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Armed with our knowledge of online learning from Chapter 7, let’s now return to

the offline setting from Chapters 1, 2 and 4 to 6. Should this have just come
before Chapter 72 Probably,
In the offline setting, so far we’ve only done upper bounds: in this case, we know but the teaching timing

we can learn at least this well. But if we only know upper bounds, we never really wast't right....
know how tight they are, and so we can never really know if one algorithm is better

than another, or if a learner will really fail in some situation or if it’s just that our

proof wasn’t good enough.

One way to approach this problem is with asymptotic results, as described e.g.
by [Bach24] who summarizes and translates results from the classic textbook of
van der Vaart [vdV98]. For instance, if H = {h,, : w € W} for some open set of
possible parameters W C RP, the loss is sufficiently “nice” as a function of w, and
there’s a minimizer h* = h,,, then as long as some extra “niceness” assumptions also
hold, it’s true for the ERM that

(B Lp(hs)-Lp(i) = © (% Tr[[vfuwh*)] "B [(Vullh, 2)(Vullh, z))le:w*]]].
This gives a fast 1/m rate — better than the 1/4/m we’ve gotten so far (except in
A1l Q4) — and along the way it actually also tells us that w — w* is asymptotically
Gaussian, and some other nice things. If we can evaluate the stuff inside the trace,
we could also then explicitly say “this H converges faster than that one,” or compare
to an asymptotic rate for some different algorithm. But: the “niceness” assumptions
don’t always hold, the expressions aren’t always easy to analyze, and they’re purely
asymptotic results, so we don’t know whether they’re a good approximation after
m = 20 or only after m = 100, 000, 000, 000.

Instead, let’s use a different route to lower bounds, specifically focusing on binary
classifiers where these things are easiest.

8.1 NO FREE LUNCH FOR HIGH-VC CLASSES

THeOREM 8.1. Let H be a hypothesis set of binary classifiers over X'. Let m < VCdim(H)/2. This result is similar to

Then, using 0-1 loss, Theorem 5.1 of [SSBD14],
but incorporating the idea of

1 VC dimension (which they

inf sup Pr (LD(A(S)) > —) > l, haven’t introduced yet at
A D realizable by H S~Dm,A 8 7 that point).

where the infimum over A is over all (possibly randomized) learning algorithms which
return hypotheses in 'H, and the probability is over both the sampling of a training set
and any internal randomness in A.

For more, visit https://cs.ubc.ca/~dsuth/532D/24w1/.


https://cs.ubc.ca/~dsuth/532D/24w1/

Before we prove this, let’s unpack the quantifiers a bit. For any m and any learning
algorithm A, there is some realizable distribution D such that A has at least constant
probability of failing with m samples, i.e. getting at least 1/8 error. Note that this
distribution depends on m and on A.

This result immediately implies the following;:

Cororrary 8.2. Any H with VCdim(H) = oo is not PAC learnable.

This doesn’t necessarily mean that there’s any single D that A fails on forever. But,
at any m, there’s still some distribution that’s too hard. This removes the possibility
of PAC learning, which needs to work for all distributions at a uniform rate.

Proof of Theorem 8.1. We're first going to pick a shatterable set of size 2m, X =
{X1,..., X2} C X; at least one such set must exist, since 2m < VCdim(H). Then we’ll
pick the marginal distribution of x, D,, to be a discrete uniform distribution on X'
To construct our hard D, we’re going to use this D, and then somehow assign a y
for each x.

Since we’re being totally generic with respect to A, it’s going to be hard to say which
v | x labeling rule in particular is going to be hard for A to learn. So, as a proof
technique, we’re going to start with a random labeling rule, and then settle on a
particular one later. Specifically, for each vector of possible labels y € {0, 1}", choose
some particular f € H such that f(x;) = y; for all j; there must be at least one, since
H shatters X'. Let F be the set of these functions (of size exactly 2"), and choose
f ~ Unif(F), i.e. we're picking a labeling function uniformly from F. For any f, let
the distribution D) denote the distribution that you get by sampling x ~ D, and
then assigning v | x = f(x).

Now, for any sample of inputs S, = (xy,..., x,,,), we can implicitly construct a sample
of pairs S = ((x1, f(x1)),..., (X, f(x))). Run the algorithm A to get hg = A(S),
which itself might be random given S. Its expected loss over the process of choosing
a distribution, sampling a training set, and running the algorithm is

iy s B B L0 (AG) =EEE E L([A(S)](x) = f(x)).

Using the law of total expectation, let’s break this expectation up based on whether
the test x is in the training data S or not:

f,IsE‘fAIE]l(ES(X) = f(x)) = f,IEA Pr(x ¢ SX)XE%X[]I(ES(X) % f(x)) | x & Sy]

+Pr(xeS,) E [L(hg(x) = f(x)) ]| x € S,]|

x~D,

For the second term, we’re not going to worry about what the algorithm does on the
data it’s actually seen, since the algorithm might be good: we’ll just bound this as
being at least zero.

For the first term, we know since D, is uniform and |S,| < m that
| X\ Sy
%]

m
> — =
2m

1
Pr(x ¢ Sy) = =.
r(x € S,) -
Also, since our labels f(%;) are uniformly random and totally independent of one
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another, and S is independent of those labels for points %
with f is just a pure coin flip: E,[1(hs(x) = f(x)) | x € Sy] =

¢ S, whether hg agrees
1
7.

Combining, we know that

E E m (f)
f~Unif(F) S~Djl,

But, if the average over f of the expected loss ESND(% Lp(f)(fts) is at least %, then there

must be at least one particular f such that the expected loss is at least %1! Pick one
and call it g; this will be the labeling function claimed by the theorem.

We’ve now shown the average loss is large, but we still want to show that the loss
has high probability of being large. Now, Lp(g)(fzs) is a random variable bounded
in [0, 1], and we already know one way to bound those variables in terms of their
means: Markov’s inequality. But Markov’s inequality bounds the probability of
things being big, and we want to bound the probability of this being small. So we’ll
need to switch it around, which is sometimes called “reverse Markov”:

) 1, 1-ELp,(hs) 1\8 6
1\ _ (&) _
Pr(Lp,(hs) < §) = Pr(l —Lp,21- §) < T < (1 - —); =5
Thus, for the realizable D(,) we picked above,
Pr (Lp, (hs)> §) > O
g D(g) S 8) = 7

8.1.1 Interpretation

Theorem 8.1 is sometimes called a “no free lunch” theorem, in that there is no
algorithm that always works (in the sense of PAC learning): every algorithm fails on
at least one distribution.

In fact, basically this same proof strategy implies [Wol96] that, if you only care
about the “off-sample” error (the average error on (x,y) | x € Sy), there are just
as many possible distributions where your predictor is right as where it’s wrong,
regardless of your learning algorithm. If you don’t assume anything about the world,
all algorithms perform the same on average over all possible worlds.

This is in some ways a deep philosophical problem, called the problem of induction
and generally credited to David Hume. The fact that the sun rose every day so
far doesn’t, from “pure first principles,” imply anything about whether it will rise
tomorrow: we just decide to prefer “simple” explanations, i.e. we choose some H
that we like. But that doesn’t really answer which H would be good.

Actually, VC or Rademacher theory can’t answer that problem either: it’s preferable
to choose a ‘H with small complexity, but since Rad((H + {f})|s) = Rad(H]s), and
VCdim(H) = VCdim({x — h(x)f(x) : h € H}) for £1-valued h and f, we haven’t
actually seen any objective notion of a “simple hypothesis”: only ways to say that
sets of hypotheses are all similar enough to one another.

Sometimes people get a little mystical about no free lunch theorems, though —
e.g. https://no-free-lunch.org says that this result “calls the whole of science
into question.” But the world is not uniformly random; we know from experience
that some kinds of H tend to work better than others. so, although there is some
distribution that every algorithm fails on, it’s not the case in the world we live in that
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This proof technique is
known as the probabilistic
method, and often
attributed to Paul Erdds.


https://en.wikipedia.org/wiki/Problem_of_induction
https://no-free-lunch.org

all algorithms are the same as each other. (And, interestingly, there are (impractical)
learning algorithms that are always at least as good as any other algorithm, up to

(huge) constants: free-lunch.org used to (but, alas, no longer) point to the paper
of Nakkiran [Nak21].)

8.1.2 Aside: “learning is NP-hard”

Another example of this kind of claim (based on a different underlying theorem)

is given by van Rooij et al. [VRoo+24], who say (in reaction to recent progress of
LLMs):

[We present]| a mathematical proof of inherent intractability (formally,
NP-hardness) of the task that [...] AI engineers set themselves. This
intractability implies that any factual Al system created in the short-run
(say, within the next few decades or so) is so astronomically unlikely to
be anything like a human mind, or even a coherent capacity that is part
of that mind, that claims of ‘inevitability’ of AGI within the foreseeable
future are revealed to be false and misleading. We realize that this
implication may appear counterintuitive given everyday experiences and
interactions with currently impressive Al systems, but we will explain
why it is not. As we will carefully unpack later in the paper, it is a mistake
to assume that Al systems’ performance is either currently human-level,
or will simply continue to improve and the systems will soon constitute
human-level A(G)I. The problem is that—in line with our intractability
result—the performance cannot scale up.

What they actually prove (their Theorem 2) can be rephrased roughly as follows:

Tueorem 8.3 (“Ingenia Theorem”, [VRoo+24]). Let X = {0, 1}N and ) a fixed finite set.
For each x, define Y, C Y to be the set of “acceptable” responses to an input x. Let H be a
hypothesis class containing all functions implemented by circuits with complexity at most
a parameter D; for instance, for each N and D there exists a class of feedforward neural
networks satisfying this. A realizable distribution D is one where Pr(y ) .p(y € Vy) = 1
and there exists h* € H with Pr(yy).p(h*(x) € Vx) = 1. Suppose that there exists a
polynomial-time algorithm, allowed to randomly sample from D as a constant-time
operation, which with probability at least (J(1/N®) for some o > 0 successfully identifies
a hypothesis h € H satisfying

| Vsl
Pr (I ) > N
(x,y>r~D( (x) € Vx) 2 (37 + en

for some ey = Q(1/NP), for some p > 0. Then NP C BPP.

This conclusion contradicts a very common assumption in complexity theory. So,
although we don’t 100% know this for a fact, we should probably think that this
implies there is no polynomial-time algorithm satisfying the above properties, i.e.
that can improve on random guessing.

Does this imply that “AI” is computationally infeasible? Not really. Assuming
NP ¢ BPP, it implies that for any given polynomial-time learning algorithm, there
exist some distributions which cannot be efficiently learned. (This is true even for
distributions which are themselves efficiently computable. The universal induc-
tion approach considered e.g. by Nakkiran [Nak21] finds computationally-efficient
hypotheses but it does so in an extremely computationally-inefficient way.)
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This obviously doesn’t mean, though, that every distribution can’t be efficiently
learned. For instance, the distribution that always says “banana please” in response
to any input at all can be. Is “human-like behaviour” a distribution that can be
efficiently learned by some algorithm? I don’t know (other than to say that, well,
humans do it), and this theorem doesn’t say either!

8.2 LOWER BOUNDS

Theorem 8.1 only applies when m < VCdim(H)/2. We can use it, though, to also get
a quantitative lower bound for higher m:

THEOREM 8.4. Let H be a set of binary classifiers over X such that VCdim(H) > 2. For
any m > VCdim(H)/2,

VCdi -1 1
inf sup Pr (Lp(A(S)) > im(H) >
A D realizable by H S~Dm 32m 100

where Lp uses zero-one loss, and the infimum over A is over all learning algorithms
returning hypotheses in 'H.

Proof. Choose a set X = {%,..., %4} of size d = VCdim(H) which can be shattered
by H. We’re going to choose a distribution that puts most of its probability mass on
%1, in such a way that we’re likely to see less than half of the other points from the
distribution. Specifically, for an ¢ > 0 to choose later,

P =%)=1-5¢ foralli>1, P =X%;) = .

x~zgx(x x1) € orall i > x~21;x(x %;) 1

Now, let D be the distribution over {%,,..., %;} selected by Theorem 8.1 with m =

(d —1)/2, and let f € H be the labeling function chosen in D. Our distribution will
be found by sampling x ~ D, and then letting v | x = f(x).

Now, we’re going to prove that it’s fairly likely that samples from D, contain at most
(d — 1)/2 of the non-%; points. How many points we don’t see is a little annoying to
characterize exactly, but we can get a bound based on

m
Q=) 1x# %)
i=1
if we repeat any of the non-%; points, Q will double-count them, but it’s a valid
upper bound on the number of non-%; points we see. Notice that Pr(x; # %;) = ¢,

and each of the indicators is iid Bernoulli(¢), so Q ~ Binomial(m, €).

A standard tail bound for binomial variables, Proposition 8.5 with y = 1, shows that

Pr(Q > 2me) < exp (—%ma).

To use this result, we want 2me = %(d —1); so, pick e = (d — 1)/(4m). This is valid,

since m > d/2 implies that ¢ < %% < % Then we see less than half of the non-x;
points with probability at least

d-1

1—e mod-1)_ >1-e ( 1)>007
*P B4 NN TR A A WD) At

since 1 —exp(—1/12) = 0.07995.

This theorem roughly

follows [MRT18, Theorem
3.20]. That result merges
this result with Theorem 8.1
in a way I find really hard
to follow; their theorem
statement is also obviously
incorrect when

m < (VCdim(H) — 1)/32.
[SSBD14, Theorem 6.8]
states a similar result, but
leaves this part as an
exercise.



This name is only, as far as I
know, used by [SSBD14].

[SSBD14] use two-sided

uniform convergence: in the
setting of the theorem here,
one-sided bounds imply
two-sided ones, but (a)
one-sided is what we really
use, and (b) in more general
settings the distinction can
matter.

So, with more than 7% probability, a sample of size m from D will contain at most
(d —1)/2 of the non-%; points. Then, Theorem 8.1 tells us that with probability at
least 1/7, Lp(A(S)) > %. If this happens, this implies that Lp(.A(S)) > %8 = gz;nlw

since the total probability of the non-%; points is exactly €. So, we have more than a

1 7% = 1% chance of seeing 3‘%}1 error on D, as desired. O

ProposiTION 8.5. If X ~ Binomial(m, p), then for any y > 0 it holds that
Pr(X > (1 + y)mp) < exp (—%mmﬂ).

This is an immediate consequence of the multiplicative Chernoff bound, which is
e.g. Theorem D.4 of [MRT18]. The proof technique is different from how we proved
Hoeffding/etc, and I don’t know if it holds as generally, but you should be able to
follow their proof (which uses their Theorem D.3) just fine.

AGNosTIC cASE  You can get a bigger error if you don’t require D to be realizable:
Theorem 3.23 of [MRT18] gives that for any m and H,

: : [ d 1
1rfl‘f5111)p Pr|Lp(A(S)) — ;11275 Lp(h) > 320m) > o (8.1)

Section 28.2 of [SSBD14] is similar.

More GeNERALLY These styles of theorems are sometimes called “minimax bounds,”
and algorithms are called “minimax-optimal” or simply “minimax” if they achieve
the lower bound (usually only up to constants, though that’s also sometimes called
“rate-optimal”). In the VC notes we showed that ERM gets error 5p(\/vl/_m), which
combined with the agnostic result above shows that ERM is (up to log factors)
rate-optimal for finite-VC classes. Although we haven’t shown this (see Section 28.3
of [SSBD14] or 6.5 of [Zhang23]), ERM for binary classifiers achieves 5p(d/m) error
in the realizable setting, so by Theorem 8.4 ERM is also (up to log factors) minimax
rate-optimal for realizable distributions too.

Minimax rates are also available for various other problems, including things like
linear regression, density estimation, and optimization. We won’t talk a lot about
lower bounds in this course, but they can be really nice to know whether your
learning algorithm is “good” or not. (The problem, though, is they tend to be
extremely “worst-case,” and might not be too informative about problems you’re
likely to actually see — similar to no free lunch arguments.)

8.3 THE “FUNDAMENTAL THEOREM OF STATISTICAL
LEARNING”

We’ve now shown all the necessary parts for a pretty complete qualitative under-
standing of PAC learning for binary classifiers.

THeOREM 8.6 (Fundamental Theorem of Statistical Learning). For H a class of func-
tions h: X — {0, 1} and with the 0-1 loss, the following are equivalent:

1. Uniform convergence: for all ¢, 6 € (0, 1), we have that sup,4, Lp(h) — Lg(h) < €
with probability at least 1 — & as long as m > mVC(g, §) < co.

2. Any ERM rule agnostically PAC-learns H.

3. H is agnostically PAC learnable.
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4. Any ERM rule PAC-learns H.
5. H is PAC learnable.
6. VCdim(H) < oo.

Proof. 1 implying 2 is our usual argument:

Lp(hs) < Lg(hs) + sup Lp(h) = Ls(h) < Ls(h*) + € < Lp(h*) + [Ls(h*) = Lp(h*)] + &,

plus Hoeffding on Lg(h*) — Lp (k).

2 implying 3, and 4 implying 5, are immediate.

2 implying 4, and 3 implying 5, is also straightforward from the definitions.
Corollary 8.2 shows that 5 implies 6.

6 implying 1 is shown by Theorem 6.11. O

Theorem 6.8 of [SSBD14] gives a quantitative version, bounding the sample com-
plexities in terms of the VC dimension, by collecting lower bounds like Theorem 8.4
and (8.1) and upper bounds like Theorem 6.11 and the realizable equivalent that
we didn’t prove.
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