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So far, we’ve mainly talked about logistic regression. We proved some bounds
that ERM obtains nearly the optimal value of the logistic loss over a bounded ball
of weight vectors, but we haven’t actually said anything yet about 0-1 loss (i.e.
accuracy).

We’re going to focus for now on binary classifiers, i.e. h that output a binary label,
not a continuous one. If we’re doing logistic regression, we’re thinking about the
“hard prediction,” not the logit or the predicted probability.

6.1 zero-one loss

If h(x) ∈ {−1, 1} and y ∈ {−1, 1}, then the 0-1 loss is

ly(ŷ) =

0 ŷ = y

1 ŷ , y.

This isn’t a function on R, so applying Talagrand’s lemma is a little weird. The trick
is, though: for computing the loss, we can just extend the function ly to R in any
way at all, and the loss will be exactly the same – it just doesn’t care what ly does for
other values of ŷ.

So, let’s just pick a Lipschitz function on R that agrees at the points we need, by
linear interpolation:

ly(ŷ) =


0 yŷ ≥ 1
1
2 −

1
2yŷ −1 ≤ yŷ ≤ 1

1 yŷ ≤ −1.

This has ∥ly∥Lip = 1
2 |y| =

1
2 . Thus:

Proposition 6.1. If H−1,1 is a hypothesis class with outputs in {−1, 1},

Rad((ℓ0−1 ◦ H−1,1)|S) ≤ 1
2

Rad(H−1,1|Sx
). (6.1)

If instead H0,1 maps to {0, 1},

Rad((ℓ0−1 ◦ H0,1)|S) ≤ Rad(H0,1|Sx
). (6.2)

Proof. The first result just applies Talagrand’s contraction lemma (Lemma 5.4) to
the extended ly above.

For the {0,1} case, we can either do the same thing with a slightly different 1-
Lipschitz function, or we can note that we can convert a {0, 1} classifier to a {−1, 1}

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.
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classifier by taking 2h − 1 and use basic properties of Rademacher complexity to see

Rad(H−1,1|Sx
) = Rad((2H0,1 − 1)|Sx

) = 2 Rad(H0,1|Sx
).

6.2 finite sets

How do we bound Rad(H|Sx
) for binary classifiers?

One major way is to note that, for binary classifiers,

H|Sx
= {(h(x1), . . . , h(xn)) : h ∈ H} ⊆ {0, 1}m

– and so it can’t be too big. There are only 2m possible bitvectors of behaviour on
the particular set Sx, even if H is infinite. In fact, there may be many fewer possible
things that H is able to do on this particular Sx.

So, let’s first try bounding the Rademacher complexity of an arbitrary finite set
based on its size.

Lemma 6.2. If V is finite and ∥v∥ ≤ B for all v ∈ V, then

Rad(V) ≤ B
m

√
2 log |V|.

Proof. We have

Rad(V) = E
σ

max
v∈V

m∑
i=1

σivi
m

.

Considering any one v for now,
m∑
i=1

σivi is a random variable (depending on σ). It

has mean zero, and since σi is SG
(1−(−1)

2

)
= SG(1) by Hoeffding’s lemma, viσi/m is

SG(|vi | /m). The viσi/m for each i are independent of one another, so this means

m∑
i=1

viσi
m
∈ SG


√√

m∑
i=1

(
|vi |
m

)2
 = SG

(
∥v∥
m

)
⊆ SG

( B
m

)
.

We now want to find the expected max of these |V| random variables. Each is mean
zero and SG(B/m); they’re dependent, since they all use the same σ, but that’s okay.
Lemma 6.3 handles exactly this situation, giving our desired result.

Lemma 6.3. Let X1, . . . , Xn be zero-mean random variables that are each SG(σ), which
are not necessarily independent. Then E

[
maxi∈[n] Xi

]
≤ σ

√
2 log(n).

Proof. This is Assignment 2, Question 2.4.

We can then specialize this to the binary classifier case:

Corollary 6.4. For binary classifiers mapping to {−1, 1}, Rad(H−1,1|Sx
) ≤

√
2
m log

∣∣∣H|Sx

∣∣∣.
For binary classifiers mapping to {0, 1}, Rad(H0,1|Sx

) ≤
√

1
2m log

∣∣∣H|Sx

∣∣∣.
Proof. For binary classifiers mapping to ±1, |h(x)| = 1 so

∥∥∥h|Sx

∥∥∥ =
√
m; the result

follows by plugging in to Lemma 6.2. For binary classifiers mapping to {0,1}, it’s
half of that, by the same scaling-and-translating conversion as before.
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Thus Proposition 6.1 and Theorems 5.3 and 5.7 give that for binary classifiers and
zero-one loss, You might want to check for

yourself that this same
equation holds whether H
maps to {0, 1} or {−1, 1}, or
indeed any other
two-element set.

E
S∼Dm

sup
h∈H

[LD(h) − LS(h)] ≤ E
S∼Dm

√
2
m

log
∣∣∣H|Sx

∣∣∣ (6.3)

Pr
S∼Dm

LD(ERMH(S)) − inf
h∈H

LD(h) ≤ E
S∼Dm

√
2
m

log
∣∣∣H|Sx

∣∣∣ +

√
2
m

log
2
δ

 ≥ 1 − δ. (6.4)

Using just that
∣∣∣H|Sx

∣∣∣ ≤ |H|, this becomes that with probability at least 1 − δ

LD(ERMH(S)) −min
h∈H

LD(h) ≤
√

2
m

log |H| +
√

2
m

log
2
δ
.

This is a tiny bit worse than the much more direct bound of Proposition 2.2,

LD(ERMH(S)) −min
h∈H

LD(h) ≤
√

2
m

log
|H| + 1

δ
≤

√
2
m

[
log |H| + log

2
δ

]
,

using |H| + 1 ≤ 2 |H|.

6.3 growth functions

The bound
∣∣∣H|Sx

∣∣∣ ≤ |H| is potentially very, very loose, though. For instance, we know
the left-hand side can’t be more than 2m, even if the right-hand side is infinite.

Plugging in that 2m bound would only give ES suph LD(h) − LS(h) ≤
√

2 log 2 ≈ 1.2,
which is not very interesting since the generalization gap is trivially at most 1! But,
when

∣∣∣H|Sx

∣∣∣ = o(2m), this is far more interesting.

Definition 6.5. The growth function ΓH(m) of a hypothesis class H is given by

ΓH(m) = sup
x1,...,xm∈X

∣∣∣H|(x1,...,xm)

∣∣∣ .
By definition,

∣∣∣HSx

∣∣∣ ≤ ΓH(m) for any Sx of size m; thus for binary classifiers with
zero-one loss, we immediately know that the expected worst-case generalization gap

is at most
√

2
m log ΓH(m).

Unlike our previous Rademacher or covering number bounds, we’ve now dropped
all dependence on the particular distribution D; this is a purely combinatorial
notion. That’s helpful if we’re trying to show PAC learning.

It’s sometimes possible to compute growth functions directly – you’ll do this in an
assignment – but it’s usually much easier to get a bound with the VC dimension.

6.4 vc dimension

Definition 6.6. A hypothesis class H is said to shatter a set Sx ⊆ X if it can achieve
all possible labellings of Sx, i.e.

∣∣∣H|Sx

∣∣∣ = 2m.

Definition 6.7. VC is for Vladimir Vapnik
and Alexey Chervonenkis,
Soviet mathematicians who
developed this theory
starting in the 60s (well
before PAC learning); the
English translation of the
first key paper is [VC71].

The VC dimension of H is the size of the largest set H can shatter:

VCdim(H) = max ({m ≥ 0 : ΓH(m) = 2m}) .
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If H can shatter unboundedly large sets, we say its VC dimension is infinite.

It turns out that we can bound the growth function in terms of the VC dimension:
ΓH(m) = O(mVCdim(H)), which then gives us that the expected worst-case generaliza-
tion gap is Õ(

√
2 VCdim(H)/m). We’ll prove this in Section 6.4.2; let’s first explore

how to compute the VC dimension for some different H.

6.4.1 Examples of computing VC dimension

It will be useful for all of our examples below to note that if you can’t shatter any
set of size m, you also can’t shatter any set of size m′ > m: if you could, then by
definition you could shatter any size-m subset of the larger set.

6.4.1.1 Threshold functions

Let ha : R→ {0, 1} be a threshold function ha(x) = 1(x ≥ a), and let H = {ha : a ∈ R}.

To start: we can shatter, say, Sx = {0},We can shatter any set of
size 1, but for VC dimension

we only have to show that
we can shatter one

particular set of that size.

because h−1(0) = 1 and h1(0) = 0. Thus
VCdim(H) ≥ |Sx| = 1.

But we can’t shatter any set Sx of size |Sx| ≥ 2. Let a, b ∈ Sx with a < b. We can’t get
h(a) = 1 and h(b) = 0 with the same h ∈ H, since all h ∈ H are nondecreasing. Thus
no Sx of size 2 can be shattered, and so VCdim(H) < 2.

Thus VCdim(H) = 1.

6.4.1.2 Circles

For X = R2, consider H = {hr,c : r > 0, c ∈ R2} with hr,c(x) = 1(∥x − c∥ ≤ r}, the set of
indicator functions of circles.

We can shatter any set of size two, since we can draw a circle that includes both
points, one that includes either point, or one that includes neither point.

We can also shatter some sets of size three,A bunch of these examples
are easier to see if you draw

them out! I’ll try to add
some TiKZ pictures, but in

the meantime you can draw
them yourself.

since if we put them in an equilateral
triangle we can pick out none, or any one, two, or all three points. (If we put the
three points in a line, we can’t pick out the two edges but not the middle – but that’s
okay, VC dimension is about the largest set you can shatter.)

Claim: we cannot shatter any set of size four, and so VCdim(H) = 3. If we think of
the points as lying roughly in a rectangle, then we can’t pick out opposite corners
without including at least one of the other points. (Ideally you’d formalize this
argument, but let’s not do that now.)

6.4.1.3 Homogeneous linear threshold functions in R2

Let X = R2 and consider H = {x 7→ sgn(w · x) : w ∈ R2}: hyperplanes passing
through the origin. We’re using Y = {−1,1}, and we’re going to define a function
sgn which is like the sign except that sgn(0) = 1 – yeah, that sucks but so do all the
other options. If you want to use Y = {0,1}, then instead write 1(w · x ≥ 0); that’s
nicer to write down, but more annoying to work with.

We can shatter at least some sets of size 2: e.g. {(−1,1), (1,1)}, we can put the
hyperplane along the x-axis to get both the same sign, or put it in along the y-axis
to get them with opposite signs.
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We can’t shatter any sets of size 3. A convex hull of a set is the
smallest convex set
containing the original set:
conv(V) = {αv + (1 − α)v′ :
v, v′ ∈ V, α ∈ [0, 1]}. If you
have some points in R2, you
draw straight lines
connecting the “outside”
points to include all the
points.

If the convex hull of the points contains the origin,
then we can’t get them all with the same sign; if the hull doesn’t contain the origin,
then we can’t label them like (1, 0, 1).

So homogenous 2-d linear threshold functions have VC dimension 2.

6.4.1.4 Homogeneous linear threshold functions in Rd

Proposition 6.8. Let H = {x 7→ sgn(w · x) : w ∈ Rd}. Then VCdim(H) = d.

Proof. We can shatter a set of size d: take the set {e1, . . . , ed} for ei the ith standard
basis vector, i.e. the one-hot vector with a 1 in the ith position and 0 everywhere else.
Then we can achieve an arbitrary labeling (y1, . . . , yd) ∈ {0, 1}d by setting wi = yi : we
get w · ei = yi .

To show that we cannot shatter any set of size d + 1, let x1, . . . , xd+1 be a set of
d + 1 points in Rd . Then they can’t be linearly independent: there must be some

α1, . . . , αd+1 such that
d+1∑
i=1

αixi = 0, with not all the αi zero. Let I+ = {i ∈ [d + 1] :

αi > 0}, I0 = {i ∈ [d + 1] : αi = 0}, and I− = {i ∈ [d + 1] : αj < 0}.

Now, ifH can shatter {x1, . . . , xd+1}, we can ask it to assign 1 to the xi with i ∈ I+∪I0,
and −1 to the xi with i ∈ I−. Then we’d have

0 = w · 0 = w ·
d+1∑
i=1

(αixi) =
∑
i∈I+

αi︸︷︷︸
>0

w · xi︸︷︷︸
≥0

+
∑
i∈I0

αi︸︷︷︸
0

w · xi +
∑
i∈I−

αi︸︷︷︸
<0

w · xi︸︷︷︸
<0

.

Suppose that I− is nonempty, or that there are any i ∈ I+ such that w · xi > 0. Then
the sum on the right-hand side is strictly positive, contradicting that it equals 0.

Thus, either we cannot shatter {x1, . . . , xd+1}, or we can but w · xi = 0 for all i ∈ I+
and I− = {}. Considering the second case, [SSBD14] misses analyzing

this case :(, since they just
pretend w · x = 0 is
impossible.

we must have
∑
i∈I+

αixi = 0. Now, find

some w̃ that labels all these points as negative, w̃ · xi < 0 for all i ∈ I+; this must be
possible if the set is shattered. Then we’d have

0 = w̃ · 0 = w̃ ·

∑
i∈I+

αixi

 =
∑
i∈I+

αi︸︷︷︸
>0

w̃ · xi︸︷︷︸
<0

< 0,

a contradiction. We’re left to conclude that H cannot shatter {x1, . . . , xd+1}.

6.4.1.5 Inhomogeneous linear threshold functions in Rd

What about if we don’t enforce that the hyperplane passes through the origin,
H = {x 7→ sgn(w · x + b) : w ∈ Rd , b ∈ R}?

We could analyze this directly, similarly to what we did above; this is Example 3.12
of [MRT18] if you want to see it.

But we can also reduce to the set of homogeneous linear classifiers: if we have
d-dimensional data, we can model that as homogeneous linear classifiers on (d + 1)-
dimensional data with an extra “dummy feature” that’s always 1. The weight w0
corresponding to that feature will just be the offset b.

Using this reduction, we can see:
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Proposition 6.9. For x ∈ Rd , VCdim
({
x 7→ sgn(w · x + b) : w ∈ Rd , b ∈ R

})
= d + 1.

Proof. First, we can shatter the set {0, e1, . . . , ed}, which has size d + 1, like before.
We set w0 = y0/2 and wi = yi ; the y0/2 only affects the sign if all the other weights
are “off”, i.e. only on the 0 vector.

Also, we can’t shatter any set of size d + 2. If we could, then there would be d + 2
vectors in Rd+1 shattered by the class of homogeneous thresholds; but that class has
VC dimension d + 1 by Proposition 6.8, so that’s not possible.

6.4.2 Growth function bounds in terms of VC: Sauer-Shelah

As mentioned before, we’re going to show that ΓH(m) is O(mVCdim(H)). Remember
that for m ≤ VCdim(H), we know that ΓH(m) = 2m; this means that ΓH always grows
exponentially up to some point, then drops off to just polynomial growth.

Corollary 6.10. If m ≥ d = VCdim(H),This e is exp(1) ≈ 2.7. then ΓH(m) ≤
(
em
d

)d
.

Plugging into (6.3) and (6.4) gives

Theorem 6.11. Let H be a class of binary classifiers with VCdim(H) = d, and use the
zero-one loss. For any m ≥ d, we have that

E
S∼Dm

sup
h∈H

[LD(h) − LS(h)] ≤
√

2d
m

[logm + 1 − log d]

Pr
S∼Dm

LD(ERMH(S)) −min
h∈H

LD(h) ≤
√

2d
m

[logm + 1 − log d] +

√
2
m

log
2
δ

 ≥ 1 − δ.

When d ≥ 3, we can replace logm + 1 − log d with simply logm above.

We’ll prove Corollary 6.10 as a corollary to the following:

Lemma 6.12 (Sauer-Shelah). Let VCdim(H) ≤ d < ∞. Then ΓH(m) ≤
d∑
i=0

(m
i

)
.

Proof of Corollary 6.10 given Lemma 6.12. We need to show that
d∑
i=0

(m
i

)
≤

(
em
d

)d
for

m ≥ d. We can do this by

d∑
i=0

(
m
i

)
≤

d∑
i=0

(
m
i

) (m
d

)d−i
multiply each term by ≥ 1

≤
m∑
i=0

(
m
i

) (m
d

)d−i
add nonnegative terms

=
(m
d

)d m∑
i=0

(
m
i

) (
d
m

)i

=
(m
d

)d (
1 +

d
m

)m
binomial theorem

≤
(m
d

)d
ed 1 + x ≤ exp(x).
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This might be our first time using that 1 + x ≤ exp(x); it follows e.g. from Taylor’s
theorem, and is a useful thing that comes up a lot.

Now, we’ll actually prove Lemma 6.12 itself as a corollary to the following result:

Lemma 6.13 (Pajor). For all finite S ⊆ X ,
∣∣∣H|S∣∣∣ ≤ ∣∣∣{T ⊆ S : T is shattered by H}

∣∣∣.
If S is shattered, both sides of the inequality are 2|S|; otherwise, it’s not obvious that
these things should be related.

Proof of Lemma 6.12 given Lemma 6.13. To bound the number of shattered subsets
of S in Lemma 6.13, recall there can’t possibly be any with size larger than d =
VCdim(H); the number of sets it can shatter is thus upper-bounded by the number

of subsets of S of size at most d, which is just
d∑
i=0

(m
i

)
for m = |S|.

Proof of Lemma 6.13. We’ll proceed by (strong) induction on
∣∣∣H|S∣∣∣.

Base case:
∣∣∣H|S∣∣∣ = 1. For the right-hand side, the empty set is trivially shattered by

any H, so the RHS is always at least 1 as well, and the inequality holds.

Inductive case:
∣∣∣H|S∣∣∣ ≥ 2 and the inequality holds for any T with

∣∣∣H|T∣∣∣ < ∣∣∣H|S∣∣∣.
Then, since there are two distinct labelings, there must be at least one point x ∈ S
that achieves both h(x) = 1 and h′(x) = 0 for some h, h′ ∈ H. Partition H into
H+ = {h ∈ H : h(x) = 1} and H− = {h ∈ H : h(x) = 0}. Now,∣∣∣H|S∣∣∣ =

∣∣∣H+|S
∣∣∣ +

∣∣∣H−|S∣∣∣,
since the two produce disjoint labelings on S (they always disagree on x). They also
produce fewer labelings than H|S itself (there’s at least one labeling in each), so we
can apply the inductive hypothesis to each.

Defining ShatH(S) = {T ⊆ S : T is shattered by H}, we’ve shown that∣∣∣H|S∣∣∣ ≤ ∣∣∣ShatH+
(S)

∣∣∣ +
∣∣∣ShatH−(S)

∣∣∣ .
Note the right-hand side is exactly, keeping track of the “double-counted” sets,∣∣∣ShatH+

(S) ∪ ShatH−(S)
∣∣∣ +

∣∣∣ShatH+
(S) ∩ ShatH−(S)

∣∣∣ ;

it remains to argue that this is at most |ShatH(S)|. To see this, first note that
ShatH+

(S) ∪ ShatH−(S) ⊆ ShatH(S).

Now, consider a set T ∈ ShatH+
(S) ∩ ShatH−(S), i.e. one that’s been double-counted.

Then note that T′ = T ∪ {x} is not in either ShatH+
(S) or ShatH−(S), since these

classes by definition cannot shatter {x}, and so can’t shatter a superset of {x} either.
But H can shatter T′: there’s a hypothesis in H− to achieve any desired labeling
with h(x) = 0 (since T ∈ ShatH−(S)), and likewise there’s a hypothesis in H+ for
any labeling with h(x) = 1. So T′ ∈ ShatH(S). Also, each such double-counted T
corresponds to a different T′, since x < T for each of these Ts. Thus∣∣∣ShatH+

(S) ∩ ShatH−(S)
∣∣∣ ≤ ∣∣∣∣ShatH(S) \

(
ShatH+

(S) ∪ ShatH−(S)
)∣∣∣∣ ,

and so
∣∣∣H|S∣∣∣ ≤ |ShatH(S)| as desired.
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