
CPSC 532D — 5. RADEMACHER COMPLEXITY

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2024

Last time (Section 4.2) was our first time showing a uniform convergence bound,
one on suph∈H LD(h) − LS(h), for an infinite H. We can then easily turn that into a
bound on the estimation error of ERM, LD(ĥS) − infh∈H LD(h), as in (4.6).

We’re now going to develop a technique that’s less intuitive, but will show a better
result (no

√
d logm), is somewhat more general, and once you understand it can be

easier to use.

We’ll start with a bound on the mean worst-case generalization gap. That is, we’ll
show that

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ ε(m).

This gives us, for instance, that if ĥS is an ERM then

E LD(ĥS) = E
[
LD(ĥS) − LS(ĥS)

]
︸ ︷︷ ︸

≤ε(m)

+E
[
LS(ĥS) − LS(h∗)︸ ︷︷ ︸

≤0

]
+ E

[
LS(h∗)

]
︸ ︷︷ ︸

=LD(h∗)

≤ LD(h∗) + ε(m).

We’ll use this to prove a high-probability bound on suph∈H LD(h) − LS(h) in Sec-
tion 5.3.

5.1 a g-g-g-g-ghost (sample)

Using that LD(h) = ES∼Dm LS(h):

S′ here is sometimes called a
“ghost sample.”

E
S∼Dm

sup
h∈H

LD(h) − LS(h) = E
S∼Dm

sup
h∈H

E
S′∼Dm

LS′ (h) − LS(h).

Now, we’ll exploit the following general fact:

Lemma 5.1. Let fy be a class of functions indexed by y, This should be intuitive,
once you think about it a bit:
if the optimization can see
what particular sample you
got, it can “overfit” better
than if it has to optimize on
average.

and X be some random variable.
Then when the expectations exist,

sup
y

E
X
fy(X) ≤ E

X
sup
y

fy(X).

Proof. For any y, we have fy(X) ≤ supy′ fy′ (X) by definition, no matter the value of
X. Taking the expectation of both sides, for any y, EX fy(X) ≤ EX supy′ fy′ (X). So it’s
also true if we take the supremum over y.

Applying this, we see that

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ E
S∼Dm

S′∼Dm

sup
h∈H

LS′ (h) − LS(h). (5.1)

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.

1

https://cs.ubc.ca/~dsuth/532D/24w1/

The right-hand-side of (5.1) is itself a natural thing to think about: how much does
anything in H overfit relative to a test set?

Now, S = (z1, . . . , zm) and S′ = (z′1, . . . , z
′
m) are composed of independent samples

from the same distribution. So, if we decided to swap z3 and z′3, this would still be a
“valid,” equally likely sample for S and S′. Rademacher complexity is based on this
idea.

Watch out that σi has
nothing to do with a

standard deviation or
subgaussian parameter σ;

we’ll refer to the vector
(σ1, . . . , σm) as σ, or σ⃗ in

handwriting. Unfortunate,
but no option is great here.

Notationally, let σi ∈ {−1,1} for i ∈ [m], and define (ui , u′i) =

(zi , z′i) if σi = 1

(z′i , zi) if σi = −1.
Then, for any choice of σ = (σ1, . . . , σm), we have

ℓ(h, z′i) − ℓ(h, zi) = σi(ℓ(h, u′i) − ℓ(h, ui)).

So, for any value of S, S′, and σ, defining U = (u1, . . . , um) and U′ = (u′1, . . . , u
′
m)

accordingly, we have

LS′ (h) − LS(h) =
1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)].

Since this holds for any choice of σ, it also holds if we pick them at random and
then take a mean over that choice. We’ll choose them according to a Rademacher
distribution, also written Unif(±1), which is 1 half the time and −1 the other half.
Thus,

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
σ

E
S,S′∼Dm

E
U,U′

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ S, S′ , σ

 .
Here we’re writing U and U′ as random variables, even though they’re actually
deterministic conditional on S, S′, and σ. The marginal distributions of U and U′

are each exactly Dm, though, the same as S and S′. So, it makes sense for us to switch
the order of the expectations.This switch is allowed by

Fubini’s theorem as long as
E
∣∣∣suph LS′ (h) − LS(h)

∣∣∣ is
finite, which is always true

e.g. for a bounded loss.)

σ | U, U′ is still just random signs; given σ and U, U′,
S and S′ become deterministic. This gives us

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dm

E
σ

E
S,S′

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ U, U′ , σ

 .
But. . . S and S′ no longer appear at all, so we can forget about that expectation on
the right.This proof technique of

introducing a random sign
is called symmetrization.

Continuing,

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

≤ E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, u′i) + sup
h′∈H

1
m

∑
i

(−σi)ℓ(h′ , ui)

supx f (x) + g(x) ≤
supx f (x) + supx′ g(x′)

= E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, u′i) + E
U,U′∼Dm

E
σ

sup
h′∈H

1
m

∑
i

σiℓ(h′ , ui)−σ and σ have the same
distribution

= 2 E
S,S′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, zi)Renaming U to S

=: 2 E
S,S′∼Dm

Rad ((ℓ ◦ H)|S) .

We’re defining some notation at the end: ℓ ◦ H = {z 7→ ℓ(h, z) : h ∈ H} is a set of

2

functions from Z to R, and F |S denotes {(f (z1), . . . , f (zm)) : f ∈ F } ⊆ Rm, so that

(ℓ ◦ H)|S = {(ℓ(h, z1), . . . , ℓ(h, zm)) : h ∈ H} ⊆ Rm.

Definition 5.2. The Rademacher complexity of a set V ⊆ Rm is given by Many sources define Rad
with an absolute value
around the sum. This is the
more common modern
definition, since it makes
some things nicer.

Rad(V) = E
σ∼Unif(±1)m

sup
v∈V

1
m

m∑
i=1

σivi = E
σ∼Unif(±1)m

sup
v∈V

σ · v
m

.

One way to think of it is a measure of how much a set V extends in the direction of a
random binary vector. Rad(F |S) measures how well F can align with random signs
on the particular set S, or equivalently how well it can separate a random subset of
S from the rest.

For intuition, it might be nice to compare to the closely-related Gaussian complexity
[BM02], which uses σ ∼ N (0, Im) instead of a Rademacher vector. That’s maybe
more natural to see as a notion of the size of a set: “if I look in a random direction,
how far do I get?” (Remember that the norm of a random Gaussian concentrates
tightly in high dimensions.) For Rademacher, “looking in any direction” versus
“looking along ‘binary’ directions” isn’t so different.

Finally, notice that nothing here depended on the structure of the actual functions
z 7→ ℓ(h, z) ∈ ℓ ◦ H, and so we’ve proved the following result for general function
classes (rather than just those of the form ℓ ◦ H).

Theorem 5.3. For any class F of functions f : Z → R, and any distribution D over Z
with S = (z1, . . . , zm) ∼ Dm, we have

E
S∼Dm

sup
f ∈F

 E
z∼D

[f (z)] − 1
n

m∑
i=1

f (zi)

 ≤ 2 E
S∼Dm

Rad(F |S).

In particular, in our standard learning setup,

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ 2 E
S∼Dm

Rad((ℓ ◦ H)|S).

5.2 properties of rademacher complexity

First, note that

Rad({v}) =
1
m

E
σ
σ · v = 0 :

no matter the vector, a singleton set has no complexity. (In terms of generalization:
any given hypothesis is equally likely to over- or under-estimate the risk.)

On the other extreme, for the vertices of a hypercube,

Rad({−1, 1}m) =
1
m

E
σ

sup
v

m∑
i=1

σivi =
1
m

E
σ
m = 1.

As we’ll see later (??), this is highly related to considering the complexity of the
hypothesis class of all possible {−1,1}-valued functions; if we tried to do ERM in
the set of “all possible classifiers,” we’d get that the expected zero-one loss is ≤ 1.
Exciting!

3

Letting cV = {cv : v ∈ V} for any c ∈ R, we have that

Rad(cV) =
1
m

E
σ

sup
v∈V

σ · (cv) =
1
m

E
σ

sup
v∈V
|c| (sign(c)σ) · v = |c|Rad(V) (5.2)

since sign(c)σ has the same distribution as σ.

For V + W = {v + w : v ∈ V, w ∈ W}, also called the Minkowski sum, we get

Rad(V+ W) =
1
m

E
σ

sup
v∈V
w∈W

σ · (v+w) =
1
m

E
σ

sup
v∈V

σ ·v+
1
m

E
σ

sup
w∈W

σ ·w = Rad(V)+Rad(W).

Combined with the fact that Rad({v}) = 0, this means that translating a set by a
constant vector doesn’t change its complexity.

5.2.1 Talagrand’s contraction lemma

How do we compute Rad(ℓ ◦ H|S) for practical losses and hypothesis classes? The
first key step is usually to “peel off” the loss, getting a bound in terms of Rad(H|Sx

).
We can do that with the following lemma, which is also very helpful for bounding
Rad(H) for H that are defined compositionally, like deep networks.

The major way to do that is with the following results, for Lipschitz losses (Defi-
nition 4.6).A 1-Lipschitz function is

called a contraction: it
doesn’t increase the distance

between any points, but
(usually) contracts at least

some.

For example, recall from Lemma 4.9 that logistic loss, used in logistic
regression, is 1-Lipschitz.

Lemma 5.4 (Talagrand). Let φ : Rm → Rm be given by φ(t) = (ϕ1(t1), . . . ,ϕm(tm)),
where each φi is M-Lipschitz. Then

Rad(φ ◦ V) = Rad({φ(v) : v ∈ V}) ≤ M Rad(V).

Our proof will be based on the following special case:

Lemma 5.5. If ϕ : R→ R is 1-Lipschitz, Rad({(ϕ(v1), v2, . . . , vm) : v ∈ V}) ≤ Rad(V).

Proof of Lemma 5.4, assuming Lemma 5.5. First notice that “rotating” the vectors in
V doesn’t change its complexity, since σ has iid entries:

Rad({(v2, . . . , vm, v1) : v ∈ V}) = Rad(V).

Now, notice that each component of 1
Mφ(t) = (1

Mϕ1(t1), . . . , 1
Mϕm(tm)) is 1-Lipschitz.

So, start by applying Lemma 5.5 to V with 1
Mϕ1, then rotating, to obtain

Rad
({(

v2, . . . , vm,
1
Mϕ1(v1)

)
: v ∈ V

})
≤ Rad(V).

Repeat these steps with 1
Mϕ2, then 1

Mϕ3, and so on, until we obtain

Rad
([

1
Mφ

]
◦ V

)
≤ Rad(V).

Finally, scale by M, which by (5.2) means

Rad(φ ◦ V) = M Rad
([

1
Mφ

]
◦ V

)
≤ M Rad(V).

Proof of Lemma 5.5. Let φ(v) = (ϕ(v1), v2, . . . , vm) so that φ◦V = {(ϕ(v1), v2, . . . , vm) :

4

v ∈ V}. Using Python-like notation where v2: means (v2, v3, . . . , vm) ∈ Rm−1, we have

mRad(φ ◦ V) = E
σ

sup
v∈V

[σ1ϕ(v1) + σ2: · v2:]

=
1
2
E
σ2:

sup
v∈V

[ϕ(v1) + σ2: · v2:] +
1
2
E
σ2:

sup
v′∈V

[
−ϕ(v′1) + σ2: · v′2:

]
=

1
2
E
σ2:

sup
v,v′∈V

[
ϕ(v1) − ϕ(v′1) + σ2: · (v2: + v′2:)

]
.

Now, for points arbitrarily close to the supremum, ϕ(v1) − ϕ(v′1) will always be
nonnegative: if it were negative, simply swapping v and v′ would make that term
positive, and wouldn’t affect the rest of the expression, making the objective bigger.
Thus we can write

mRad(φ ◦ V) =
1
2
E
σ2:

sup
v,v′∈V

∣∣∣ϕ(v1) − ϕ(v′1)
∣∣∣ + σ2: · (v2: + v′2:)

≤ 1
2
E
σ2:

sup
v,v′∈V

∣∣∣v1 − v′1
∣∣∣ + σ2: · (v2: + v′2:)

since ϕ is 1-Lipschitz. Now, notice that the objective of the maximization is identical
if we swap v and v′, so for any point close to the supremum with v1 ≤ v′1, there’s an
exactly equivalent one with v1 ≥ v′1. Thus

mRad(φ ◦ V) ≤ 1
2
E
σ2:

sup
v,v′∈V

v1 − v′1 + σ2: · (v2: + v′2:)

=
1
2
E
σ2:

(
sup
v∈V

[v1 + σ2: · v2:] + sup
v′∈V

[
−v′1 + σ2: · v′2:

])
= E

σ
sup
v∈V

v · σ = mRad(V).

How do we use this? Well, remember that for typical supervised learning losses,

(ℓ ◦ H)|S = {(ℓ(h, z1), . . . , ℓ(h, zm)) : h ∈ H}

= {(ly1
(h(x1)), · · · , lym(h(xm))) : h ∈ H}

= (lSy
◦ H)|Sx

,

where lSy
is a vectorized version of these losses (like φ above) for the vector of

particular labels Sy = (y1, . . . , ym). Then we have a function of x only, so we apply it
to Sx = (x1, . . . , xm). Note that M here might

depend on the particular Sy !
If the functions lyi are all M-Lipschitz, then Talagrand’s lemma

gives us that
Rad((ℓ ◦ H)S) ≤ M Rad(H|Sx

). (5.3)

5.2.2 Complexity of bounded linear functions

When studying covering numbers, we considered logistic regression using the
hypothesis class of bounded-norm linear functions,

HB = {x 7→ ⟨w, x⟩ : ∥w∥ ≤ B}.

To analyze that with Rademacher complexity, the key term is

Rad((ℓlog ◦ HB)|S) ≤ Rad(HB|Sx
),

5

using (5.3) with Lemma 4.9 that logistic loss is 1-Lipschitz. Now let’s bound that
latter term:

mRad(HB|Sx
) = E

σ
sup
∥w∥≤B

∑
i

σi⟨w, xi⟩

= E
σ

sup
∥w∥≤B

〈
w,

∑
i

σixi

〉

≤ E
σ

sup
∥w∥≤B

∥w∥

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥using Cauchy-Shwartz

= BE
σ

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥
≤ B

√√√√
E
σ

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥
2

using (E T)2 ≤ E T2 so

|E T| ≤
√
E T2

= B
√

E
σ

∑
ij

σiσj⟨xi , xj⟩

= B
√∑

i

E[σ2
i]︸︷︷︸

1

∥xi∥2 +
∑
i,j

E
σ

[σiσj]︸ ︷︷ ︸
0

⟨xi , xj⟩.

Dividing both sides by m, we can rewrite this final inequality as

Rad(HB|Sx
) ≤ B
√
m

√
1
m

∑
i

∥xi∥2, (5.4)

so this bound on the complexity depends on the particular Sx that you see, similar
to the issue we had with covering numbers.

One solution (as we did before) is to assume thata.s. is “almost surely” =
“with probability one”

D is such that ∥x∥ ≤ C (a.s.),
something often true in practice. This would imply that Rad(HB|Sx

) ≤ BC/
√
m (a.s.).

Note that this gives us an expected-case bound on the excess error of ERM for
logistic regression of

E
S∼Dm

LD(ĥS) − LD(h∗) ≤ 2BC
√
m

; (5.5)

we’ll see in Section 5.3 that, in this case, we can convert this into a bound saying
that, with probability at least 1 − δ,

LD(ĥS) − LD(h∗) ≤ BC
√
m

2 +

√
2 log

2
δ

 = Op

(
BC
√
m

)
. (5.6)

Compare this to the covering number-based bound we showed in (4.6):

LD(ĥS) − LD(h∗) ≤ BC
√
m

 1
√

2
+

1
2

√
d log(72m) +

√
2 log

2
δ

 = Op

BC

√
d logm

m

 .
Sometimes, though, we don’t want to assume this hard upper bound on ∥x∥; for ex-
ample, what if our data is Gaussian? Again using that E X ≤

√
E X2 for nonnegative

6

X, we can bound the expected value of (5.4) as This only works for the
average Rademacher
complexity, which is the only
thing we’ve seen to care
about yet, but in some
settings you do want a
high-probability bound on
Rad(H|Sx) rather than an
average-case one.

E
S

Rad(HB|Sx
) ≤ B
√
m

E
S

√
1
m

∑
i

∥xi∥2 ≤
B
√
m

√
E
x
∥x∥2. (5.7)

This allows for much broader data distributions, as long as you can bound E ∥x∥2.
For example, for a Gaussian x ∼ N (µ,Σ) this is E ∥x∥2 = ∥µ∥2 + Tr(Σ).

We’ve thus shown an average-case estimation error bound for bounded-norm linear
problems with Lipschitz losses with a rate of O(1/

√
m).

5.3 concentration

Now let’s prove that high-probability bound. We’ll need a new tool: McDiarmid’s
inequality, which lets us show concentration of things other than sample averages.

Theorem 5.6 ([McD89]). Let X1, . . . , Xm be independent, and let f (X1, . . . , Xm) be a
real-valued function satisfying the bounded differences condition

∀i ∈ [m]. sup
x1,...,xm,x

′
i

∣∣∣f (x1, . . . , xm) − f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xm)

∣∣∣ ≤ ci .

Then, with probability at least 1 − δ,

f (X1, . . . , Xm) ≤ E f (X1, . . . , Xm) +

√√
1
2

 m∑
i=1

c2
i

 log
1
δ
.

Proof. This proof has deep
connections to martingale
methods, but we won’t talk
any more about that. If you
take Nick Harvey’s
randomized algorithms
course, you can learn some
more! Or read Section 2.2 of
[Wai19] for a very brief
intro, or read [McD89].

Use Xi:j to denote (Xi , . . . , Xj). For any k ∈ [m], freeze some arbitrary values
for x1:k−1 = (x1, . . . , xk−1). We’re going to consider EXk+1:m

f (x1:k−1, Xk , Xk+1:m) as a
random variable, which is random depending only on the value of Xk: the earlier
arguments are frozen, and the later ones are being averaged over.

First, we know this variable is bounded: it can vary only in an interval of length at
most ck . By assumption, for any particular values for x1:k−1 and xk+1:m,

ck ≥ sup
xk

f (x1:m) − inf
xk

f (x1:m).

This is true for any values of xk+1:m, so it’s also true on average:

ck ≥ E
Xk+1:m

sup
xk

f (x1:k−1, xk , Xk+1:m) − inf
xk

f (x1:k−1, xk , Xk+1:m)

≥ E
Xk+1:m

sup
xk

f (x1:k−1, xk , Xk+1:m) + sup
xk

(−f (x1:k−1, xk , Xk+1:m)) − inf t = sup(−t)

= E
Xk+1:m

sup
xk ,x

′
k

f (x1:k−1, xk , Xk+1:m) − f (x1:k−1, x
′
k , Xk+1:m)

≥ sup
xk ,x

′
k

E
Xk+1:m

f (x1:k−1, xk , Xk+1:m) − f (x1:k−1, x
′
k , Xk+1:m) Lemma 5.1

= sup
xk

E
Xk+1:m

f (x1:k−1, xk , Xk+1:m) − inf
xk

E
Xk+1:m

f (x1:k−1, xk , Xk+1:m).

Thus, by Hoeffding’s lemma (Proposition 3.5), this variable is SG(ck/2). That is, mul-

7

tiplying the definition of subgaussianity (Definition 3.4) by eλE X for convenience,

E
Xk

exp
(
λ E

Xk+1:m

f (x1:k−1, Xk , Xk+1:m)
)
≤ exp

(
λ E

Xk

E
Xk+1:m

f (x1:k−1, Xk , Xk+1:m) +
1
8
λ2c2

k

)
.

This inequality holds for any x1:k−1, so let’s take the expectation of both sides:

E
X1:k

exp
(
λ E

Xk+1:m

f (X1:m)
)
≤ E

X1:k−1

exp
(
λ E

Xk:m

f (X1:m) +
1
8
λ2c2

k

)
.

That inequality holds for each choice of k. Let’s take the log of each one, and add
them all up:

m∑
k=1

log E
X1:k

exp
(
λ E

Xk+1:m

f (X1:m)
)
≤

m∑
k=1

[
log E

X1:k−1

exp
(
λ E

Xk:m

f (X1:m)
)

+
1
8
λ2c2

k

]
.

Letting ak = logEX1:k
exp(λEXk+1:m

f (X1:m)), we have

m∑
k=1

ak ≤
m∑
k=1

ak−1 +
m∑
k=1

1
8
λ2c2

k .

Most of the terms cancel, leaving us am on the left and a0 on the right:

log E
X1:m

exp (λf (X1:m)) ≤ log exp
(
λ E

X1:m

f (X1:m)
)

+
1
8
λ2

m∑
k=1

c2
k .

Taking the exponential of both sides and rearranging,

E
X1:m

exp
(
λ

(
f (X1:m) − E

X1:m

f (X1:m)
))
≤ exp

1
2
λ2 · 1

4

m∑
k=1

c2
k

 .
This is exactly the definition of f (X1:m) ∈ SG

(
1
2

√
m∑
i=1

c2
i

)
. The Chernoff bound for

subgaussians (Proposition 3.8) then tells us that with probability at least 1 − δ,

f (X1:m) ≤ E f (X1:m) +
1
2

√√
m∑
i=1

c2
i ·

√
2 log

1
δ
.

Considering −f gives an identical form for the lower bound, and a union bound
gives an absolute value version by replacing 1

δ
with 2

δ
.

Notice that if ci = c for all i, then
√

m∑
i=1

c2
i = c

√
m.

(It’s also worth checking for yourself that when f (X1:m) = 1
m

m∑
i=1

Xi , you exactly

recover the bounded version of Hoeffding’s inequality.)

Now that we know McDiarmid’s inequality, we can directly apply it to get a high-
probability bound:

Theorem 5.7. Suppose that ℓ(h, z) ∈ [a, b] for all h, z. Then, with probability at least
1 − δ,

sup
h∈H

LD(h) − LS(h) ≤ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

1
δ
. (5.8)

8

REFERENCES

Thus, if ĥS is an ERM, we have with probability at least 1 − δ that

LD(ĥS) − inf
h∈H

LD(h) ≤ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
2
m

log
2
δ
. (5.9)

Proof. Let S(i) = (z1, . . . , zi−1, z
′ , zi+1, . . . , zm). Now, we have

LD(h) − LS(h) = LD(h) − LS(i)(h) + LS(i)(h) − LS(h);

thus, expanding out LS(i)(h) − LS(h),

sup
h∈H

[LD(h) − LS(h)] − sup
h∈H

[LD(h) − LS(i)(h)] ≤ sup
h∈H

1
m

[
ℓ(h, z′) − ℓ(h, z)

]
≤ b − a

m

because the loss is bounded. The same holds in the other direction:

sup
h∈H

[LD(h) − LS(i)(h)] − sup
h∈H

[LD(h) − LS(h)] ≤ sup
h∈H

1
m

[
ℓ(h, z) − ℓ(h, z′)

]
≤ b − a

m
.

Therefore the worst-case generalization gap, f (S) = suph∈H LD(h) − LS(h), satisfies
the bounded differences condition with c = (b − a)/m. Equation (5.8) follows by
applying McDiarmid.

The other result follows as usual for our ERM bounds: we know that for any h∗ ∈ H,

LD(ĥS) ≤ LS(ĥS) + sup
h∈H

[LD(h) − LS(h)]

≤ LS(ĥS) + E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

(5.8), w/ prob. 1 − δ/2

≤ LS(h∗) + E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

definition of ERM

≤ LD(h∗) + (b − a)

√
1

2m
log

2
δ

+ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

Hoeffding, w/ prob. 1 − δ/2,

and the result follows since h∗ was arbitrary.

For bounded-norm bounded-data logistic regression, using (5.5) and (4.4) in (5.9)
gives (5.6).

references

[BM02] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian Com-
plexities: Risk Bounds and Structural Results. Journal of Machine Learning
Research 3 (2002), pages 463–482.

[McD89] Colin McDiarmid. On the method of bounded differences. Surveys in
Combinatorics, 1989: Invited Papers at the Twelfth British Combinatorial
Conference. London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 1989, pages 148–188.

[Wai19] Martin Wainwright. High-dimensional statistics: a non-asymptotic view-
point. Cambridge University Press, 2019.

9

https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
http://dx.doi.org/10.1017/CBO9781107359949.008
https://go.exlibris.link/9ZMcv9J6
https://go.exlibris.link/9ZMcv9J6

	A g-g-g-g-ghost (sample)
	Properties of Rademacher complexity
	Talagrand's contraction lemma
	Complexity of bounded linear functions

	Concentration

