uniquely minimized
by q = (I − VVT)w0.

15.2 separable logistic regression

There’s another major class of loss functions not satisfying the requirement of
Proposition 15.1: for instance, with logistic loss ly(ŷ) = log(1 + exp(−yŷ)), ly(ŷ)→ 0
implies ŷ → y∞, not y.

So, let’s consider logistic regression in particular: for yi ∈ {−1, 1},

f (w) =
1
m

m∑
i=1

log(1 + exp(−yixTi w)).

We’re also going to assume that the data is linearly separable: there is some w∗ such
that yixTi w

∗ > 0 for all i. Then, it’s possible to drive f (w) arbitrarily close to zero, but
never to actually reach it: we only get log(1 + exp(−t))→ 0 for t →∞, so we need
∥w∥ → ∞. A solution of the form cw∗ for c → ∞ would work, but potentially so
would many other solutions, since there are probably many possible perfect linear
separators on this dataset. Which one does gradient descent find?

We’re going to approach this informally, for time and simplicity. Soudry et al.
[Sou+18] and Gunasekar et al. [GLSS18] handle it in full, and Ji and Telgarsky
[JT19] approach the non-separable case; Bach [Bach24, Section 11.1.2] gives an
overview including a few things we aren’t covering here.

Notice that

∇f (w) = − 1
m

m∑
i=1

exp(−yixTi w)

1 + exp(−yixTi w)
yixi .

We know that we’ll get ∥wt∥ → ∞ from the argument above; it’s reasonable to
expect, then, that we’ll have wt

∥wt∥
→ v for some ∥v∥ = 1, and yix

T
i v > 0 for all i since

otherwise we wouldn’t approach a minimizer. This gives us, roughly speaking,

∇f (∥wt∥ v) ∼ − 1
m

m∑
i=1

exp(−yi ∥wt∥ xTi v)

1 + exp(−yi ∥wt∥ xTi v)
yixi ∼ −

1
m

m∑
i=1

exp(−yi ∥wt∥ xTi v)yixi ,

since t
1+t = t + O(t2) and we’ll eventually have exp(−yi ∥wt∥ xTi v)≪ 1.

So, eventually each gradient term gets small. Which ones are bigger than the others?
The asymptotic ratio between the size of the gradient contributions from xi and xj is

exp(−yi ∥wt∥ xTi v)
∣∣∣yi ∣∣∣ ∥xi∥

exp(−yj ∥wt∥ xTj v)
∣∣∣yj ∣∣∣ ∥∥∥xj∥∥∥ =

∥xi∥∥∥∥xj∥∥∥ exp
(
− ∥wt∥ (yix

T
i v − yjx

T
j v)

)
.

3



As ∥wt∥ → ∞, this ratio goes to 0 if yixTi v > yjx
T
j v, or∞ if the order is reversed; it is

∥xi∥ /
∥∥∥xj∥∥∥ ∈ (0,∞) if and only if yixTi v = yjx

T
j v. So, for whatever v we have, let Iv

be the set of indices such that yixTi v is minimized. Only these terms really matter:

∇f (∥wt∥ v) ∼ − 1
m

∑
i∈Iv

exp(−yi ∥wt∥ xTi v)yixi .

So, if gradient descent diverges in a direction v, the dominant direction in which
wt moves is a (positive) linear combination of the points {xi : i ∈ Iv}. Let’s define
ρ = mini yix

T
i v; then, summarizing,

v =
m∑
i=1

αiyixi with ∀i, (αi ≥ 0 and yix
T
i v = ρ) or (αi = 0 and yix

T
i v > ρ). (15.1)

In fact, ρ is a quantity known as the geometric margin of the linear separator v; it is
exactly the smallest distance from any of the xi to the hyperplane {x : vTx = 0}, the
decision boundary of the linear classifier with weights v.

15.2.1 Margin maximization

The equations (15.1) turn out to be equivalent to the KKT conditions of the problem
of finding the max-margin separator, also known as a hard support vector machine
(SVM). This problem is given by

arg max
v:∥v∥=1

min
i∈[m]

yixi · v s.t. ∀i ∈ [m], yixi · v > 0

Change so that v = w/ ∥w∥ for any w:

= arg max
w∈Rd

min
i∈[m]

yixi · w
∥w∥

s.t. ∀i ∈ [m], yixi · w > 0

= arg max
w∈Rd

1
∥w∥

min
i∈[m]

yixi · w s.t. ∀i ∈ [m], yixi · w > 0

The objective is the same for any w′ = cw for c > 0, so we might as well limit
ourselves to solutions where mini yixi · w = 1:

⊇ arg max
w∈Rd

1
∥w∥

s.t. ∀i ∈ [m], yixi · w ≥ 1

= arg min
w∈Rd

1
2
∥w∥2 s.t. ∀i ∈ [m], yixi · w ≥ 1. (15.2)

Using the definition of the KKT conditions on this problem and rearranging a bit
yields (15.1). But, here’s a direct argument without appealing to the KKT conditions.

First, the solution to (15.2) is unique: the objective is strictly convex, and the
constraints are affine and by assumption feasible.

These constraints will be “active” exactly for the indices Iv ; other points will have
larger values of yixi ·w. But if w included some component w⊥ such that xi ·w⊥ = 0
for all i ∈ Iv , then this wouldn’t affect the active constraints at all, and (similarly
to the representer theorem and Lemma 15.2) would only make the objective ∥w∥2

bigger. So solutions to (15.2) must have w =
∑
i∈Iv

αiyixi for some coefficients α.

4

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions


The solution also have that each αi ≥ 0: suppose WLOG that α1 < 0; we’ll see
that setting α1 = 0 to zero would strictly improve the optimization. We have
w · yjxj = α1y1x1 · yjxj +

∑
i>1

αiyixi · yjxj , so the only way the margin can be improved

by a negative α1 for any point xj is if y1yj x1 · xj < 0. But if the data is linearly
separable, this is impossible: sign(w · xi) = yi for all i, but if x1 · xj < 0 then there
is no w such that sign(x1 · w) = sign(xj · w) , 0. Thus α1 < 0 does not help satisfy

any of the constraints. It also does not help with the objective;
∥∥∥α1y1x1 − v

∥∥∥2
=

α2
1 ∥x1∥2 + ∥v∥2 − 2α1y1x1 · v, but we just established that sign(x1 · v) = y1, so α1 < 0

only hurts the objective.

This establishes that the solution to (15.2) must satisfy (15.1). In the other direction:
I don’t know a concise formal proof without appealing to optimization theory we
haven’t covered, but geometrically, for suboptimal values of ρ there could be many
solutions to (15.1). For the maximal value, however, for points in general position
there will only be a single v satisfying these properties.

15.2.2 Hinge loss interpolation

The hinge loss is given by

l
hinge
y (ŷ) =

1 − yŷ if yŷ ≤ 1

0 if yŷ ≥ 1.

−3 −2 −1 0 1 2 3

0

1

2

3

l
hinge
y (ŷ)

[l0−1
y ◦ sign](ŷ)

yŷ

Notice that if Lhinge
S (x 7→ w · x) = 0, then for all i ∈ [m], yixi · w ≥ 1. Thus (15.2) is

equivalent to
arg min

w:Lhinge
S (x 7→w·x)=0

∥w∥ ,

the minimum-norm hinge loss interpolator. This is kind of a nice analogy to how
gradient descent for least squares or similar losses (starting at w0 = 0) finds the
minimum-norm interpolator for that loss! But, interestingly, explicitly minimizing
logistic loss (with gradient descent) implicitly minimizes hinge loss.

Transforming the hard constraint into a soft one gives us a soft support vector
machine,

arg min
h

Lhinge
S (h) + λ ∥h∥2 .

5



15.2.3 Margin analysis

How can we think about the 0-1 generalization error of the max-margin predictor?

In dimension d, one option is to use that the VC dimension is either d or d + 1,
depending on if we put an intercept in. But when d is high, e.g. d > m, this doesn’t
really tell us anything.

We’re finding the minimum-norm interpolator, though, so maybe we can use a
Rademacher bound that exploits that the norm isn’t too big. So, let’s think about
HB = {h ∈ F : ∥h∥ ≤ B} for some RKHS F , potentially the linear kernel in dimension
d but potentially not. We know that ES Rad(HB|Sx

) ≤ B√
m

√
E k(x, x). To use this

for a generalization bound on the 0-1 loss, though, we need to convert these soft
predictions into hard ones with the sign function, so that the estimation error is
bounded in terms of Rad ((ℓ0−1 ◦ sign ◦HB)|S). But ℓ0−1 ◦ sign isn’t Lipschitz; it jumps
suddenly from 0 to 1 as the sign of the predictor changes. So we can’t use Talagrand’s
lemma to peel it off at all.

(When deriving VC dimension, we pretended the 0-1 loss was Lipschitz, but that
only worked because we were working with a hypothesis class mapping to ±1.
There’s no similar trick we can play with continuous-output H.)

We can work around this problem with surrogate losses. The hinge loss, above, is
a good example: ℓ0−1(h, z) ≤ ℓhinge(h, z) for any inputs, so necessarily L0−1

D (h) ≤
Lhinge
D (h), and any generalization bound that applies to hinge loss also applies to 0-1

loss.

We can also use a tighter surrogate, though. One choice is margin loss:

l
ρ
y (ŷ) =


1 if yŷ ≤ 0

1 − 1
ρ
yŷ if 0 ≤ yŷ ≤ ρ

0 if yŷ ≥ ρ.

−3 −2 −1 0 1 2 3

0

1

2

3

l
hinge
y (ŷ)

ρ

l
(ρ=0.5)
y (ŷ)

[l0−1
y ◦ sign](ŷ)

yŷ

This is 1/ρ-Lipschitz, bounded in [0, 1], and always an upper bound to the 0-1 loss.
If mini yih(xi) ≥ ρ, then L

ρ

S(h) = 0. We get an immediate result:

L0−1
D (sign ◦h) ≤ L

ρ

D(h) ≤ L
ρ

S(h) +
2
ρ
E
S

Rad(H|Sx
) +

√
1

2m
log

1
δ

(15.3)

if h ∈ H and we picked ρ independently of S and h.

6



We can also do a nonuniform analysis to avoid committing in advance to a particular
margin ρ, exactly like what we did for SRM:

Proposition 15.3. Let H contain functions mapping to R, and fix some r > 0. Then for
any δ ∈ (0,1), we have with probability at least 1 − δ over the choice of S ∼ Dm that it
holds for all h ∈ H and ρ ∈ (0, r] that

L0−1
D (sign ◦h) ≤ L

ρ

S(h) +
4
ρ

E
S′∼Dm

Rad(H|S′x ) +

√
1
m

log log2
2r
ρ

+

√
1

2m
log

2
δ
.

Proof. Let ρk = r2−k for all k ≥ 0, and δk = 6δ
π2k2 for k ≥ 1; note that

∞∑
k=1

δk = δ. By

(15.3), it holds with probability at least 1 − δk for each ρk that

∀h ∈ H, L0−1
D (sign ◦h) ≤ L

ρk−margin
S (h) +

2
ρk

E
S′∼Dm

Rad(H|S′x ) +

√
1

2m
log

1
δk

.

For any ρ ∈ (0, r], the smallest k such that ρk ≤ ρ is given by k =
⌈
log2

r
ρ

⌉
.

We have ℓρ′ ≤ ℓρ for any ρ′ ≤ ρ, so L
ρk
S (h) ≤ L

ρ

S(h).

We also know that ρ ≤ ρk−1 = 2ρk , so 1
ρk
≤ 2

ρ
.

Finally, from log 1
δk

= log π2

6δ + 2 log log2

⌈
log2

r
ρ

⌉
we use that π2/6 < 2 and ⌈log2 a⌉ <

log2(a) + 1 = log2(2a).

We do have to commit to some predefined upper bound on the margin r, but the
resulting bound only depends on it through

√
log log2 r, so we can pick something

big.

15.3 other models /algorithms

Lyu and Li [LL20] and Ji and Telgarsky [JT20] study small-learning-rate gradient
descent on L-homogeneous networks, those satisfying h(x; αw) = αLh(x;w) for α > 0;
this is true e.g. for (leaky)-ReLU networks. (We’ll describe the [LL20] results.) Their
analysis is in terms of the normalized margin

γ̄(w) =
mini∈[m] yih(xi ;w)

∥w∥L2
.

This normalization is exactly the one that makes γ̄(αw) = γ̄(w). They show, using an
approach like that of Section 15.2, that gradient flow or small-learning-rate gradi-
ent descent (under some additional regularity conditions) monotonically increase
the log-sum-exp version of normalized margin, which means they approximately
monotonically increase the normalized margin, They talk about convergence

to a “KKT point”; this is
using the version of the KKT
conditions where
stationarity is defined by
gradients, not subgradients,
and hence isn’t sufficient for
optimality in nonconvex
problems.

which roughly means that it finds a
local maximum (ish) of the normalized margin.

This is a kind of margin maximization, and Proposition 15.3 applies, but in general
it’s not margin maximization in an RKHS. Compare this to training a very wide
network with square loss, in which case the implicit regularization prefers solutions
with minimal NTK norm distance from the initialization. Knowing these results, you
can ask questions like what this margin maximization actually does on particular
models [e.g. Fre+23].

7



There’s been a bunch of recent work trying to figure out the implicit regularization
of Adam, rather than SGD, on homogeneous networks; some recent papers are
[WMCL21; Wan+22; CKS23; XL24].

There’s also a ton more work in this area; Vardi [Var22] gives a (now kind of outdated)
survey.

references

[Bach24] Francis Bach. Learning Theory from First Principles. Draft version. Au-
gust 2024.

[CKS23] Matias D. Cattaneo, Jason M. Klusowski, and Boris Shigida. On the
Implicit Bias of Adam. 2023. arXiv: 2309.00079.

[Fre+23] Spencer Frei, Gal Vardi, Peter L. Bartlett, Nathan Srebro, and Wei Hu.
“Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional
Data”. ICLR. 2023. arXiv: 2210.07082.

[GLSS18] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. “Char-
acterizing Implicit Bias in Terms of Optimization Geometry”. ICML.
2018. arXiv: 1802.08246.

[JT19] Ziwei Ji and Matus Telgarsky. “The implicit bias of gradient descent
on nonseparable data”. COLT. 2019. arXiv: 1803.07300.

[JT20] Ziwei Ji and Matus Telgarsky. “Directional convergence and alignment
in deep learning”. NeurIPS. 2020. arXiv: 2006.06657.

[LL20] Kaifeng Lyu and Jian Li. “Gradient Descent Maximizes the Margin of
Homogeneous Neural Networks”. ICLR. 2020. arXiv: 1906.05890.

[Sou+18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar,
and Nathan Srebro. The Implicit Bias of Gradient Descent on Separable
Data. JMLR (2018). arXiv: 1710.10345.

[Var22] Gal Vardi. On the Implicit Bias in Deep-Learning Algorithms. 2022. arXiv:
2208.12591.

[Wan+22] Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-
Ming Ma, and Tie-Yan Liu. “Does Momentum Change the Implicit
Regularization on Separable Data?” NeurIPS. 2022. arXiv: 2110.03891
[cs.LG].

[WMCL21] Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu. “The Implicit
Bias for Adaptive Optimization Algorithms on Homogeneous Neural
Networks”. ICML. 2021. arXiv: 2012.06244.

[XL24] Shuo Xie and Zhiyuan Li. “Implicit Bias of AdamW: ℓ∞ Norm Con-
strained Optimization”. ICML. 2024. arXiv: 2404.04454.

8

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://arxiv.org/abs/2309.00079
https://arxiv.org/abs/2309.00079
https://arxiv.org/abs/2309.00079
https://arxiv.org/abs/2210.07082
https://arxiv.org/abs/2210.07082
https://arxiv.org/abs/2210.07082
https://arxiv.org/abs/1802.08246
https://arxiv.org/abs/1802.08246
https://arxiv.org/abs/1802.08246
https://arxiv.org/abs/1803.07300
https://arxiv.org/abs/1803.07300
https://arxiv.org/abs/1803.07300
https://arxiv.org/abs/2006.06657
https://arxiv.org/abs/2006.06657
https://arxiv.org/abs/2006.06657
https://arxiv.org/abs/1906.05890
https://arxiv.org/abs/1906.05890
https://arxiv.org/abs/1906.05890
https://arxiv.org/abs/1710.10345
https://arxiv.org/abs/1710.10345
https://arxiv.org/abs/1710.10345
https://arxiv.org/abs/2208.12591
https://arxiv.org/abs/2208.12591
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2110.03891
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2012.06244
https://arxiv.org/abs/2404.04454
https://arxiv.org/abs/2404.04454
https://arxiv.org/abs/2404.04454

	Gradient descent for linear regression
	Separable logistic regression
	Margin maximization
	Hinge loss interpolation
	Margin analysis

	Other models/algorithms

