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We’ll now prove Hoeffding’s inequality (Proposition 2.1), and learn a bunch of useful
stuff along the way.

3.1 markov

We’ll start with the following surprisingly simple bound, which turns out to be the
basis for just about everything:

Proposition 3.1 (Markov’s inequality). If X is a nonnegative-valued random variable,
then Pr(X ≥ t) ≤ 1

t E X for all t > 0.

Proof. We know X ≥ 0. We also know, if X ≥ t, then X ≥ t. Combining those two
statements, we can write X ≥ t 1(X ≥ t). Now take the expectation of both sides of
that inequality, giving E X ≥ t E1(X ≥ t) = t Pr(X ≥ t). Rearrange.

This was actually proved by Markov’s PhD advisor Chebyshev. Luckily, though,
Chebyshev has another inequality named after him:

Proposition 3.2 (Chebyshev’s inequality). For any X, Pr(|X − E X| ≥ ε) ≤ 1
ε2 Var X.

Proof. (X − E X)2 is a nonnegative random variable; applying Markov gives Pr((X −
E X)2 ≥ t) ≤ 1

t E(X − E X)2. Change variables to t = ε2.

Equivalently, with probability at least 1 − δ, |X − E X| <
√

Var[X] / δ.

Let’s consider iid X1, . . . , Xm, each with mean µ and variance σ2. Then the random

variable X = 1
m

m∑
i=1

Xi has mean µ and variance σ2/m, so Chebyshev gives that∣∣∣X − µ∣∣∣ ≤ σ/√mδ. This is Op(1/
√
m), as expected, so sometimes this is good enough.

But the dependence on δ is really quite bad compared to what we’d like. For
instance, if the Xi are normal so that X̄ is too, then in (3.2) below we’ll obtain

X − µ ≤ σ√
m

√
2 log 1

δ
. To emphasize the difference:

δ 0.1 0.01 0.001 0.0001 0.00001
1/
√
δ 3.2 10.0 31.6 100.0 316.2√

2 log 1
δ

2.2 3.0 3.7 4.3 4.8

Chebyshev’s inequality is sharp, meaning that it can be an equality in certain cases;
this happens for random variables of the form Pr(X = 0) = 1 − δ, Pr(X = 1/

√
δ) =

Pr(X = −1/
√
δ) = 1

2δ. This X has mean 0 and variance 1, but it still has a big
probability of being really far from zero. “Typical” random variables, like Gaussians,
don’t look like this. So here’s another analysis that takes this into account.

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.
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3.2 chernoff bounds

Perhaps the most useful category of results are called Chernoff bounds; they’re
based on

Pr(X ≥ E X + ε) = Pr
(
eλ(X−E X) ≥ eλε

)
≤ e−λεE eλ(X−E X), (3.1)

where we applied Markov to the nonnegative random variable exp(λ(X − E X)) for
any λ > 0.

The quantity MX(λ) = E eλ(X−E X) is known as the centred moment-generating func-
tion; recalling that et = 1 + t + t2

2! + t3

3! + · · · and writing µ = E X, we have

MX(λ) = E eλ(X−µ) = 1 + λE[X − µ] +
λ2

2!
E[(X − µ)2] +

λ3

3!
E[(X − µ)3] + · · · .

So, taking the kth derivative of the centred mgf and then evaluating at λ = 0 gives

M(k)
X (0) = E[(X − µ)k].

Proposition 3.3. If X ∼ N (µ, σ2), then E eλ(X−µ) = e
1
2λ

2σ2
.

Proof. Let’s start with X ∼ N (0, 1). We can write

E
X∼N (0,1)

eλX =
∫

1
√

2π
e−

1
2 x

2
eλx dx

=
∫

1
√

2π
e−

1
2 x

2+λx− 1
2λ

2+ 1
2λ

2
dx

= e
1
2λ

2
∫

1
√

2π
e−

1
2 (x−λ)2

dx

= e
1
2λ

2
,

since the last integral is just the total probability density of an N (λ,1) random
variable. To handle Y = N (µ, σ2), note that this is equivalent to σX + µ, so

eλ(Y−E Y) = eλ(σX+µ−E(σX+µ)) = eλ(σX) = e(λσ)X = e
1
2 σ

2λ2
.

Plugging Proposition 3.3 into (3.1), for X ∼ N (µ, σ2), it holds for any λ > 0 that

Pr(X ≥ µ + ε) ≤ e−λεe
1
2 σ

2λ2
.

The value of λ only appears on the right-hand side, not the left. So we might as
well find the best value of λ to use: the one that gives the tightest bound. Let’s
optimize this in λ: noting that exp is monotonic, we can just check that 1

2σ
2λ2 − λε

has derivative σ2λ − ε, which is zero when λ = ε/σ2 > 0. (And this is indeed a max,
since the second derivative is σ2 > 0.) Plugging in that value of λ, we get the bound

Pr(X ≥ µ + ε) ≤ exp
(
− ε2

2σ2

)
. (3.2)

Equivalently, X < µ + σ
√

2 log 1
δ

with probability at least 1 − δ.

3.3 subgaussian variables

In fact, the only place we used the Gaussian assumption in this argument was in
that E eλ(X−E X) ≤ e

1
2λ

2σ2
. So we can generalize the result to anything satisfying that
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condition, which we call subgaussian:

Definition 3.4. Watch out with other
sources; notation for
subgaussians is not very
standardized, in particular
whether the parameter is σ
or σ2. Also “X ∈ SG(σ)” is
kind of weird; probably
“Law(X) ∈ SG(σ)” would be
better, but oh well.

A random variable X with mean µ = E[X] is called subgaussian
with parameter σ ≥ 0, written X ∈ SG(σ), if its centred moment-generating function
E[eλ(X−µ)] exists and satisfies that for all λ ∈ R, E[eλ(X−µ)] ≤ e

1
2λ

2σ2
.

As we just saw, normal variables with variance σ2 are SG(σ). Notice also that if
σ1 < σ2, then anything that’s SG(σ1) is also SG(σ2).

Proposition 3.5 (Hoeffding’s lemma). If Pr(a ≤ X ≤ b) = 1, X is SG
(
b−a

2

)
.

Proof. See Section 3.3.1; we’ll probably skip this in class.

Here are some useful properties about building subgaussian variables:

Proposition 3.6. If X1 ∈ SG(σ1) and X2 ∈ SG(σ2) are independent random variables,

then X1 + X2 ∈ SG(
√
σ2

1 + σ2
2).

Proof. E[eλ(X1+X2−E[X1+X2])] = E[eλ(X1−E X1)]E[eλ(X2−E X2)] by independence. Bound-

ing each expectation, this is at most e
1
2λ

2σ2
1 e

1
2λ

2σ2
2 = e

1
2λ

2
(√

σ2
1+σ2

2

)2

.

Proposition 3.7. If X ∈ SG(σ), then aX + b ∈ SG(|a| σ) for any a, b ∈ R.

Proof. E[eλ(aX+b−E[aX+b])] = E[e(aλ)(X−E X)] ≤ e
1
2 (aλ)2σ2

= e
1
2λ

2(|a|σ)2
.

Proposition 3.8 (Chernoff bound for subgaussians). If X ∈ SG(σ), then Pr(X ≥
E X + ε) ≤ exp

(
− ε2

2σ2

)
for ε ≥ 0.

Proof. Exactly as the argument leading from (3.1) to (3.2).

Since −X is also SG(σ) by Proposition 3.7, the same bound holds for a lower de-
viation Pr(X ≤ E X − t). A union bound then immediately gives Pr(

∣∣∣X − µ∣∣∣ ≥ t) ≤
2 exp

(
− t2

2σ2

)
.

Proposition 3.9 (Hoeffding). If X1, . . . , Xm are independent and each SG(σi) with
mean µi , for all ε ≥ 0

Pr

 1
m

m∑
i=1

Xi ≥
1
m

m∑
i=1

µi + ε

 ≤ exp

−
m2ε2

2
m∑
i=1

σ2
i

 .

Proof. By Propositions 3.6 and 3.7, 1
m

m∑
i=1

Xi ∈ SG
(

1
m

√
m∑
i=1

σ2
i

)
. Then apply Proposi-

tion 3.8.

If the Xi have the same mean µi = µ and parameter σi = σ, this becomes

Pr

 1
m

m∑
i=1

Xi ≥ µ + ε

 ≤ exp
(
−mε

2

2σ2

)
, (Hoeffding)

3



which can also be stated as that, with probability at least 1 − δ,

1
m

m∑
i=1

Xi < µ + σ

√
2
m

log
1
δ
. (Hoeffding’)

The form of Hoeffding we saw before, Proposition 2.1, follows immediately from
Proposition 3.5 and (Hoeffding’).

3.3.1 Proof of Hoeffding’s lemma

This proof roughly follows Zhang [Zhang23, Lemma 2.15].Wikipedia’s proof is similar,
but I think a little less clean.
Other proofs are based more
explicitly on convexity, but
use either opaque changes of
variable [SSBD14, Lemma

B.7] or compute some pretty
nasty derivatives [MRT18,
Lemma D.1]. There’s also a

proof strategy based on
“exponential tilting” (see

[BLM13, Lemma 2.2],
[Rag14, Lemma 1], or
[Wai19, Exercise 2.4])

which is quite related but
just overall a little more
annoying. There are also

proofs based on
symmetrization (see [Wai19,

Examples 2.3-2.4] or
[Rom21]), which are nice

but (a) have a worse
constant and (b) require

symmetrization, which is an
important idea we’ll cover
soon but kind of hard to

understand.

Lemma 3.10. Let X ∼ Bernoulli(p). Then X is SG(1/2).

Proof. The logarithm of the (uncentred) moment-generating function of X is

ψ(λ) = logE eλX = log
(
(1 − p)e0 + peλ

)
.

This has derivatives

ψ′(λ) =
peλ

(1 − p)e0 + peλ

ψ′′(λ) =
peλ

(1 − p)e0 + peλ
−

(peλ)2(
(1 − p)e0 + peλ

)2 = ψ′(λ)(1 − ψ′(λ)).

Since the function x(1 − x) has maximum 1/4, ψ′′(λ) ≤ 1/4. By Taylor’s theorem (in
the Lagrange form), for any λ there exists some ξλ such that

ψ(λ) = ψ(0)︸︷︷︸
0

+λ ψ′(0)︸︷︷︸
p

+
1
2
λ2 ψ′′(ξλ)︸ ︷︷ ︸

≤1/4

≤ λp +
1
8
λ2.

Thus the centred mgf satisfies

E eλ(X−E X) = e−λp E eλX ≤ e−λp
(
eλp+ 1

8λ
2)

= e
1
8λ

2
.

Proposition 3.5 (Hoeffding’s lemma). If Pr(a ≤ X ≤ b) = 1, X is SG
(
b−a

2

)
.

Proof. Using (X − a)/(b − a) and Proposition 3.7, we need only consider a = 0, b = 1.

Let f (λ) = E eλX be the (uncentred) mgf of X, and g(λ) = (1 − µ)e0 + µeλ that of a
Bernoulli(µ) variable, where µ = E X. For λ ≥ 0,

You can interchange this
derivative and expectation,

but it’s trickier to prove than
usual, requiring e.g.

Theorem 3 here.

f ′(λ) =
d

dλ
E[eλX] = E

[
d

dλ
eλX

]
= E[XeλX] ≤ E[Xeλ] = µeλ = g ′(λ),

using in the inequality that λ ≥ 0 and 0 ≤ X ≤ 1. and that 0 ≤ X ≤ 1. The same
steps give f ′(λ) ≥ g ′(λ) for λ ≤ 0. As f (0) = 1 = g(0), it follows that f (λ) ≤ g(λ)
everywhere. The conclusion follows by Lemma 3.10.
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