
CPSC 532D — 7. ONLINE LEARNING

Bingshan Hu with Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2024

In batch (offline) learning, usually, we have a learning phase and a prediction phase.
Learner first receives a batch of i.i.d. training samples and then uses these data to
learn a hypothesis, e.g., an ERM (learning phase). The learned hypothesis will be
used for predicting the labels of future samples (prediction phase). In contrast, in
online learning, there is no separation between the learning phase and the prediction
phase. We blend these two phases together by specifying a learning protocol that
regulates all parties participating in the learning.

7.1 online binary classification in realizable setting

Chapter 21.1 of [SSBD14].
Still, we have an instance space X , a label space Y = {−1,1}, a hypothesis class
H : X → Y , and the 0 − 1 loss function ℓ0−1(y, ŷ) = 1 {y , ŷ}. We play this game
sequentially with the following learning protocol.

This is a picture for this.In each round t = 1, 2, . . . , T,
1. Nature (Adversary/Environment) selects xt ∈ X and reveals it to

Learner ;
2. Learner chooses a hypothesis ft ∈ H and predicts ŷt = ft(xt) ∈ { −1, 1} ;
3. Nature plays label yt and reveals it to Learner ;
4. Learner obtains a data sample (xt , yt) and suffers loss ℓ(yt , ŷt) =

1 {yt , ŷt} .

If ℓ(yt , ŷt) = 1 {yt , ŷt} = 1, we say Learner makes a mistake in round t, as its
predicted label is not correct. The goal of Learner is to make as few mistakes as
possible. Intuitively, to choose a good predictor ft in round t, Learner should use all
the data samples attained in previous rounds St−1 := ((x1, y1), (x2, y2), . . . , (xt−1, yt−1))
and even the input xt in round t.

The data sequence ((x1, y1), (x2, y2), . . . , (xT, yT)) does not need to be iid, which is
quite different from the assumption usually batch learning needs. No statistical assumption.

Since Adversary can decide yt based on ŷt, it is hopeless to learn for some some
hypothesis class H, e.g., two constant functions x 7→ +1 and x 7→ −1 are in H.
Because Adversary can make Learner unhappy in each round by declaring yt = −ŷt.

So, we need to put some constraints for Adversary.

With the assumption of
realizability, setting
yt = −ŷt for all t ∈ [T] may
not always be possible.

We get started with a simple learning problem setup. It is about the aforementioned
binary classification problem under the assumption of realizability, i.e., the true label
function f ∗ ∈ H, i.e., yt = f ∗(xt) for all t ∈ [T], and Learner knows H and the fact
that f ∗ ∈ H. 1 With this restriction on how Adversary generates the data sequence,

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.
1Nature is regulated to play a label function that is consistent with the history data St−1.

1

https://cs.ubc.ca/~dsuth/532D/24w1/

Learner should make as few mistakes as possible. We are interested in how many
mistakes Learner makes after playing this sequential game after T rounds.

Hypothesis class H is finite. Since we know the true label function f ∗ ∈ H,
i.e., there is a perfect hypothesis incurring zero loss in H, it is quite natural to
eliminate any hypothesis in H that has made a mistake after observing (xt , yt) at
the end of each round t. This intuition gives us an idea, called version space, to
develop learning algorithms. The version space at the end of round t is defined
as Ht = {f ∈ H : f (xs) = ys,∀s ∈ [t]}. Then, we can maintain a sequence of version
spaces H = H0 ⊇ H1 ⊇ . . . ⊇ Ht−1 ⊇ Ht ⊇ . . . ⊇ {f ∗}. Hypotheses that have made
mistakes will be kicked out from the version space at the end of each round t. We
eliminate hypotheses from H during the learning once we are confident they are not
good almost surely!

Let’s see Consistent Algorithm first.

Initially, we set H0 = H.
In each round t = 1, 2, . . . , T,

1. Learner receives xt ;
2. Learner chooses ft ∈ Ht−1 arbitrarily and predicts ŷt = ft(xt) ;
3. Nature reveals true label yt = f ∗(xt) and Learner updates Ht =
{f ∈ Ht−1 : f (xt) = yt} .

Note that the number of
mistakes does not depend on
the learning horizon T. For

any length of T, the number
of mistakes is at most |H| − 1.

Now, we exam how many mistakes (the total loss
T∑
t=1

ℓ(yt , ŷt) =
T∑
t=1

ℓ(yt , ft(xt))) that

Consistent Algorithm makes by the end of round T. It is not hard to see that the
number of mistakes is at most |H| − 1, as each mistake forces Learner to eliminate at
least one hypothesis from the version space at the end of that round.

One may ask is it possible to reduce the number of mistakes from |H| to o(|H|)?f (x) = o(g(x)) is equivalent

to lim
x→∞

f (x)
g(x) = 0 if g(x) > 0. The answer is yes!

Actually, we can do better if we do not pick ft in an arbitrary way! We introduce
another idea, called majority vote. Since some hypotheses in Ht−1 predict +1 while
some predict −1, we simply count which side has more supporters. The side of more
supporters wins! Combining majority vote with version space, we have a much nicer
algorithm, called Halving Algorithm, which reduces the number of mistakes from
O(|H|) to log |H|.

Initially, we set H0 = H.
In round t = 1, 2, . . . , T,

1. Learner receives xt ;
2. Learner predicts ŷt ∈ arg max

y∈{−1,1}

∣∣∣{f ∈ Ht−1 : f (xt) = y}
∣∣∣ ;

3. Nature reveals true label yt = f ∗(xt) and Learner updates Ht =
{f ∈ Ht−1 : f (xt) = yt} .

Theorem 7.1. Halving Algorithm makes at most log2(|H|) mistakes.

Proof. According to the majority vote, the version space is halved on each mistake.
If Learner makes a mistake in round t, we have |Ht | ≤ 1

2 |Ht−1|. Let M be the total

2

number of mistakes. We have

1 ≤ |HT| ≤ |H0| 2−M = |H| 2−M ,

which yields M ≤ log2 (|H|). Note that f ∗ is always in the version spaces. So, we
have 1 ≤ |HT|.

General Hypothesis Class including H is infinite. Still under the assumption
of realizability, now, let us consider a hypothesis class H that may be infinite in
size. For some hypothesis class H, Learner is able to have a strategy that guarantees
it makes a finite number of mistakes. For other hypothesis classes, Nature can
force Learner to make infinitely many mistakes. To gain an understanding of which
hypothesis class falls in the former category and which falls in the latter, we need
to have new concepts, something like VC dimension to measure the richness of a
hypothesis class. We aim at characterizing online learnability. In particular, we
target the following question: What is the optimal online classification learning
algorithm for a given hypothesis class H?

Littlestone dimension characterizes online learnability. A hypothesisH is online learnable
if it has a finite Littlestone dimension denoted as Ldim(H). The idea of Littlestone
dimension is to view online learning as a 2-player sequential game between Learner
and Adversary. The job of Adversary is to force Learner to make mistakes while
preserving realizability.

How does Adversary choose xt to force Learner to make the maximum number of
mistakes, while ensuring realizability? It is easy as Adversary can always choose
yt = −ŷt for the first Ldim(H) rounds in the sequential game.

The strategy for Adversary can be formally described by using a complete binary
tree. Each node of the tree is associated with an instance xt ∈ X . If Learner predicts
ŷt = +1, Adversary will declare the prediction is wrong, i.e., yt = −ŷt = −1 and will
traverse to the right child of the current node. If Learner predicts ŷt = −1, Adversary
will set yt = −ŷt = +1 and will traverse to the left child of the current node. Add a picture of the binary

tree.
To introduce the definition of Litterstone dimension, let us give the definition of an
H shattered tree first.

The depth of the tree is
defined as the number of
edges in a path from the root
to a leaf, i.e., the number of
layers in the tree.

Definition 7.2. (H shattered tree.) A shattered tree of depth d is a sequence of
inputs v1, v2, . . . , v2d−1 ∈ X such that for every root-to-leaf path, ∃f ∗ ∈ H such that
all labels along the path are achieved.

Definition 7.3. (Littlestone dimension.) The Littlestone dimension of hypothesis
class H, Ldim(H), is the maximal integer d such that there exists a shattered tree of
depth d that H shatters. If there is no such largest d, then the Litterstone dimension
is infinite.

Theorem 7.4. Any algorithm makes at least Ldim(H) mistakes.

Proof. Let d∗ = Ldim(H). SinceH has Littlestone dimension d∗, we know there exists
an H shattered tree with depth d∗ that is shattered by H. Adversary will “walk” on
the tree for the first d∗ rounds. In each round t ∈ [d∗], Adversary sets yt = −ŷt. Since
the walk continues for d∗ rounds, Learner makes d∗ mistakes. Now, we check the
assumption of realizability. Since H shatters the tree, there ∃f∗ ∈ H such that all the
labels along the root-to-leaf path selected by Adversary can be realized.

3

Now, we show a learning algorithm, Standard Optimal Algorithm (SOA), makes
at most Ldim(H) mistakes. The algorithm is similar to Halving Algorithm. We
partition the version space by the end of round t − 1 into two sub-version spaces.

Let H(−1)
t−1 := {f ∈ Ht−1 : f (xt) = −1} and H(+1)

t−1 := {f ∈ Ht−1 : f (xt) = +1}.

Initially, we set H0 = H.
In round t = 1, 2, . . . , T,

1. Learner receives xt ;

2. Learner predicts ŷt ∈ arg max
y∈{−1,1}

Ldim
(
H(y)

t−1

)
;

3. Nature reveals true label yt = f ∗(xt) and Learner updates Ht =
{f ∈ Ht−1 : f (xt) = yt} .

Theorem 7.5. SOA makes at most Ldim(H) mistakes.

Proof.

Corollary 7.6. Let H be any hypothesis class. Then, SOA makes exactly Ldim(H)
mistakes.

Proof. From Theorem 7.4, we know SOA makes at least Ldim(H) mistakes. From
Theorem 7.5, we know SOA makes at most Ldim(H) mistakes. Combining these two
results concludes the proof.

VC dimension vs Littlestone Dimension.

Example 1. If H is a finite hypothesis class, we have Ldim(H) ≤ log2 (|H)|). why?

Example 2. Let X = [0, 1] and H = {x 7→ 1 {x < a} : a ∈ [0, 1]} be the class of thresh-
olds on the interval [0, 1]. Then, we have VCdim(H) = 1, but Ldim(H) = ∞.There is a picture for this.

Theorem 7.7. For any hypothesis class H, we have VCdim(H) ≤ Ldim(H). Further, the
gap can be arbitrarily large.

Proof. We first prove that VCdim(H) ≤ Ldim(H). Suppose VCdim(H) = d and let
{x1, x2, . . . , xd} be a shattered set by H. Now, we construct a complete binary tree of
inputs v1, v2, . . . , v2d−1, where all nodes at depth i are set to be xi .There is a picture for this.

Now, the definition of a shattered set clearly implies that we constructed a valid
shattered tree of depth d and conclude that VCdim(H) ≤ Ldim(H).

The class of threshold functions on the unit interval has VC dimension of 1, whereas
its Littlestone dimension is infinite.

4

7.2 decision-theoretical online learning and
exponential weights (hedge)

Practically, we should not assume realizability always holds, i.e., the true labels
yt = f ∗(xt),∀t ∈ [T], are generated by using f ∗. Similar to agnostic setting in
supervised learning, now, we can compare with the best predictor in H. In online
learning, we use the notion of regret, defined as

R(T) := sup
((x1,y1),...,(xT ,yT))

{
T∑
t=1

ℓ(yt , ft(xt)) −min
f ∈H

T∑
t=1

ℓ(yt , f (xt))
}

, (7.1)

to measure the performance gap between
T∑
t=1

ℓ(yt , ft(xt)), the total loss Learner has

made, and min
f ∈H

T∑
t=1

ℓ(yt , f (xt)), the total loss of the best predictor in hindsight. If a

learning algorithm achieves an o(T) regret bound, we say it is a no-regret algorithm.
The intuition is if you play this game long enough, you can compete with the best
predictor in hindsight. Note that o(T) regret implies lim

T→∞
o(T)

T = 0.

To control the regret at Learner’s side, generally, we have two key principles.

1. Randomization. Deterministic Learner fails for some learning problems. Let
hypothesis class H = {f+ : x→ +1, f− : x→ −1} only contain two constant
functions. Adversary can always give Learner yt = −ŷt to force Learner to
suffer loss. So, Learner suffers in total T loss. Now, we investigate the total

loss in hindsight of the best predictor in H, that is, min
f ∈H

T∑
t=1

ℓ(yt , f (xt)) ≤ 1
2 ·(

T∑
t=1

ℓ(yt , f−1(xt)) +
T∑
t=1

ℓ(yt , f+(xt))
)

= 0.5T, which yields the regret is at least

0.5T.

Since Learner always fails if revealing the predicted label ŷt, to make the
problem interesting, we need to give some power to Learner. Now, we change
the learning protocol a bit by allowing Learner to reveal only a probability
distribution over {−1, 1} instead of revealing the predicted label ŷt itself.

2. Exploitation. Here, exploitation refers to
utilizing the already learned
information, i.e., the total
loss of each predictor
observed so far.

We want to track the empirical performance of each predictor,
but we do not eliminate any of them during the learning, as some of them may
not perform well at the beginning of the learning, but later turns out to the
best one.

If the data sequence are i.i.d.
according to some fixed but
unknown distribution, we
can eliminate predictors.

Since we do not plan to eliminate predictors during the learning, we can
maintain a (data-dependent) distribution over all the predictors in H taking
account of each predictor’s total loss suffered so far. For some predictor
performing poorly, we put a small mass on it. We eliminate some predictor in
a soft way!

Decision-Theoretical Online Learning (DTOL). Since Learner is allowed to
reveal a probability distribution over the labels and revealing a distribution over
{−1, 1} can be translated to revealing a distribution overH, now, we can re-formulate
the online learning problem slightly and the modification will be, generally, useful
for bandit problems (and even reinforcement learning problems). We do not use
training samples at all. We get rid of the input space, label space, and hypothesis
class. Instead, we have a fixed set of K actions, denoted by [K]. You can view each action in

[K] as a hypothesis in H.
The learning protocol

5

is modified as follows.

Sometimes, Learner chooses
pt ∈ {e1, e2, . . . , eK}.

In each round t = 1, 2, . . . , T,
1. Learner plays a probability distribution pt ∈ [0, 1]K over all actions ;
2. Nature plays loss vector ℓt =

(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
;

3. Learner observes ℓt and suffer a loss ⟨pt , ℓt⟩ =
∑
j
pj,tℓj,t .

Remarks. (1) A probability distribution pt =
(
p1,t , p2,t , . . . , pK,t

)
is a vector with

all pj,t ≥ 0 and
∑
j
pj,t = 1. (2) In Step 2, Nature can give ℓt based on all the past

information and even pt.

For DTOL, we adapt the notion of regret shown in (7.1) to

R(T) := sup
ℓ1,ℓ2,...,ℓT

 T∑
t=1

⟨pt , ℓt⟩ −min
j∈[K]

T∑
t=1

ℓj,t

 .ℓj,t =
〈
ej , ℓt

〉
. (7.2)

Exponential Weights (Hedge). There is a no-regret algorithm for DTOL. It has
many names such as “Exponential Weights” and “Hedge”. The idea of Hedge is to
maintain weights over actions, and the weight of an action decays exponentially in
the total loss incurred by that action over all previous rounds.

Input: learning rate η ∈ (0, 1] .
Initialize: wj,0 = 1 for all j ∈ [K] .
For t = 1, 2, . . . , T,

1. Set pj,t =
wj,t−1∑

j′
wj′ ,t−1

for all j ∈ [K] ;

2. Observe loss vector ℓt for Nature ;
3. Suffer loss ⟨pt , ℓt⟩ =

∑
j
pj,tℓj,t ;

4. Update wj,t = wj,t−1 · e−ηℓj,t for all j ∈ [K] .

Theorem 7.8. For any sequence of loss vectors (ℓ1, ℓ2, . . . , ℓT) ∈
(
[0, 1]K

)T
, for any

η ∈ (0, 1], we have

T∑
t=1
⟨pt , ℓt⟩ −min

j∈[K]

T∑
t=1

ℓj,t ≤
η

2

T∑
t=1

〈
pt , ℓ

2
t

〉
+ log K

η
.

With η =
√

2 log K
T , we have R(T) ≤

√
2T log K.

Proof. of Theorem 7.8: Fix a sequence of loss vectors (ℓ1, ℓ2, . . . , ℓT). Let Zt =
K∑
j=1

wj,t =
K∑
j=1

wj,t−1 · e−η·ℓj,t =
K∑
j=1

e
−η

t∑
s=1

ℓj,s
be the total weight at the end of round t.

Note that Z0 = K. We have log ZT =
T∑
t=1

log Zt
Zt−1

+ log Z0.

6

Now, we construct the following upper bound to upper bound log ZT. We have

log Zt
Zt−1

= log

K∑
j=1

wj,t−1·e
−η·ℓj,t

K∑
j′=1

wj′ ,t−1

= log

 K∑
j=1

wj,t−1
K∑

j′=1
wj′ ,t−1

· e−η·ℓj,t

= log

 K∑
j=1

pj,t · e−η·ℓj,t

≤(a) log

 K∑
j=1

pj,t ·
(
1 − η · ℓj,t +

η2·ℓ2
j,t

2

)
= log

(
1 − η⟨pt , ℓt⟩ + η2

2

〈
pt , ℓ

2
t

〉)
≤(b) −η⟨pt , ℓt⟩ + η2

2

〈
pt , ℓ

2
t

〉
,

where step (a) uses e−x ≤ 1 − x + x2/2 and step (b) uses log(1 + x) ≤ x.

We also have a lower bound on log ZT, which is

log ZT = log

 K∑
j=1

e
−η

T∑
t=1

ℓj,t

≥ log

max
j∈[K]

e−η
T∑
t=1

ℓj,t

= max
j∈[K]

{
−η

T∑
t=1

ℓj,t

}
.

(7.3)

Now, we have

T∑
t=1
−η⟨pt , ℓt⟩ + η2

2

〈
pt , ℓ

2
t

〉
≥

T∑
t=1

log Zt
Zt−1

= log ZT − log Z0 ≥ max
j∈[K]

{
−η

T∑
t=1

ℓj,t

}
− log K.

⇒
T∑
t=1
⟨pt , ℓt⟩ −min

j∈[K]

{
T∑
t=1

ℓj,t

}
≤ η

2

〈
pt , ℓ

2
t

〉
+ log K

η
.

(7.4)

Remark. Note that in order to achieve the
√

2T log K regret bound, Hedge needs to

input the learning rate η =
√

2 log K
T , depending on the learning horizon T. Later, we

will show how to use doubling-trick to get rid of it!

Hedge with Doubling-Trick. The regret bound R(T) = O
(√

T log K
)

in The-

orem 7.8 relies on inputting the learning rate η =
√

2 log K
T which relies on the

knowledge of the time horizon T.

One may be curious to know is it possible to have a learning algorithm that does not
need to know T in advance, but still preserving the same regret bound?

The answer is yes!!!

We introduce a useful idea, called doubling-trick, for solving online learning prob-
lems. Geometric doubling vs

exponential doubling can be
found here.

Using (Geometric) doubling-trick, we can still achieve an O
(√

T log K)
)

regret

7

https://arxiv.org/pdf/1803.06971
https://arxiv.org/pdf/1803.06971

bound. The idea is to run the algorithm in epochs of lengths 20, 21, . . . , 2r , . . . until
stopping.

At the beginning of each epoch r ≥ 0, we set the learning rate ηr =
√

2 log K
2r based on

2r the length of the current epoch. At the end of epoch r, we reset the algorithm,
that is, we forget all the stuff we have learned. Progressing in this way, we will run
the algorithm for epochs r = 0, 1, . . . , d, where d =

⌈
log2(T + 1) − 1

⌉
= O(log T).

Theorem 7.9. The regret of Hedge with doubling-trick is O
(√

T log K
)
.

Proof. For any r ≥ 0, from (7.8), we have

2r+1∑
t=2r+1

⟨pt , ℓt⟩ − min
jr∈[K]

2r+1∑
t=2r+1

ℓjr ,t ≤
ηr
2

2r+1∑
t=2r+1

〈
pt , ℓ

2
t

〉
+ log K

ηr
≤ O

(√
2r log K

)
.

(7.5)
The regret is

R(T) = sup
ℓ1,ℓ2,...,ℓT

{
T∑
t=1
⟨pt , ℓt⟩ −min

j∈[K]

T∑
t=1

ℓj,t

}
= sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0

2r+1∑
t=2r+1

⟨pt , ℓt⟩ −min
j∈[K]

∑
r≥0

2r+1∑
t=2r+1

ℓj,t

}
The last epoch may not have
a full length, but we can add

0⃗′s to make the last epoch
have a full length ≤ sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0

2r+1∑
t=2r+1

⟨pt , ℓt⟩ −
∑
r≥0

min
jr∈[K]

2r+1∑
t=2r+1

ℓjr ,t

}
= sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0

(
2r+1∑

t=2r+1
⟨pt , ℓt⟩ − min

jr∈[K]

2r+1∑
t=2r+1

ℓjr ,t

)}
= sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0
O(

√
2r log K)

}
=

∑
r≥0
O(

√
2r log K)

= O
(√

T log K
)

.

(7.6)

8

7.3 bandits

Last time we have talked about Hedge/DTOL learning. We usually say it is a
full information game as Learner is able to observe each individual loss in ℓt =(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
. Starting from this lecture, we will talk about multi-armed bandit

(MAB) problems, where only some entry in the loss vector ℓt =
(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
is

revealed in each round.

Learning Protocol. We have a fixed arm set [K]. Actions and arms are
interchangeable. You can
view an arm as a hypothesis.

In each round t = 1, 2, . . . , T,
You can view Step 1 and
Step 2 occur simultaneously.

In Step 3, the remaining
losses other than ℓJt ,t are
still hidden to Learner,
which is the key difference
between DTOL and bandits.

1. Adversary/Environment selects a loss vector ℓt =
(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
that

is hidden to Learner ;
2. Learner pulls an arm Jt ∈ [K] ;
3. Learner suffers/observes loss ℓJt ,t associated with the pulled arm Jt.

The goal of Learner to pull a sequence of arms (J1, J2, . . . , JT) to minimize the total
loss by the end of round T.

Regret is defined as

R(T) :=
T∑
t=1

ℓJt ,t −min
j∈[K]

T∑
t=1

ℓj,t , (7.7)

which is a random variable as J1, J2, . . . , JT and all loss vectors are random.

Based on how the loss vectors (ℓ1, ℓ2, . . . , ℓT) are generated, we have

1. Adversary bandits: no distributional assumption is made.

2. Stochastic bandits: all ℓt are i.i.d. over time according to a fixed but unknown
probability distribution.

Learner needs to make a good balance between

1. Exploitation: Learner needs to pull arms that have smaller losses, as the goal is
to minimize the total loss.

2. Exploration: Learner needs to pull arms that have not been observed too often
to gain information.

7.3.1 Adversarial bandits.

In adversarial bandits, the loss vectors can be generated adversarially. We use pseudo
regret to measure performance of the algorithm used by Learner, defined as

R(T) := E
[

T∑
t=1

ℓJt ,t

]
−min

j∈[K]
E
[

T∑
t=1

ℓj,t

]
, (7.8)

Sometimes people call it
expected regret as it has an
expectation. I am following
the notation of Bubeck and
Cesa-Bianchi [BC12].

where the expectation is taken over (J1, J2, . . . , JT) and all loss vectors over T rounds.

EXP3 (Exponential weights for Exploration and Exploitation). It is quite
similar to Hedge, but in EXP3, only the weight associated with the pulled arm will
be updated at the end of each round t, as only the loss for that arm is revealed.

We construct an estimator ℓ̃t =
(
ℓ̃1,t , ℓ̃2,t , . . . , ℓ̃K,t

)
with each entry ℓ̃j,t = ℓj,t

1{Jt=j}
pj,t

. Importance sampling

9

It is not hard to see that for all arms not played in round t, we set ℓ̃j,t = 0. For

the pulled arm in round t, we set ℓ̃Jt ,t =
ℓJt ,t
pJt ,t

instead of ℓJt ,t by making it more

“important”! Actually, the constructed estimator ℓ̃j,t is an unbiased estimator of ℓj,t,
as we have

EJt∼pt

[
ℓ̃j,t

]
= EJt∼pt

[
ℓj,t

1{Jt=j}
pj,t

]
= ℓj,t . (7.9)

Input: learning rate η ∈ (0, 1] . Initialize: wj,0 = 1 for all j ∈ [K] .
For t = 1, 2, . . . , T,

1. Adversary/Environment selects a loss vector ℓt =
(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
that

is hidden to Learner ;
2. Learner computes pj,t =

wj,t−1∑
j′
wj′ ,t−1

for all j ∈ [K] ;

3. Learner plays arm Jt ∈ [K] according to pt =
(
p1,t , p2,t , . . . , pK,t

)
;

4. Learner computes loss estimates ℓ̃j,t =
ℓj,t
pj,t

1 {Jt = j} for all j ∈ [K] ;

5. Update wj,t = wj,t−1 · e−ηℓ̃j,t for all j ∈ [K] .

Theorem 7.10. Assume that all loss vectors are bounded with [0, 1] support. If EXP3 is

run with learning rate η =
√

log K
KT , the pseudo regret is at most

√
2TK log K.

Proof.

R(T) = E
[

T∑
t=1

ℓJt ,t

]
−min

j∈[K]
E
[

T∑
t=1

ℓj,t

]
= E

[
T∑
t=1

〈
pt , ℓ̃t

〉]
−min

j∈[K]
E
[

T∑
t=1

EJt∼pt

[
ℓ̃j,t

]]
= E

[
T∑
t=1

〈
pt , ℓ̃t

〉]
−min

j∈[K]
E
[

T∑
t=1

ℓ̃j,t

]
≤ E

[
T∑
t=1

〈
pt , ℓ̃t

〉]
− E

[
min
j∈[K]

T∑
t=1

ℓ̃j,t

]

= E

T∑
t=1

〈
pt , ℓ̃t

〉
−min

j∈[K]

T∑
t=1

ℓ̃j,t︸ ︷︷ ︸
regret of Hedge

≤(a) E

[
η

2

T∑
t=1

〈
pt , ℓ̃

2
t

〉
+ log K

η

]
=(b) E

 η2 T∑
t=1

∑
j∈[K]

pj,t
ℓ2
j,t

pj,t

 + log K
η

≤ η

2 KT + log K
η

.

(7.10)

Tuning η =
√

log K
KT gives the stated regret bound.

Step (a) uses Theorem 7.8 in previous lecture. Note that from (7.9), we know
EJt∼pt

[
ℓ̃j,t

]
∈ [0, 1]. So, it is safe to use Theorem 7.8 directly.

Step (b) uses EJt∼pt

[
ℓ̃2
j,t

]
= EJt∼pt

[
ℓ2
j,t

1{Jt=j}
p2
j,t

]
=

ℓ2
j,t

pj,t
.

10

Remark. Note that inputting η =
√

log K
KT into EXP3 means that it is not an anytime

learning algorithm. To make it anytime, you can set the learning rate ηt =
√

log K
tK in

each round t. The regret analysis is much more complicated (refer to Theorem 3.1
in [BC12]).

7.3.2 Stochastic bandits

In stochastic bandits, we have a fixed arm set [K] and each arm j ∈ [K] is associated
with a reward distribution vj . We can use ΘK := (v1, v2, . . . , vK) to specify a K-armed
stochastic bandit problem instance.

In each round t = 1, 2, . . . , T,
1. Environment generate a reward vector Xt =

(
X1,t , X2,t , . . . , XK,t

)
with

each Xj,t ∼ vj . This reward vector is hidden to Learner ;
2. Learner pulls an arm Jt ∈ [K] ;
3. Learner obtains/observes XJt ,t, the reward of the pulled arm Jt.

We still use pseudo regret to measure performance of Alg , defined as

R(Alg;ΘK; T) := max
j∈[K]

E
[

T∑
t=1

Xj,t

]
− E

[
T∑
t=1

XJt ,t

]
, (7.11)

where the randomness is taken over J1, J2, . . . , JT and all reward vectors. Note that
since we have statistical assumptions on reward vectors, different ΘK may give
different regret. That is also to say, for a fixed algorithm, when working over
different problem instances, the regret could be different.

The goal of Learner is to pull arms sequentially to minimize regret.

Let µj = EXj∼vj [Xj] denote the mean reward of arm j. Without loss of generality, we
assume the first arm is the optimal one, that is, µ1 > µj for all j , 1.

For any j , 1, let ∆j := µ1 − µj denote the mean reward gap. We also call it the
sub-optimality gap between the optimal arm 1 and the sub-optimal arm j. Let
∆1 = 0.

Now, we can rewrite R(T) as

R(T) = max
j∈[K]

E
[

T∑
t=1

Xj,t

]
− E

[
T∑
t=1

XJt ,t

]
= T · µ1 −

T∑
t=1

E
[
µJt

]
=

T∑
t=1

E
[
µ1 − µJt

]
=

T∑
t=1

E
[
∆Jt

]
=

T∑
t=1

∑
j∈[K]

E [1 {Jt = j}] · ∆j

=
∑

j∈[K]:∆j>0
E

T∑
t=1

1 {Jt = j}

︸ ︷︷ ︸
=:nj,T

· ∆j .

(7.12)

11

Let nj,t−1 :=
t−1∑
s=1

1 {Js = j} denote the total number of pulls for arm j by the end of

round t − 1. Then, E
[
nj,T

]
is the expected number of pulls of arm j by the end of

learning and ∆j is the singe round performance loss when pulling a sub-optimal
arm j.

From the last step in (7.12), it is not hard to see, to minimize the regret, it is
important to control the number of pulls of sub-optimal arms. But we have no
idea which arms are sub-optimal. So, we have to pull each arm a certain amount of
times in order to learn whether they are sub-optimal or not confidently. We need
information!

Here, I should mention exploitation-vs-exploration.

Upper Confidence Bound (UCB). It is inspired by the principle of being optimistic
in the face of uncertainty. Usually, all UCB-based algorithms are optimistic learning
algorithms and follow a template to decompose regret. Also, they can be justified by
concentration inequalities, e.g., Hoeffdin’s inequality.

Recall ΘK := (v1, v2, . . . , vK) is the bandit instance we are interested in. Actually,
for developing regret minimization algorithm, we are interested in (µ1, µ2, . . . , µK).
Note that only the mean reward gaps appear in the regret.

Recall nj,t−1 =
t−1∑
s=1

1 {Js = j} is the number of pulls of arm j by the end of round t − 1.

Now, let µ̂j,nj,t−1
:= 1

nj,t−1

t−1∑
s=1

Xj,s1 {Js = j} be the empirical mean of arm j by the end

of round t − 1, i.e., the average of nj,t−1 iid random variables according to vj .

Now, we can construct an empirical model Θ̂t =
(
µ̂1,n1,t−1

, µ̂2,n2,t−1
, . . . , µ̂K,nK,t−1

)
.exploitation-vs-exploration

Hoeffding’s inequality

upper confidence bound

w.t.p. µ̄1,t ≥ µ1

Assume all reward distributions have a [0,1] support. The idea of UCB12, an
algorithm in UCB family, is to construct an optimistic model Θt =

(
µ̄1,t , µ̄2,t , . . . , µ̄K,t

)
with each j ∈ [K]

µ̄j,t = µ̂j,nj,t−1
+

√
2 ln(t)
nj,t−1

. (7.13)

In each round t = 1, 2, . . . , T,
1. Environment generate a reward vector Xt =

(
X1,t , X2,t , . . . , XK,t

)
with

each Xj,t ∼ vj . This reward vector is hidden to Learner ;

2. Learner constructs the upper confidence bound µ̄j,t = µ̂j,nj,t−1
+

√
2 ln(t)
nj,t−1

for all j ∈ [K] ;
3. Learner pulls the arm with the highest upper confidence bound, i.e.,

Jt ∈ arg max
j∈[K]

µ̄j,t ;

4. Learner observes XJt ,t, the reward of the pulled arm Jt ;
5. Learner updates nJt ,t = nJt ,t−1 + 1 and the empirical mean µ̂Jt ,nJt ,t

.

2UCB1 works for all Sub-Gaussian reward distributions.

12

Theorem 7.11. If all reward distributions in ΘK have a [0, 1] support, we have

R(UCB1;ΘK; T) ≤
∑

j∈[K]:∆j>0

8 ln T
∆j

+ Constant .

Proof. Fix a sub-optimal arm j, we upper bound E[nj,T].

Let Lj := □·ln T
∆2
j

, where □ is a constant that will be tuned later. You can view Lj as the
amount of observations
needed to conclude that this
arm is not the optimal one.We have

E
[
nj,T

]
= E

[
T∑
t=1

1 {Jt = j}
]

= E
[

T∑
t=1

1
{
Jt = j, nj,t−1 ≤ Lj

}]
+ E

[
T∑
t=1

1
{
Jt = j, nj,t−1 > Lj

}]
= E

[
T∑
t=1

1
{
Jt = j, nj,t > nj,t−1, nj,t−1 ≤ Lj

}]
+ E

[
T∑
t=1

1
{
Jt = j, nj,t > nj,t−1, nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
Jt = j, nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
Jt = j, µ̄j,t ≥ µ̄1,t , nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
Jt = j, µ̄j,t ≥ µ1, nj,t−1 > Lj,t

}]
+ E

[
T∑
t=1

1
{
µ̄1,t ≤ µ1, nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
µ̄j,t ≥ µj + ∆j , nj,t−1 > Lj

}]
+ E

[
T∑
t=1

1
{
µ̄1,t ≤ µ1

}]
.

(7.14)

Now, we set Lj = 8 ln(T)
∆2
j

. Then, we have ∆j =
√

8 ln T
Lj

.

E
[

T∑
t=1

1
{
µ̄j,t ≥ µj + ∆j , nj,t−1 > Lj

}]
= E

[
T∑
t=1

1
{
µ̂j,nj,t−1

+
√

2 ln(t)
nj,t−1

≥ µj +
√

8 ln T
Lj

, nj,t−1 > Lj

}]
≤ E

[
T∑
t=1

1
{
µ̂j,nj,t−1

+
√

2 ln(T)
nj,t−1

≥ µj +
√

8 ln T
nj,t−1

, nj,t−1 > Lj

}]
≤ E

[
T∑
t=1

1
{
µ̂j,nj,t−1

≥ µj +
√

2 ln T
nj,t−1

, nj,t−1 > Lj

}]
≤

T∑
t=1

t−1∑
h=Lj

E
[
1
{
µ̂j,h ≥ µj +

√
2 ln T
h

}]
≤ T2 · e−2·2 ln T

= O(1) .

(7.15)

Similarly, we have E
[

T∑
t=1

1
{
µ̄1,t ≤ µ1

}]
= O(1).

Now, we have E
[
nj,T

]
≤ Lj + O(1) = 8 ln T

∆2
j

+ O(1), which gives If problem-dependent
parameters, e.g., all ∆j ,
appear in the regret bound,
we say it is a
problem-dependent regret
bound.

R(UCB1;ΘK; T) =
∑

j∈[K]:∆j>0
E
[
nj,T

]
· ∆j

≤
∑

j∈[K]:∆j>0

8 ln T
∆j

+ Constant .
(7.16)

13

Worst-case Regret Bound for UCB1. Let us consider a 2-armed bandit problem,
where the first arm is the optimal one and the second arm has a mean reward gap
∆ = 1

T . Clearly, according to Theorem 7.11, we have R(UCB1;ΘK; T) = 8T ln T,
which is even worse than T. Does it mean UCB1 fails this learning task?

To answer this question, we are motivated to study the worst-case regret bound,
defined as

sup
ΘK∈ΠK

R(UCB1;ΘK; T) , (7.17)

where Π is a set of distributions with a [0, 1] support.

Theorem 7.12. We have

sup
ΘK∈ΠK

R(UCB1;ΘK; T) ≤ O(
√

KT ln T) . (7.18)

Proof. Fix ΘK and set ∆ :=
√

K ln T
T . We have

R(UCB1;ΘK; T) =
T∑
t=1

∑
j∈[K]

E [1 {Jt = j}] · ∆j

=
T∑
t=1

∑
j∈[K]:∆j≤∆

E [1 {Jt = j}] · ∆j +
T∑
t=1

∑
j∈[K]:∆j>∆

E [1 {Jt = j}] · ∆j

≤ T · ∆ +
T∑
t=1

∑
j∈[K]:∆j>∆

E [1 {Jt = j}] · ∆j

≤ T · ∆ +
∑

j∈[K]:∆j>∆

(
8 ln T
∆j

+ O(1)
)

≤ T · ∆ +
∑

j∈[K]:∆j>∆

(
8 ln T
∆

+ O(1)
)

≤ T · ∆ + K8 ln T
∆

+ O(K)
= O(

√
KT ln T) .

(7.19)

One may ask whether UCB1 is optimal in the worst case sense or not. The definition
of minimax optimality, a joint of property between a family of algorithms and
distributions, can answer this question. We skip the proof here and only show the
conclusion: UCB1 is minimax optimal up to an extra

√
ln T factor.

14

Arm Elimination Algorithm. As UCB1 only has an O(
√

KT ln T) worst-case regret
bound, now, we show an algorithm that enjoys an O(

√
KT ln K) worst-case regret

bound, which is slightly better than UCB1.

Suppose we have a special K-armed bandit problem with one arm having a mean
reward µ∗ and all the remaining arms having the same mean reward µ∗ − ∆, i.e., the
mean reward gap for any sub-optimal arm is ∆. Learner knows ∆ and µ∗ but does not
know which arm is the optimal one. To solve this special bandit problem, we can use
the following Arm Elimination algorithm [AO10]:

Input: [K], µ∗, ∆, and T.

1. Pull each arm n = 2 ln(T∆2)
∆2 times and compute the empirical mean µ̂j,n

of each arm j ∈ [K] ;
2. Commit to the arm with the highest empirical mean until the end of the

learning, i.e., pull arm J = arg maxj∈[K] µ̂j,n for the remaining T − Kn
rounds.

Theorem 7.13. Arm Elimination enjoys an O
(

K ln(T∆2)
∆

+ K
∆

)
problem-dependent regret

bound. It also enjoys an O(
√

KT ln K) worst-case regret bound.

Proof. Let i∗ denote the index of the optimal arm. Without loss of generality, we
assume it is unique. We first upper bound the probability that the committed arm is
not the optimal one. We have

P {J , i∗} ≤ P
{

max
j∈[K]\{i∗}

µ̂j,n ≥ µ̂i∗,n

}
≤

∑
j∈[K]\{i∗}

P
{
µ̂j,n ≥ µ̂i∗,n

}
≤ (K − 1) · 2e−n

∆2
2 .

(7.20)

The problem-dependent regret R(T) is

(K − 1) · n · ∆︸ ︷︷ ︸
regret in Step 1

+P {J , i∗} · (T − Kn) · ∆︸ ︷︷ ︸
regret in Step 2

≤ K · 2 ln(T∆2)
∆2 · ∆ + K · 2e−n

∆2
2 · T · ∆

= 2K ln(T∆2)
∆

+ K · 2
T∆2 · T · ∆

= O
(

K ln(T∆2)
∆

+ K
∆

)
.

(7.21)

Let ∆̃ := e
√

K√
T

. If ∆ ≤ ∆̃, we have the regret is at most T · ∆̃ = e
√

KT. If ∆ > ∆̃, we

have O
(

K ln(T∆2)
∆

+ K
∆

)
≤ O

(
K ln(T∆̃2)

∆̃
+ K

∆̃

)
= O(

√
KT ln K), where the inequality uses

the fact that f (x) = ln(Tx2)
x is a decreasing function when Tx2 ≥ e2.

Arm Elimination Algorithm with Doubling-Trick. Since we cannot assume we
know ∆ in advance and all sub-optimal arms have the same ∆, we cannot use Arm
Elimination directly for solving practical learning problems. A good thing is we can
introduce doubling-trick into Arm Elimination to make it work by estimating ∆j .

15

Input: [K] and T.
Initialization: Set ∆̂1 = 0.5 and B1 = [K].It is also fine to set ∆̂0 = 0

and start from r = 0. For epochs r = 1, 2, . . . up to log T,
1. For each arm j ∈ Br , pull it until the total number of pulls hits nr =

2 ln(KT∆̂2
r)

∆̂2
r

;

2. All arms i ∈ Br such thatYou can view Br as a version
space in batch learning.

µ̂i,nr
+

√
log(KT∆̂2

r)
2 · nr︸ ︷︷ ︸

upper confidence bound of arm i

≥ max
j∈Br

µ̂j,nr
−

√
log(KT∆̂2

r)
2 · nr︸ ︷︷ ︸

lower confidence bound of j∗r ∈ arg maxj∈Br
µ̂j,nr

.

(7.22)
will be kept in Br+1.This is a picture for this.

Set ∆̂r+1 = ∆̂r
2 = 0.5r+1.

If |Br+1| = 1, commit to that arm until the end of the learning.

Theorem 7.14. ArmElimination with Doubling-Trick has a
∑

j∈[K]:∆j>0
O

(
ln(T∆2

j)
∆j

+ ln K
∆j

)
problem-dependent regret bound and an O(

√
KT ln K) worst-case regret bound.

Proof. Let i∗ denote the index of the unique optimal arm. Fix a sub-optimal arm j.

Let rj =
⌈
log

(
1
∆j

)⌉
. Then, we have 0.5∆j ≤ 0.5rj = ∆̂rj ≤ ∆j .

We claim that the probability that this arm j is kept in Brj+1 is very low. Formally,
we have

P
{
j ∈ Brj+1

}
= P

j ∈ Brj , µ̂j,nrj
+

√
log(KT∆̂2

rj)
2·nrj

≥ max
j∈Brj

µ̂j,nrj
−
√

log(KT∆̂2
rj)

2·nrj

≤ P

µ̂j,nrj
+

√
log(KT∆̂2

rj)
2·nrj

≥ max
j∈Brj

µ̂j,nrj
−
√

log(KT∆̂2
rj)

2·nrj
, i∗ ∈ Brj

+ P

µ̂j,nrj
+

√
log(KT∆̂2

rj)
2·nrj

≥ max
j∈Brj

µ̂j,nrj
−
√

log(KT∆̂2
rj)

2·nrj
, i∗ < Brj

≤ P

µ̂j,nrj
+

√√
log(KT∆̂2

rj)

2 · nrj
≥ µ̂i∗,nrj

−

√√
log(KT∆̂2

rj)

2 · nrj

︸ ︷︷ ︸
UCB analysis, Hoeffding’s inequality

+ P {i∗ < B2} + P {i∗ ∈ B2, i
∗ < B3} + . . . + P

{
i∗ ∈ B2, . . . , i

∗ ∈ Brj−1, i
∗ < Brj

}
≤ 2

KT∆̂2
rj

+
rj−1∑
r=1

2
T∆̂2

r

≤
rj∑
r=1

2
T∆̂2

r

=
rj∑
r=1

2
T·0.52r

= O
(

1
T·0.52rj

)
= O

(
1

T·∆2
j

)
.

(7.23)

16

The total regret from this sub-optimal arm j is at most

nrj · ∆j︸ ︷︷ ︸
regret until the end of epoch rj

+ T · P
{
j ∈ Brj+1

}
· ∆j︸ ︷︷ ︸

regret for the remaining rounds

≤
2 ln(KT∆̂2

rj
)

∆̂2
rj

· ∆j + T · O
(

1
T·∆2

j

)
· ∆j

≤
2 ln(KT∆2

j)

0.25∆2
j
· ∆j + T · O

(
1

T·∆2
j

)
· ∆j

= O
(

ln(T∆2
j)

∆j
+ ln K

∆j

)
.

(7.24)

Summing over all the sub-optimal arms, we have the problem-dependent regret is
at most

R(T) =
∑

j∈[K]:∆j>0

O

 ln(T∆2
j)

∆j
+

ln K
∆j

 . (7.25)

Let ∆̃ := e
√

K ln K√
T

. We have

R(T) ≤ T · ∆̃ +
∑

j∈[K]:∆j>∆̃

O
(

ln(T∆2
j)

∆j
+ ln K

∆j

)
≤ e

√
KT ln K +

∑
j∈[K]:∆j>∆̃

O
(

ln(T∆̃2)
∆̃

+ ln K
∆̃

)
≤ e

√
KT ln K + O

(
K ln(T∆̃2)

∆̃
+ K ln K

∆̃

)
≤ e

√
KT ln K + O

(
K ln(e2K ln K)

e
√

K ln K√
T

+ K ln K
e
√

K ln K√
T

)
= O(

√
KT ln K) .

(7.26)

We have

P {i∗ < B2} = P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
< max

j∈B1\{i∗}
µ̂j,n1

−
√

log(KT∆̂2
1)

2·n1

}
≤

∑
j∈B1\{i∗}

P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
< µ̂j,n1

−
√

log(KT∆̂2
1)

2·n1

}
≤

∑
j∈B1\{i∗}

(
P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
≤ µ1

}
+ P

{
µ̂j,n1

−
√

log(KT∆̂2
1)

2·n1
≥ µj

})
≤ 2

T∆̂2
1

.

(7.27)

P {i∗ ∈ B2, i
∗ < B3}

= P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
≥ max

j∈B1

µ̂j,n1
−
√

log(KT∆̂2
1)

2·n1
, µ̂i∗,n2

+
√

log(KT∆̂2
2)

2·n2
< max

j∈B2\{i∗}
µ̂j,n2

−
√

log(KT∆̂2
2)

2·n2

}
≤ P

{
µ̂i∗,n2

+
√

log(KT∆̂2
2)

2·n2
< max

j∈B2\{i∗}
µ̂j,n2

−
√

log(KT∆̂2
2)

2·n2

}
≤ 2

T∆̂2
2

.

(7.28)

Similarly, we have

P
{
i∗ ∈ B2, . . . , i

∗ ∈ Brj−1, i
∗ < Brj

}
≤ 2

T∆̂2
rj−1

.

17

references

[AO10] Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds
for the stochastic multi-armed bandit problem. Periodica Mathematica
Hungarica 61.1-2 (2010), pages 55–65.

[BC12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foundations and
Trends® in Machine Learning 5.1 (2012), pages 1–122. arXiv: 1204.5721.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

18

https://link.springer.com/article/10.1007/s10998-010-3055-6
https://link.springer.com/article/10.1007/s10998-010-3055-6
https://arxiv.org/abs/1204.5721
https://arxiv.org/abs/1204.5721
https://arxiv.org/abs/1204.5721
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html

	Online Binary Classification in Realizable Setting
	Decision-Theoretical Online Learning and Exponential Weights (Hedge)
	Bandits
	Adversarial bandits.
	Stochastic bandits

