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In (1.5) we showed that, for any h∗ ∈ H,

LD(ĥS) − LD(h∗) ≤
(
LD(ĥS) − LS(ĥS)

)
+
(
LS(h∗) − LD(h∗)

)
.

We’d like to bound these two terms, which would then give us a bound on how much
worse ĥS is than h∗, the best thing ERM could have done. The first thing to note,
though, is that anything with an S in it – so everything above except for LD(h∗) –
depends on the draw of the random training set S. It’s possible that we could get
some ridiculously unlikely training set where everything behaves nonsensically. So
we’ll need to do some kind of probabilistic bound.

Let’s now try to study that formally.

2.1 estimation error : asymptotics

Let’s start with the second term from (1.5):

LS(h∗) − LD(h∗) =
1
m

m∑
i=1

ℓ(h∗, zi) − E
z∼D

ℓ(h∗, z).

Remember that the only thing that’s random here is S = (z1, . . . , zm), since h∗ is just

some fixed hypothesis. So, we can frame this as 1
m

M∑
i=1

Ri , where the Ri = ℓ(h∗, zi)

are iid random variables with mean E ℓ(h∗, zi) = LD(h). The law of large numbers

therefore guarantees that as m→ ∞, 1
m

m∑
i=1

Ri converges (almost surely) to LD(h∗),

and so this term in the bound converges to zero.

In fact, for many H and ℓ, the other term will also have the same property, implying
(if h∗ is a minimizer of LD) that LD(ĥS)→ LD(h∗). Various formalizations of this last
property are called consistency, and it’s a nice property to have: eventually, your
learning algorithm works as well as it could have. One problem with this notion,
though, is that this is all it tells you. There’s no guarantee about what happens with
m = 1,000, or when going from m = 1,000 to m = 1,000,000, or anything at all
other than “eventually it works.”

A more precise analysis might use the central limit theorem. Let σ2 = Var[Ri]

and assume this is finite; Formally, we’d write

1√
m

m∑
i=1

(Ri − E Ri )
d→

N (0, σ2).

informally, the CLT then says that 1
m

m∑
i=1

Ri behaves like

N (0, σ2/m). In fact, it’s often true that the first term is also asymptotically normal.
This is a nicer result than before: it still doesn’t say anything particular for a finite m
(maybe the CLT takes a long time to kick in), but it tells us a lot about the asymptotic

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.

1

https://cs.ubc.ca/~dsuth/532D/24w1/


behaviour, including both its limiting value but also roughly how much variation
we can expect around that value.

It can be tough to find these exact limiting distributions in general, though, and
they’re not always true (e.g. the one I didn’t state for the first term above has some
kind-of strict requirements on the way that h is parameterized). A similar but
somewhat looser style of bound is to say thatYou can check the wiki page

for a formal definition of Op,
but it roughly means “with
any constant probability, a

sequence of sampled random
variables is O(1/

√
m).”

the excess error is Op(1/
√
m), which is

implied by the CLT result above, but can also be much easier to show. Again, this
doesn’t imply anything for a finite m (just like how O analyses don’t say anything
for finite input size on your algorithms), but they do say things like, for reasonably
large m, observing four times as much data should roughly halve your excess error.

The most preferred kind of result, though, is usually one with explicit constants:
something like

∀δ > 0. Pr
S∼Dm

LD(ĥS) − inf
h∈H

LD(h) ≤
√

2
m

log
|H| + 1

δ

 ≥ 1 − δ

or, where B is a problem parameter,

E
S∼Dm

LD(ĥS) ≤ inf
h∈H

LD(h) +

√
8B2

m
.

These results give you a rate, but also apply to any m, not just eventually. (They
might not be meaningful for small m, though; if you’re using 0-1 loss, it’s not very
helpful to say the excess error is less than four!)

2.2 uniform convergence , bounded loss

We’re first going to assume that ℓ(h, z) ∈ [a, b] for all h, z; usually a = 0 (but it won’t
hurt us to be more general), and e.g. for the 0-1 loss we have b = 1. For something
like the square loss, it isn’t “automatically” bounded, but it might be depending on
H and D; we’ll discuss this later.

Recall that we have two things to bound in (1.5):

LD(ĥS) − LS(ĥS) = E
z∼D

ℓ(ĥS, z) − 1
m

m∑
i=1

ℓ(ĥS, zi) (A)

and

LS(h∗) − LD(h∗) =
1
m

m∑
i=1

ℓ(h∗, zi) − E
z∼D

ℓ(h∗, z). (B)

As we discussed, (B) is an average of iid random variables. We can bound this with
the following form of Hoeffding’s inequality, which we’ll prove soon:

Proposition 2.1 (Hoeffding, simple form). Let (X1, . . . , Xm) be independent with mean
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µ and almost surely bounded in [a, b]. Define X = 1
m

m∑
i=1

Xi . Then

Pr

X ≤ µ + (b − a)

√
log(1/δ)

2m

 ≥ 1 − δ The first of these results
immediately implies the
other two: use the random
variables Yi = −Xi for the
second, and then use a union
bound, Lemma 2.3, to get
the third.

Pr

X ≥ µ − (b − a)

√
log(1/δ)

2m

 ≥ 1 − δ

Pr

∣∣∣X − µ∣∣∣ ≤ (b − a)

√
log(2/δ)

2m

 ≥ 1 − δ.

Applying this to the random variables Xi = ℓ(h∗, zi) handles the bound for (B).

It’s tempting to also try to apply this result directly to (A), which would then
complete our bound and everything would be really simple. The problem is that
the ℓ(ĥS, zi) aren’t independent! The choice of ĥS depends on all of S, i.e. on all of the
other zj , so ℓ(ĥS, z1) and ℓ(ĥS, z2) are not independent.

So, how can we bound this? The most common way is called uniform convergence.
The idea is, if we know that LD(h) − LS(h) is small for all h ∈ H, then it’ll be small
for ĥS, no matter how we pick it – since it’s something in H. That is, if we know that

sup
h∈H

LD(h) − LS(h) ≤ ε

then we also have that LD(ĥS) − LS(ĥS) ≤ ε. Or, stating it another way,

Pr
S∼Dm

(
LS(ĥS) − LD(ĥS) > ε

)
≤ Pr

S∼Dm
(∃h ∈ H. LS(h) − LD(h) > ε) , (2.1)

and so bounding the right-hand side bounds the left-hand side.

How can we bound that?

2.3 finite H

To start, we’ll make a kind of drastic assumption: that H is finite, i.e. we’re only
considering |H|, say 500, possible hypotheses.

Proposition 2.2. Suppose ℓ(z, h) is almost surely bounded in [a, b], H is finite, and ĥS
is any ERM in H. Then for any δ > 0, with probability at least 1 − δ over the choice of
S ∼ Dm it holds that

LD(ĥS) −min
h∈H

LD(h) ≤ (b − a)

√
2
m

log
|H| + 1

δ
.

Proof. For any hypothesis h, we can allow it a “failure probability” of δ/(|H| + 1) in
Hoeffding’s inequality:

Pr
S∼Dm

LD(h) − LS(h) > (b − a)

√
1

2m
log
|H| + 1

δ

 ≤ δ

|H| + 1
.

If we do this for each hypothesis h ∈ H, we know that the probability of each
particular h being bad is low. We then want to combine them into the probability
that anything is bad; we can do this with a union bound.
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Lemma 2.3 (Union bound).This fact is really useful. For any two events A and B, Pr(A∪ B) ≤ Pr(A) + Pr(B).

Combining all of them together, the probability that any h happens to look way
better than it is can be bounded as

Pr
S∼Dm

∃h ∈ H. LD(h) − LS(h) > (b − a)

√
1

2m
log
|H| + 1

δ

 ≤ |H| δ

|H| + 1
.

But we’ll also need the other direction for (B): h∗ in particular doesn’t look way
worse than it actually is. Giving it the same failure probability to make things nice,

Pr
S∼Dm

LS(h∗) − LD(h∗) > (b − a)

√
1

2m
log
|H| + 1

δ

 ≤ δ

|H| + 1
.

Now, if (A) ≤ εA and (B) ≤ εB, then (1.5) tells us that LD(ĥS) − LD(h∗) ≤ (A) + (B) ≤
εA + εB. Using another union bound,

Pr
S∼Dm

LD(ĥS) − LD(h∗) > (b − a)

√
1

2m
log
|H| + 1

δ
+ (b − a)

√
1

2m
log
|H| + 1

δ


= Pr

S∼Dm

LD(ĥS) − LD(h∗) > (b − a)

√
2
m

log
|H| + 1

δ


≤ |H|
|H| + 1

δ +
1

|H| + 1
δ = δ.

Another way to state Proposition 2.2 is that with m samples, we can achieve excess
error at most ε with probability at least (|H| + 1) exp

(
− mε2

2(b−a)2

)
.

Or, alternately, we can say that we can achieve excess error at most ε with probability

at least 1 − δ if we have at least 2(b−a)2

ε2 log |H|+1
δ

samples.

2.3.1 Is this finiteness assumption reasonable?

Every H we use in practice is finite. Our models are represented on a computer with
bounded memory, so we consider no more than 2max number of bits hypotheses.

On the other hand, |H| might be really large. Typical vision CNNs are around a
few hundred megabytes: 100 megabytes is 800,000,000 bits, and log(|H| + 1) ≈
log 2800,000,000 = 800,000,000 log 2 ≈ 554,517,744 is quite big. For 0-1 loss, this
would mean that for our bound to show that ERM learns a 100-MB network even to
within an extremely loose ε = 20% additive error with probability at least 1−δ = 50%,
we’d need

m ≥ 2
0.22

(
log(|H| + 1) + log

1
0.5

)
≈ 50 (554 million + 0.7) ≈ 28 billion.

100 MB is a relatively small model these days (ViTs are usually a few gigabytes),
and 28 billion is a lot of samples.

But the union bound we did over H ignores all structure in H. If we change just one
parameter by 0.00001, then we’re treating the error of that new hypothesis totally
separately, when in reality those two errors are tightly correlated. We’ll approach
that soon, with various techniques that will also allow us to handle H with infinite
size; but first, we’ll go back and prove Hoeffding’s inequality.

4

https://en.wikipedia.org/wiki/Boole%27s_inequality

	Estimation error: asymptotics
	Uniform convergence, bounded loss
	Finite hypothesis classes
	Is this finiteness assumption reasonable?


