CPSC 532D — 3. CONCENTRAT ION INEQUAL IT IES

Danica J. Sutherland University of British Columbia, Vancouver Fall 2024

We'll now prove Hoeffding's inequality (Proposition [2.1\)](#page-0-0), and learn a bunch of useful stuff along the way.

3.1 MARKOV

We'll start with the following surprisingly simple bound, which turns out to be the basis for just about everything:

Proposition 3.1 (Markov's inequality). *If* X *is a nonnegative-valued random variable, then* $Pr(X \ge t) \le \frac{1}{t}$ $\frac{1}{t} \mathbb{E} X$ *for all* $t > 0$ *.*

Proof. We know $X \ge 0$. We also know, if $X \ge t$, then $X \ge t$. Combining those two statements, we can write $X \ge t \mathbb{1}(X \ge t)$. Now take the expectation of both sides of that inequality, giving $\mathbb{E} X \ge t \mathbb{E} \mathbb{1}(X \ge t) = t \Pr(X \ge t)$. Rearrange. \Box

This was actually proved by Markov's PhD advisor Chebyshev. Luckily, though, Chebyshev has another inequality named after him:

Proposition 3.2 (Chebyshev's inequality). *For any* X, $Pr(|X - \mathbb{E}|X| \ge \varepsilon) \le \frac{1}{\varepsilon^2}$ ε ² Var X*.*

Proof. $(X - \mathbb{E} X)^2$ is a nonnegative random variable; applying Markov gives Pr($(X \mathbb{E}(X)^2 \geq t \leq \frac{1}{t}$ $\frac{1}{t}$ $\mathbb{E}(X - \mathbb{E}X)^2$. Change variables to $t = \varepsilon^2$. \Box

Equivalently, with probability at least 1 – δ, $|X - \mathbb{E}| < \sqrt{\text{Var}[X]/\delta}.$

Let's consider iid X_1, \ldots, X_m , each with mean μ and variance σ^2 . Then the random variable $\overline{X} = \frac{1}{m}$ $\frac{1}{m}$ $\sum_{n=1}^{m}$ $\sum_{i=1}^{n} X_i$ has mean μ and variance σ^2/m , so Chebyshev gives that $|\overline{X} - μ|$ ≤ σ/ $\sqrt{m\delta}$. This is $\mathcal{O}_p(1/\sqrt{m})$, as expected, so sometimes this is good enough. $\frac{m}{i}$ $i=1$ But the dependence on δ is really quite bad compared to what we'd like. For instance, if the X_i are normal so that \bar{X} is too, then in [\(3.2\)](#page-1-0) below we'll obtain $\overline{X} - \mu \leq \frac{\sigma}{\sqrt{d}}$ *m* $\sqrt{2\log{\frac{1}{\delta}}}$. To emphasize the difference:

Chebyshev's inequality is sharp, meaning that it can be an equality in certain cases; √ this happens for random variables of the form $Pr(X = 0) = 1 - \delta$, $Pr(X = 1/\sqrt{\delta}) =$ Pr(X = $-1/\sqrt{\delta}$) = $\frac{1}{2}\delta$. This X has mean 0 and variance 1, but it still has a big probability of being really far from zero. "Typical" random variables, like Gaussians, don't look like this. So here's another analysis that takes this into account.

For more, visit [https://cs.ubc.ca/˜dsuth/532D/24w1/](https://cs.ubc.ca/~dsuth/532D/24w1/).

3.2 chernoff bounds

Perhaps the most useful category of results are called Chernoff bounds; they're based on

$$
\Pr(X \ge \mathbb{E} X + \varepsilon) = \Pr\left(e^{\lambda(X - \mathbb{E} X)} \ge e^{\lambda \varepsilon}\right) \le e^{-\lambda \varepsilon} \mathbb{E} e^{\lambda(X - \mathbb{E} X)},\tag{3.1}
$$

where we applied Markov to the nonnegative random variable $exp(\lambda(X - \mathbb{E} X))$ for any $\lambda > 0$.

The quantity $M_X(\lambda) = \mathbb{E} e^{\lambda(X - \mathbb{E} X)}$ is known as the centred *moment-generating func[tion](https://en.wikipedia.org/wiki/Moment-generating_function)*; recalling that $e^t = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots$ and writing $\mu = \mathbb{E} X$, we have

$$
M_X(\lambda) = \mathbb{E} e^{\lambda(X-\mu)} = 1 + \lambda \mathbb{E}[X-\mu] + \frac{\lambda^2}{2!} \mathbb{E}[(X-\mu)^2] + \frac{\lambda^3}{3!} \mathbb{E}[(X-\mu)^3] + \cdots
$$

So, taking the *k*th derivative of the centred mgf and then evaluating at $\lambda = 0$ gives $\mathrm{M}_\mathrm{X}^{(k)}$ $X^{(k)}(0) = \mathbb{E}[(X - \mu)^k].$

PROPOSITION 3.3. *If* $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E} e^{\lambda(X-\mu)} = e^{\frac{1}{2}\lambda^2\sigma^2}$.

Proof. Let's start with $X \sim \mathcal{N}(0, 1)$. We can write

$$
\mathbb{E}_{X \sim \mathcal{N}(0,1)} e^{\lambda X} = \int \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} e^{\lambda x} dx
$$

=
$$
\int \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2 + \lambda x - \frac{1}{2}\lambda^2 + \frac{1}{2}\lambda^2} dx
$$

=
$$
e^{\frac{1}{2}\lambda^2} \int \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-\lambda)^2} dx
$$

=
$$
e^{\frac{1}{2}\lambda^2},
$$

since the last integral is just the total probability density of an $\mathcal{N}(\lambda, 1)$ random variable. To handle $Y = \mathcal{N}(\mu, \sigma^2)$, note that this is equivalent to $\sigma X + \mu$, so

$$
e^{\lambda(Y-\mathbb{E} Y)} = e^{\lambda(\sigma X + \mu - \mathbb{E}(\sigma X + \mu))} = e^{\lambda(\sigma X)} = e^{(\lambda \sigma)X} = e^{\frac{1}{2}\sigma^2\lambda^2}.
$$

Plugging Proposition [3.3](#page-1-1) into [\(3.1\)](#page-1-2), for $X \sim \mathcal{N}(\mu, \sigma^2)$, it holds for any $\lambda > 0$ that

$$
\Pr(X \ge \mu + \varepsilon) \le e^{-\lambda \varepsilon} e^{\frac{1}{2}\sigma^2 \lambda^2}.
$$

The value of λ only appears on the right-hand side, not the left. So we might as well find the best value of λ to use: the one that gives the tightest bound. Let's optimize this in λ : noting that exp is monotonic, we can just check that $\frac{1}{2}σ^2λ^2 - λε$ has derivative σ²λ – ε, which is zero when $\lambda = \varepsilon/\sigma^2 > 0$. (And this is indeed a max, since the second derivative is $\sigma^2 > 0$.) Plugging in that value of λ , we get the bound

$$
\Pr(X \ge \mu + \varepsilon) \le \exp\left(-\frac{\varepsilon^2}{2\sigma^2}\right). \tag{3.2}
$$

Equivalently, $X < \mu + \sigma \sqrt{2 \log \frac{1}{\delta}}$ with probability at least 1 – δ .

3.3 SUBGAUSSIAN VARIABLES

In fact, the only place we used the Gaussian assumption in this argument was in that $\mathbb{E} e^{\lambda(X-\mathbb{E} \, X)} \leq e^{\frac{1}{2}\lambda^2 \sigma^2}$. So we can generalize the result to anything satisfying that

condition, which we call *subgaussian*:

DEFINITION 3.4. A random variable X with mean $\mu = \mathbb{E}[X]$ is called *subgaussian* Watch out with other *with parameter* $\sigma \geq 0$, written $X \in \mathcal{SG}(\sigma)$, if its centred moment-generating function sources; notation for $\mathbb{E}[e^{\lambda(X-\mu)}]$ exists and satisfies that for all $\lambda \in \mathbb{R}$, $\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{\frac{1}{2}\lambda^2\sigma^2}$.

As we just saw, normal variables with variance σ^2 are $\mathcal{SG}(\sigma)$. Notice also that if kind of weird; probably σ₁ < σ₂, then anything that's $\mathcal{SG}(\sigma_1)$ is also $\mathcal{SG}(\sigma_2)$.

Proposition 3.5 (Hoeffding's lemma). *If* $Pr(a \le X \le b) = 1$, X *is* $\mathcal{SG}\left(\frac{b-a}{2}\right)$.

Proof. See Section [3.3.1;](#page-3-0) we'll probably skip this in class.

 \Box

subgaussians is not very standardized, in particular whether the parameter is σ *or* σ^2 *. Also* " $X \in \mathcal{SG}(\sigma)$ " *is*

*"*Law(X) ∈ SG(σ)*" would be better, but oh well.*

Here are some useful properties about building subgaussian variables:

PROPOSITION 3.6. *If* $X_1 \in \mathcal{SG}(\sigma_1)$ *and* $X_2 \in \mathcal{SG}(\sigma_2)$ *are independent random variables, then* $X_1 + X_2 \in \mathcal{SG}(\sqrt{\sigma_1^2 + \sigma_2^2}).$

Proof.
$$
\mathbb{E}[e^{\lambda(X_1+X_2-\mathbb{E}[X_1+X_2])}] = \mathbb{E}[e^{\lambda(X_1-\mathbb{E}X_1)}]\mathbb{E}[e^{\lambda(X_2-\mathbb{E}X_2)}]
$$
 by independence. Bound-
ing each expectation, this is at most $e^{\frac{1}{2}\lambda^2\sigma_1^2}e^{\frac{1}{2}\lambda^2\sigma_2^2} = e^{\frac{1}{2}\lambda^2\left(\sqrt{\sigma_1^2+\sigma_2^2}\right)^2}$.

PROPOSITION 3.7. *If* $X \in SG(\sigma)$ *, then* $aX + b \in SG(|a| \sigma)$ *for any* $a, b \in \mathbb{R}$ *.*

Proof.
$$
\mathbb{E}[e^{\lambda(aX+b-\mathbb{E}[aX+b])}]=\mathbb{E}[e^{(a\lambda)(X-\mathbb{E}[X])}] \leq e^{\frac{1}{2}(a\lambda)^2\sigma^2}=e^{\frac{1}{2}\lambda^2(|a|\sigma)^2}.
$$

PROPOSITION 3.8 (Chernoff bound for subgaussians). *If* $X \in \mathcal{SG}(\sigma)$ *, then* Pr($X \geq$ $\mathbb{E}[X + \varepsilon] \leq \exp\left(-\frac{\varepsilon^2}{2\sigma}\right)$ $\frac{\varepsilon^2}{2\sigma^2}$) for $\varepsilon \geq 0$.

Proof. Exactly as the argument leading from (3.1) to (3.2) . \Box

Since –X is also $\mathcal{SG}(\sigma)$ by Proposition [3.7,](#page-2-0) the same bound holds for a lower deviation $Pr(X \leq \mathbb{E} | X - t)$. A union bound then immediately gives $Pr(|X - \mu| \geq t) \leq$ $2 \exp \left(-\frac{t^2}{2a}\right)$ $\frac{t^2}{2\sigma^2}$).

Proposition 3.9 (Hoeffding). *If* X_1, \ldots, X_m are independent and each $\mathcal{SG}(\sigma_i)$ with *mean* μ_i *, for all* $\varepsilon \geq 0$

$$
\Pr\left(\frac{1}{m}\sum_{i=1}^{m}X_{i}\geq\frac{1}{m}\sum_{i=1}^{m}\mu_{i}+\varepsilon\right)\leq\exp\left(-\frac{m^{2}\varepsilon^{2}}{2\sum\limits_{i=1}^{m}\sigma_{i}^{2}}\right).
$$

 $\sum_{i=1}^{m} X_i \in \mathcal{SG}\left(\frac{1}{m}\right)$ $\frac{1}{m}\sqrt{\sum_{n=1}^{m}}$! $\frac{1}{m}$ $\sum_{n=1}^{m}$ *Proof.* By Propositions [3.6](#page-2-1) and [3.7,](#page-2-0) $\frac{1}{n}$ σ_i^2 . Then apply Proposi*i i*=1 tion [3.8.](#page-2-2) \Box

If the X_i have the same mean $\mu_i = \mu$ and parameter $\sigma_i = \sigma$, this becomes

$$
\Pr\left(\frac{1}{m}\sum_{i=1}^{m}X_{i}\geq\mu+\varepsilon\right)\leq\exp\left(-\frac{m\varepsilon^{2}}{2\sigma^{2}}\right),\qquad\qquad\text{(Hoeffding)}
$$

which can also be stated as that, with probability at least $1 - \delta$,

$$
\frac{1}{m}\sum_{i=1}^{m} X_i < \mu + \sigma \sqrt{\frac{2}{m}\log\frac{1}{\delta}}.\tag{Hoeffding'}
$$

The form of Hoeffding we saw before, Proposition [2.1,](#page-0-0) follows immediately from Proposition [3.5](#page-2-3) and (Hoeff[ding'\)](#page-3-1).

3.3.1 *Proof of Hoeffding's lemma*

Wikipedia's proof is similar, This proof roughly follows Zhang [\[Zhang23,](#page-4-0) Lemma 2.15].

LEMMA 3.10. *Let* X ∼ Bernoulli(*p*)*. Then* X *is* $S\mathcal{G}(1/2)$ *.*

variable [\[SSBD14,](#page-4-1) Lemma Proof. The logarithm of the (uncentred) moment-generating function of X is

$$
\psi(\lambda) = \log \mathbb{E} e^{\lambda X} = \log((1-p)e^0 + pe^{\lambda}).
$$

$$
\psi'(\lambda) = \frac{pe^{\lambda}}{(1-p)e^0 + pe^{\lambda}}
$$

$$
\psi''(\lambda) = \frac{pe^{\lambda}}{(1-p)e^0 + pe^{\lambda}} - \frac{(pe^{\lambda})^2}{\left((1-p)e^0 + pe^{\lambda}\right)^2} = \psi'(\lambda)(1 - \psi'(\lambda)).
$$

Since the function $x(1 - x)$ has maximum $1/4$, $\psi''(\lambda) \le 1/4$. By Taylor's theorem (in the Lagrange form), for any λ there exists some ξ_{λ} such that

$$
\psi(\lambda) = \underbrace{\psi(0)}_{0} + \lambda \underbrace{\psi'(0)}_{p} + \frac{1}{2} \lambda^{2} \underbrace{\psi''(\xi_{\lambda})}_{\leq 1/4} \leq \lambda p + \frac{1}{8} \lambda^{2}.
$$

Thus the centred mgf satisfies

$$
\mathbb{E} e^{\lambda(X-\mathbb{E} X)} = e^{-\lambda p} \mathbb{E} e^{\lambda X} \le e^{-\lambda p} \left(e^{\lambda p + \frac{1}{8} \lambda^2} \right) = e^{\frac{1}{8} \lambda^2}.
$$

Proposition 3.5 (Hoeffding's lemma). *If* $Pr(a \le X \le b) = 1$, X *is* $\mathcal{SG}\left(\frac{b-a}{2}\right)$.

Proof. Using $(X - a)/(b - a)$ and Proposition [3.7,](#page-2-0) we need only consider $a = 0, b = 1$.

Let $f(\lambda) = \mathbb{E} e^{\lambda X}$ be the (uncentred) mgf of X, and $g(\lambda) = (1 - \mu)e^0 + \mu e^{\lambda}$ that of a Bernoulli(*u*) variable, where $u = \mathbb{E} X$. For $\lambda \geq 0$,

$$
f'(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda} \mathbb{E}[e^{\lambda X}] = \mathbb{E}\left[\frac{\mathrm{d}}{\mathrm{d}\lambda}e^{\lambda X}\right] = \mathbb{E}[Xe^{\lambda X}] \leq \mathbb{E}[Xe^{\lambda}] = \mu e^{\lambda} = g'(\lambda),
$$

using in the inequality that $\lambda \geq 0$ and $0 \leq X \leq 1$. and that $0 \leq X \leq 1$. The same steps give $f'(\lambda) \ge g'(\lambda)$ for $\lambda \le 0$. As $f(0) = 1 = g(0)$, it follows that $f(\lambda) \le g(\lambda)$ everywhere. The conclusion follows by Lemma [3.10.](#page-3-3) \Box

REFERENCES

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *[Concentration](https://go.exlibris.link/MhGdKzSL) [Inequalities: A Nonasymptotic Theory of Independence](https://go.exlibris.link/MhGdKzSL)*. Oxford University Press, 2013.

but I think a little less clean. Other proofs are based more explicitly on convexity, but use either opaque changes of B.7] or compute some pretty nasty derivatives [\[MRT18,](#page-4-2) Lemma D.1]. There's also a proof strategy based on "exponential tilting" (see [\[BLM13,](#page-3-2) Lemma 2.2], This has derivatives *[\[Rag14,](#page-4-3) Lemma 1], or [\[Wai19,](#page-4-4) Exercise 2.4]) which is quite related but just overall a little more annoying. There are also proofs based on symmetrization (see [\[Wai19,](#page-4-4) Examples 2.3-2.4] or [\[Rom21\]](#page-4-5)), which are nice but (a) have a worse constant and (b) require symmetrization, which is an important idea we'll cover soon but kind of hard to understand.*

You can [interchange this](https://en.wikipedia.org/wiki/Leibniz_integral_rule) [derivative and expectation,](https://en.wikipedia.org/wiki/Leibniz_integral_rule) but it's trickier to prove than usual, requiring e.g. Theorem 3 [here.](https://planetmath.org/differentiationundertheintegralsign)

- [MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. *[Founda](https://cs.nyu.edu/~mohri/mlbook/)[tions of Machine Learning](https://cs.nyu.edu/~mohri/mlbook/)*. 2nd edition. MIT Press, 2018.
- [Rag14] Maxim Raginsky. *[Concentration inequalities](http://maxim.ece.illinois.edu/teaching/fall14/notes/concentration.pdf)*. September 2014.
- [Rom21] Marc Roman´ı. *[A short proof of Hoe](https://marcromani.github.io/2021-05-01-hoeffding-lemma/)ffding's lemma*. May 1, 2021.
- [SSBD14] Shai Shalev-Shwartz and Shai Ben-David. *[Understanding Machine Learn](https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html)[ing: From Theory to Algorithms](https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html)*. Cambridge University Press, 2014.
- [Wai19] Martin Wainwright. *[High-dimensional statistics: a non-asymptotic view](https://go.exlibris.link/9ZMcv9J6)[point](https://go.exlibris.link/9ZMcv9J6)*. Cambridge University Press, 2019.
- [Zhang23] Tong Zhang. *[Mathematical Analysis of Machine Learning Algorithms](https://tongzhang-ml.org/lt-book/lt-book.pdf)*. Pre-publication version. 2023.