
CPSC 532D — 4. PAC LEARNING; INFINITE H
Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2024

Recall that we previously showed Proposition 2.2:

Proposition 2.2. Suppose ℓ(z, h) is almost surely bounded in [a, b], H is finite, and ĥS
is any ERM in H. Then for any δ > 0, with probability at least 1 − δ over the choice of
S ∼ Dm it holds that

LD(ĥS) −min
h∈H

LD(h) ≤ (b − a)

√
2
m

log
|H| + 1

δ
.

Another way to state this result is that with m samples, we can achieve estimation
error at most ε with probability at least 1 − (|H| + 1) exp

(
− mε2

2(b−a)2

)
.

Or, alternately, we can say that we can achieve estimation error at most ε with

probability at least 1 − δ if we have at least 2(b−a)2

ε2 log |H|+1
δ

samples. This last way
establishes the sample complexity of learning to a given estimation error ε with a
given confidence 1 − δ.

4.1 pac learning

This last statement corresponds to one of the standard notions of learnability. Here,
we’re going to use a general idea of a learning algorithm as some function that takes
a sample S ∈ Z∗ (the set of sequences of any length from Z) and returns a hypothesis
in H.

Definition 4.1. An algorithm A : Z∗ → H agnostically PAC learns H with a loss ℓ
if there exists a function m : (0,1)2 → N such that, for every ε, δ ∈ (0,1), for every
distribution D over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm,A

(
LD(A(S)) > inf

h∈H
LD(h) + ε

)
< δ,

where the randomness is both over the choice of S and any internal randomness in
the algorithm A. That is, A can probably get an approximately correct answer, where
“correct” means the best possible loss in H.

If A runs in time polynomial in 1/ε, 1/δ, m, and some notion of the size of h∗, then
we say that A efficiently agnostically PAC learns H.

Definition 4.2. A hypothesis class H is agnostically PAC learnable if there exists an
algorithm A which agnostically PAC learns H.

So, ERM agnostically PAC-learns finite hypothesis classes, with the sample complex-

ity m(ε, δ) = 2(b−a)2

ε2 log |H|+1
δ

. Notice that in the definition of agnostic PAC learning,
there’s no limitation on the distribution – there needs to be an m(ε, δ) that works for

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.

1

https://cs.ubc.ca/~dsuth/532D/24w1/

any D. Proposition 2.2 satisfies this, but in general, it’s an extremely worst-case kind
of notion.

Often it’s nicer to think about cases where we can make some assumptions on D.
For example, maybe the number of samples you need depends on “how hard” the
particular problem is. We’ll talk about this more a little later in the course. For now,
it’s worth mentioning one common special case:

Definition 4.3.A1 Q4 was partly about this
setting.

Consider a nonnegative loss ℓ(h, z) ≥ 0. A distribution D is called
realizable by H if there exists an h∗ ∈ H such that LD(h∗) = 0.

Definition 4.4.This version is the
“privileged” version that

doesn’t need a modifier
because it’s was introduced

first [Val84].

An algorithm A : Z∗ → H PAC learns H with a loss ℓ if there
exists a function m : (0, 1)2 → N such that, for every ε, δ ∈ (0, 1), for every realizable
distribution D over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm,A

(LD(A(S)) > ε) < δ,

where the randomness is both over the choice of S and any internal randomness in
the algorithm A. That is, A can probably get an approximately correct answer, where
“correct” means zero loss.

If A runs in time polynomial in 1/ε, 1/δ, m, and some notion of the size of h∗, then
we say that A efficiently (realizably) PAC learns H.

Definition 4.5. A hypothesis class H is PAC learnable if there exists an algorithm A
which PAC learns H.

Sometimes people say “realizable PAC learnable” or similar, to emphasize the
difference versus agnostic PAC. The name “agnostic” is because the definition doesn’t
care whether there’s a perfect h∗ or not. (Notice that if A agnostically PAC learns H,
then it also PAC learns H.)

If you read [SSBD14] or other work by computational learning theorists,The emphasis here on “how
many samples for a given

error” is also kind of a
TCS-style framing, whereas
statisticians more often ask

“how much error for a given
number of samples”; I tend
to prefer the latter, but it’s

all equivalent.

there tends
to be a lot of focus on just being learnable versus not being learnable. That problem
has been solved, though, as we’ll see not too much later in class; recent work focuses
much more on rates than on just learnability or not, and tends to be willing to make
some assumptions on D rather than either being totally general or assuming only
realizability.

We’ve shown that anything finite is agnostically PAC learnable. That’s only an upper
bound, though; it doesn’t mean that infinite things aren’t learnable. Which is good,
because that’s what we usually want to learn!

Lemma 6.1 of [SSBD14] gives a really simple example of realizably PAC learning an
infinite class, if you’re curious to see that style of proof. I tried to do an agnostic
version of that, but it was more complicated than I hoped, so let’s do something
more interesting instead.

4.2 covering number bounds

In logistic regression, our data is in a subset of Rd ,This is more convenient
than Y = {0, 1} here. . .

our labels are in Y = {−1, 1} and we
try to predict with a confidence score in Ŷ = R. Our predictors are linear functions
of the form hw(x) = w · x,You usually want an

intercept term, w · x + w0,
but you can achieve that by

padding x with an
always-one dimension.

and the logistic loss is given by

ℓlog(h, (x, y)) = l
log
y (h(x)) = log(1 + exp(−h(x)y)). (4.1)

2

We’ll use the hypothesis class H = {hw = x 7→ w · x : w ∈ Rd , ∥w∥ ≤ B} for some
constant B; this avoids overfitting by using really-really complex w, and is basically
equivalent to doing L2-regularized logistic regression (we’ll talk about this more
later). This H is still infinite, but it has finite volume.

Now, our analysis is going to be based on the idea that if w and v are similar
predictors, i.e. hw(x) ≈ hv(x) for all x, then they’ll behave similarly: LD(hw) ≈ LD(hv)
and LS(hw) ≈ LS(hv). Thus we don’t have to do a totally separate concentration
bound on their empirical risks; we can exploit that they’re similar.

The fundamental idea is going to be one of a “set cover,” or an “ε-net.” To handle
an infinite H that’s nonetheless bounded, we’re going to choose some finite set H0
such that everything in H is close to something in H0, use Proposition 2.2 to say that
LD(h)− LS(h) isn’t too big for anything inH0, and then argue that since LD(h)− LS(h)
is smooth, this means it can’t be too big for anything in H at all.

H
H0

Figure 4.1: A (non-minimal) set cover.

4.2.1 Smoothness: Lipschitz functions

To formalize the idea that similar weight vectors give similar loss, we’ll want a
bound like

|LD(h) − LD(g)| ≤ M ρH(h, g),

for some notion of a distance metric on H. This is called a Lipschitz property.

Definition 4.6. A function f : X → Y is M-Lipschitz with respect to ρX and ρY
if for all x, x′ ∈ X , ρY (f (x), f (x′)) ≤ M ρX (x, x′). The smallest M for which this
inequality holds is the Lipschitz constant, denoted ∥f ∥Lip.

If X and/or Y are subsets of Rd , ρ is Euclidean distance unless otherwise specified.

So, for example, x 7→ |x| is a 1-Lipschitz function, since
∣∣∣|x| − |y|∣∣∣ ≤ ∣∣∣x − y∣∣∣.

The notation ∥f ∥Lip is justified by the following result. If you’re not sure about
function spaces / norms / etc, don’t worry about it (we’ll come back to this later in
the course); the takeaway is the two properties shown in the proof.

Lemma 4.7. Consider a vector space of functions X → Y , where Y is a normed space,
such that f + g is the function x 7→ f (x) + g(x) and af is the function x 7→ af (x). ∥·∥Lip
is a seminorm on this space with respect to ∥· − ·∥Y .

Proof. There are two properties to show. First, subadditivity (which implies the

3

triangle inequality):

∥f + g∥Lip = sup
x,x′

∥f (x) + g(x) − f (x′) − g(x′)∥
ρX (x, x′)

≤ sup
x,x′

∥f (x) − f (x′)∥
ρX (x, x′)

+
∥g(x) − g(x′)∥

ρX (x, x′)
≤ ∥f ∥Lip + ∥g∥Lip .

Second, absolute homogeneity:

∥af ∥Lip = sup
x,x′

∥af (x) − af (x′)∥
ρX (x, x′)

= sup
x,x′

|a| ∥f (x) − f (x′)∥
ρX (x, x′)

= |a| ∥f ∥Lip .

It isn’t a proper norm because ∥x 7→ a∥Lip = 0 for all constant functions.

So, what is ∥LD∥Lip? When z = (x, y) and ℓ(h, (x, y)) = ly(h(x)), we have

|LD(h) − LD(g)| =
∣∣∣∣∣ Ez∼D ℓ(h, z) − E

z∼D
ℓ(g, z)

∣∣∣∣∣
≤ E

z∼D
|ℓ(h, z) − ℓ(g, z)|

= E
(x,y)∼D

∣∣∣ly(h(x)) − ly(g(x))
∣∣∣

≤ E
(x,y)∼D

∥ly∥Lip ρŶ (h(x), g(x)). (4.2)

So, in particular settings we want to find
∥∥∥ly∥∥∥Lip

and bound ρŶ (h(x), g(x)) in terms
of some notion of similarity between h and g.

For the first problem, since for logistic regression l
log
y : R→ R, this result will help:

Lemma 4.8. Let X ⊆ R be a connected, closed set. If a function f : X → R is continuous
and differentiable everywhere on the interior of X , ∥f ∥Lip = supx∈X |f ′(x)|.

Proof. We apply the fundamental theorem of calculus:

∣∣∣f (x′) − f (x)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
x′∫
x

f ′(x)dx

∣∣∣∣∣∣∣∣∣ ≤
x′∫
x

∣∣∣f ′(x)
∣∣∣dx ≤

x′∫
x

∥f ∥Lip dx = ∥f ∥Lip

∣∣∣x′ − x∣∣∣ .
We won’t need this today, but it’s worth noting that if X ⊆ Rd , the same proof idea
gives us that ∥f ∥Lip = supx∈X ∥∇f (x)∥.

Lemma 4.9. For any y ∈ {−1, 1},
∥∥∥∥llog

y

∥∥∥∥
Lip
≤ 1.

Proof. l
log
y is differentiable everywhere on R, and so using Lemma 4.8,

∣∣∣∣∣ d
dŷ

l
log
y (ŷ)

∣∣∣∣∣ =
∣∣∣∣∣ d
dŷ

log(1 + exp(−yŷ))
∣∣∣∣∣ =

∣∣∣∣∣ 1
1 + exp(−yŷ)

exp(−yŷ)(−y)
∣∣∣∣∣

=
∣∣∣∣∣ exp(−yŷ)
1 + exp(−yŷ)

×
exp(yŷ)
exp(yŷ)

∣∣∣∣∣ ∣∣∣−y∣∣∣ =
∣∣∣∣∣ 1
1 + exp(yŷ)

∣∣∣∣∣ ≤ 1.

4

Plugging into (4.2), we get

|LD(hw) − LD(hv)| ≤ E
(x,y)∼D

∥∥∥ly∥∥∥Lip |hw(x) − hv(x)| .

That is, if the predictions are similar, the losses are too. We can further say that if w
and v are close, then their predictions are similar:

|hw(x) − hv(x)| = |w · x − v · x| = |(w − v) · x| ≤ ∥w − v∥ ∥x∥

by Cauchy-Schwarz. Thus

|LD(hw) − LD(hv)| ≤
(

E
(x,y)∼D

∥x∥ ∥ly∥Lip

)
∥w − v∥ ,

giving that LD is
(
E(x,y)∼D ∥x∥ ∥ly∥Lip

)
-Lipschitz with respect to ρH(hw, hv) = ∥w − v∥,

and similarly LS is
(

1
m

m∑
i=1
∥xi∥ ∥lyi∥Lip

)
-Lipschitz. (We could repeat the argument

with empirical averages instead of E, but a slicker way is to note that LS is exactly LD̂S

for the empirical distribution D̂S, the discrete distribution that puts 1/m probability
at each member of S.) Thus we know that

∥LD − LS∥Lip ≤ E
(x,y)∼D

∥x∥ ∥ly∥Lip +
1
m

m∑
i=1

∥xi∥ ∥lyi∥Lip. (4.3)

If we assume for simplicity that the distribution is bounded, Pr(x,y)∼D(∥x∥ ≤ C) = 1,
and that ∥ly∥Lip ≤ M for each y (as with logistic loss, where M = 1), then LD − LS is
guaranteed to be (2CM)-Lipschitz.

4.2.2 Putting it together with a set covering

Now the question is: how big does H0 have to be? We’ll use the following concept:

Definition 4.10. An η-cover of a set U is a set T ⊆ U such that, for all u ∈ U, there
is a t ∈ T with ρ(t, u) ≤ η. The covering number N(U, η) is the size of the smallest
η-cover for U.

We want to cover HB = {hw = (x 7→ w · x) : ∥w∥ ≤ B} with the metric ρ(hw, hv) =
∥w − v∥. We can immediately construct this kind of cover if we have a cover for the
Euclidean ball of radius B. Section 4.2.3 bounds how big this cover needs to be:

Lemma 4.11. Let η ∈ (0, B] and p ∈ [1,∞]. The covering number of the radius-B p-norm
ball in Rd , U = {x ∈ Rd : ∥x∥p ≤ B}, satisfies(

B
η

)d
≤ N(U, η) ≤

(
2B
η

+ 1
)d
≤

(
3B
η

)d
.

(When η ≥ B, trivially N(U, η) = 1.)

We now have all the tools we need for the following result about linear models with
bounded Lipschitz losses.

Proposition 4.12. Let hw(x) = w · x and H = {hw : ∥w∥ ≤ B} for some B > 0. Consider
a loss ℓ(h, (x, y)) = ly(h(x)) for functions ly : R→ R which each have Lipschitz constant
at most M and are bounded in [a, b]. Assume that ∥x∥ ≤ C almost surely under D. Then,

5

with probability at least 1 − δ,

sup
h∈H

LD(h) − LS(h) ≤ 1
√

2m

BCM + (b − a)

√
log

1
δ

+
d
2

log(72m)

 .

Proof. We’ll first choose a η-cover H0 = {w1, . . . , wNη
} ⊂ {w ∈ Rd : ∥w∥ ≤ B}, where η

is a parameter to be set later. Then, for any h ∈ H, let nnH0
(h) ∈ arg minh′∈H0

ρ(h, h′),
using ρ(hw, hv) = ∥w − v∥. Define the function ∆(h) := LD(h) − LS(h) for brevity.
Then

sup
h∈H

∆(h) = sup
h∈H

∆(h) − ∆(nn(h)) + ∆(nn(h))

≤ sup
h∈H

[∆(h) − ∆(nn(h))] + sup
h′∈H0

∆(h′)

≤ 2CMη+ sup
h′∈H0

∆(h′),

where the first term is because of (4.3) and H0 being an η-cover.

The other term is uniform convergence over a finite hypothesis class H0, as in
Proposition 2.2. We can apply Hoeffding to each element of H0, giving it a failure
probability of δ/Nη, and obtain that with probability at least 1 − δ,

sup
h∈H

∆(h) ≤ 2CMη+ (b − a)

√
1

2m
log

Nη

δ

≤ 2CMη+ (b − a)

√
1

2m

[
log

1
δ

+ d log
3B
η

]
.

Now, we could try to exactly optimize the value of η, but I think we won’t be
able to do that analytically. Instead, let’s notice that if η is o(1/

√
m), the first term

being smaller doesn’t really help in rate since the other term is 1/
√
m anyway – but

choosing a smaller ηmakes the log 1
η

worse. Also, the dependence on η there is only

in a log term, so it’s probably okay-ish to choose η = α/
√
m for some α > 0, giving us

sup
h∈H

[LD(h) − LS(h)] ≤ 1
√
m

2CMα +
b − a
√

2

√
log

1
δ

+ d log
3B
√
m

α

 .
Picking α = B/(2

√
2) and using log A = 1

2 log(A2) gives the desired result.

For our motivating problem of logistic regression, M = 1, but there’s one catch: we
can use a = 0 but there isn’t an “inherent” upper bound for b. Given that we know

6

∥x∥ ≤ C and ∥w∥ ≤ B, though, we have that |h(x)| = |w · x| ≤ BC. Thus

ℓ(h, (x, y)) = log(1 + exp(−yh(x)) ≤ log(1 + exp(BC)) =: b

ℓ(h, (x, y)) = log(1 + exp(−yh(x)) ≥ log(1 + exp(−BC)) =: a

b − a = log(1 + exp(BC)) − log(1 + exp(−BC))

= log
(

1 + exp(BC)
1 + exp(−BC)

× exp(BC)
exp(BC)

)

= log
(

1 + exp(BC)
exp(BC) + 1

× exp(BC)
)

= log exp(BC) = BC. (4.4)

Plugging into Proposition 4.12 gives us that with probability at least 1 − δ, logistic
regression with bounded-norm weights on bounded-norm data satisfies

sup
h∈H

LD(h) − LS(h) ≤ BC
√

2m

1 +

√
log

1
δ

+
d
2

log(72m)

 = Op

BC

√
d logm

m

 . (4.5)

Treating everything but m as a constant, the rate is Op

(√
logm
m

)
. This machinery is called

“chaining”; we probably
won’t cover it in class, but
Wainwright [Wai19, Section
5.3.3] has a reasonable
overview.

That
√

logm factor

is actually unnecessary, but getting rid of it with covering number-type arguments
requires some more advanced machinery. Instead, soon we’ll see a simpler way to
show a Op(1/

√
m) rate – in fact, a Op(BC/

√
m) rate, also dramatically improving the

dependence on d – that will also be very generally applicable.

ERM bound We only wrote this proof here for suph∈H LD(h) − LS(h), but since the
loss is bounded, this implies exactly as in (1.5) an upper bound on the generalization
error of any ERM ĥS. Using the general result from Proposition 4.12 with probability
δ/2, and plain Hoeffding with probability δ/2 on the LS(h∗) − LD(h∗) term, gives us

LD(ĥS) − LD(h∗) ≤ 1
√

2m

BCM + (b − a)

√
log

2
δ

+
d
2

log(72m)

 + (b − a)

√
1

2m
log

2
δ
,

and using
√
a + b ≤

√
a +
√
b we can simplify to

LD(ĥS) − LD(h∗) ≤ 1
√

2m

BCM + (b − a)

√
d
2

log(72m) + 2(b − a)

√
log

2
δ

 .
Specializing to logistic regression, we can plug in M = 1, b − a = BC so that

LD(ĥS) − LD(h∗) ≤ BC
√
m

 1
√

2
+

1
2

√
d log(72m) +

√
2 log

2
δ

 = Op

BC

√
d logm

m

 .
(4.6)

A question for yourself here: does this imply that ERM agnostically PAC-learns
logistic regression?

More general versions We used the following properties about the problem:

• A bounded loss, to apply Hoeffding. This could be weakened in various ways,
e.g. another kind of subgaussianity, or other ways to show concentration for a
finite number of points.

• A Lipschitz loss. Some form of this is definitely necessary. You could poten-

7

tially use a locally Lipschitz loss (where the constant varies through space),
but then you have to be more careful in bounding (4.3) or similar.

• A parameterization for H with a covering number bound. We framed this as
covering the parameter set for linear models, but you could use more general
notions of covering for H, as long as they’re compatible with the metric you
use for Lipschitzness in the previous part. This generality is often useful, e.g.
for nonparametric H.

4.2.3 Aside: Bounds on covering numbers

We’ll now prove our upper bound on covering numbers. Recall their definition:

Definition 4.10. An η-cover of a set U is a set T ⊆ U such that, for all u ∈ U, there
is a t ∈ T with ρ(t, u) ≤ η. The covering number N(U, η) is the size of the smallest
η-cover for U.

We’ll also use packing numbers: how many balls can we squeeze into a set T?

Definition 4.13. An η-packing of a set U is a set T ⊆ U such that, for all t, t′ ∈ T
with t , t′, we have ρ(t, t′) > η. The packing number M(U, η) is the maximal size of
any η-packing.

Proposition 4.14. A maximally-sized η-packing T of a set U is also a η-cover of U.

Proof. Suppose there were some point u ∈ U such that ρ(u, t) > η for all t ∈ T.
Then we could add u to the η-packing, producing a packing of size one larger; this
contradicts that T was maximal.

We’re now ready to prove the result:

Lemma 4.11. Let η ∈ (0, B] and p ∈ [1,∞]. The covering number of the radius-B p-norm
ball in Rd , U = {x ∈ Rd : ∥x∥p ≤ B}, satisfies(

B
η

)d
≤ N(U, η) ≤

(
2B
η

+ 1
)d
≤

(
3B
η

)d
.

(When η ≥ B, trivially N(U, η) = 1.)

Proof. By Proposition 4.14, we have that N(U, η) ≤ M(U, η); we’ll first prove the
upper bound on the packing number M. Let T be a maximal η-packing of the
B-ball U = {w ∈ Rd : ∥w∥ ≤ B}. Thus the open η/2-balls centered at each t ∈ T,
{w ∈ Rd : ∥w − t∥p < η/2}, are disjoint: if they weren’t, you could get from one t to
another in distance less than η, contradicting that T is an η-packing. These balls are
also all contained within the ball of radius (B + η/2), since each ∥t∥p ≤ B. Thus∑

t∈T

vol
(
{w ∈ Rd : ∥w − t∥p < η/2}

)
≤ vol

(
{w ∈ Rd : ∥w∥p < B + η/2}

)
.

But we know that the volume of a p-norm ball of radius R in d dimensions is RdV1,

8

https://en.wikipedia.org/wiki/Volume_of_an_n-ball#Balls_in_Lp_norms

REFERENCES

where V1 = vol({w ∈ Rd : ∥w∥p < 1}). Thus∑
t∈T

(
η

2

)d
V1 = M(U, η)

(
η

2

)d
V1 ≤

(
B +

η

2

)d
V1

so M(U, η) ≤
(

2B
η

+ 1
)d

=
(

2B + η

η

)d
≤

(
3B
η

)d
,

using at the end that η ≤ B to get a simpler form.

For the lower bound, it holds for a minimal cover T of any set U that

vol(U) ≤ vol

⋃
t∈T

{w : ∥w − t∥p < η}

 ≤∑
t∈T

vol
(
{w : ∥w − t∥p < η}

)
= N(U, η)Vη,

where Vη = vol({w : ∥w∥p < η}). Thus N(U, η) ≥ vol(U)/Vη. Plugging in for U being a
∥·∥p ball in Rd , we obtain the desired lower bound.

A similar upper bound holds more generally for any finite-dimensional Banach
space, I don’t know if the above

proofs can be generalized or
not.

getting (4B/η)d [CS02, Proposition 5]. I don’t know about a lower bound
there. For infinite-dimensional Banach spaces, the lower bound is infinite [Isr15], so
to use covering numbers another setup is necessary.

references

[CS02] Felipe Cucker and Steve Smale. On the mathematical foundations of
learning. Bulletin of the American Mathematical Society 39.1 (2002), pages 1–
49.

[Isr15] Robert Israel. Can the ball B(0, r0) be covered with a finite number of balls
of radius < r0. Mathematics Stack Exchange. April 1, 2015.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[Val84] Leslie G. Valiant. A Theory of the Learnable. Communications of the ACM
27.11 (1984), pages 1134–1142.

[Wai19] Martin Wainwright. High-dimensional statistics: a non-asymptotic view-
point. Cambridge University Press, 2019.

9

https://en.wikipedia.org/wiki/Banach_space
https://en.wikipedia.org/wiki/Banach_space
https://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00923-5/S0273-0979-01-00923-5.pdf
https://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00923-5/S0273-0979-01-00923-5.pdf
https://math.stackexchange.com/q/1214701
https://math.stackexchange.com/q/1214701
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
http://dx.doi.org/10.1145/1968.1972
https://go.exlibris.link/9ZMcv9J6
https://go.exlibris.link/9ZMcv9J6

	PAC learning
	Covering number bounds
	Smoothness: Lipschitz functions
	Putting it together with a set covering
	Aside: Bounds on covering numbers

