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Recall the decomposition of error we made back in Section 1.4:

LD(ĥS) − Lbayes︸            ︷︷            ︸
excess error

= LD(ĥS) − inf
h∈H

LD(h)︸                  ︷︷                  ︸
estimation error

+ inf
h∈H

LD(h) − Lbayes︸                ︷︷                ︸
approximation error

.

We’ve talked a lot about the estimation error of ERM, bounding it in terms of
Rademacher complexity or (when applicable) VC dimension. What we haven’t
really talked about yet is the approximation error. We drew some examples with
polynomials in Figure 1.1, but if we don’t know what the optimal predictor looks
like. . . what should we do?

There are some particular cases where we can analyze this approximation error gap
mathematically, if we assume things about the form of D. But those assumptions
usually rely on constants that are hard to know for any specific problem, and there’s
not usually a clear way to estimate them (or the Bayes error) from data, either.

The practical solution is generally to just try a bunch of different H and/or a bunch
of different learning algorithms, then pick the best based on a validation set V.
This is a good idea in practice, and we can make some theoretical guarantees on its
generalization based on LV being close to LD. But it’s still hard to use that approach
to say anything with confidence about the approximation error.

9.1 structural risk minimization

SRM says: let’s use a huge H, one where the approximation error is going to be small,
maybe even zero if H is what’s called universal (coming up soon!). This will probably
mean H has infinite VC dimension, large Rademacher complexity, etc. But let’s
decompose

H = H1 ∪ H2 ∪ · · · =
⋃
k∈N
Hk .

For instance, we might have Hk the set of decision trees of depth k, the set of degree-
k polynomials, or the set of linear classifiers with ∥w∥ ≤ 2k . We’re going to assume
that each Hk has uniform convergence:

∀k ∈ N. Pr
S∼Dm

sup
h∈Hk

LD(h) − LS(h) ≤ εk(m, δ)

 ≥ 1 − δ (9.1)

for functions εk satisfying that for all k and all δ ∈ (0, 1), limm→∞ εk(m, δ) = 0.

We’ll also need a set of weights wk ≥ 0 such that
∞∑
k=1

wk ≤ 1; a typical choice is

6/(π2k2) ≈ 0.61/k2, since
∞∑
k=1

1
k2 = π2

6 . This is the problem that
made Euler famous.

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.
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Proposition 9.1. Let H = H1 ∪ H2 ∪ . . . satisfy (9.1), and let wk ≥ 0 have
∞∑
k=1

wk ≤ 1.

Then for any D, with probability at least 1 − δ over the choice of S ∼ Dm, we have

∀h ∈ H. LD(h) ≤ LS(h) + min
k:h∈Hk

εk(m, δwk).

Proof. We do a union bound over the Hk , allocating δw1 probability that anything
in H1 violates the bound, δw2 that anything in H2 does, and so on. Thus the total
probability anything in H violates it is at most

∑
k
δwk ≤ δ.

SRM is then the algorithm that minimizes this upper bound on LD(h):

Definition 9.2. Given bounds on a decomposition of H as in (9.1), and weights
wk ≥ 0 with

∑
wk ≤ 1 and

⋃
k:wk>0

Hk = H, structural risk minimization is given by

SRMH,δ(S) ∈ arg min
h∈H

[
LS(h) + εkh(m, δwkh)

]
where kh ∈ arg min

k:h∈Hk

εk(m,wkδ).

Typically, kh = min{k : h ∈ Hk}.

We can implement this minimization by a finite number of calls to an “ERM oracle”,
as long as our loss is lower-bounded by a ≤ ℓ(h, z), e.g. a = 0:

function SRMH,δ(S)
best←∞
for k = 1, 2, . . . do

hk ← ERMHk
(S)

cand loss← LS(hk) + εk(m,wkδ)
if cand < best then

ĥ← hk
best← cand

if mink′>k a + εk′ (m,wk′δ) > best then
break

return ĥ

Note that if we “decompose” as H1 = H, then SRM becomes just ERMH.

Theorem 9.3. Let h∗ ∈ H be any fixed hypothesis in the setup of Definition 9.2, and let
a ≤ ℓ(h, z) ≤ b for all h ∈ H, z ∈ Z. Then, with probability at least 1 − δ − δ′ over the
choice of random samples S ∼ Dm, SRM satisfies

LD(SRMH,δ(S)) ≤ LD(h∗) + εkh∗

(
m,wkh∗ δ

)
+ (b − a)

√
1

2m log 1
δ′ .

Proof. Let ĥS = SRMH(S). We have that

LD(ĥS) ≤ LS(ĥS) + εkĥS
(m,wkĥS

δ) by Proposition 9.1, prob ≥ 1 − δ

≤ LS(h∗) + εkh∗ (m,wkh∗ δ) by def of SRM;

the conclusion follows by applying Hoeffding’s inequality with probability δ′ to
upper-bound LS(h∗).

Compare this to ERM that just knows in advance whichHkh∗ to pick; with probability
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at least 1 − 2δ, that would have performance

LD(ERMH(S)) ≤ LD(h∗) + εkh∗ (m, δ) + (b − a)

√
1

2m
log

1
δ
.

How much worse this is depends on how much worse εkh∗ (m,wkh∗ δ) is than εkh∗ (m, δ).

9.1.1 With Rademacher bounds

Since this is a little abstract, let’s see what happens if we plug in the Rademacher
bound of Theorem 5.7: let Rk,m = ES∼Dm Rad((ℓ ◦Hk)|S), assume a ≤ ℓ(h, z) ≤ b, and
for simplicity assume that Rk+1,m ≥ Rk,m for all k. Then

εk(m, δ) = 2Rk,m + (b − a)

√
1

2m
log

1
δ
.

Let’s also plug in wk = 6/(π2k2). Then Proposition 9.1 becomes that

Pr

∀h ∈ H. LD(h) ≤ LS(h) + 2Rkh,m + (b − a)

√
1

2m
log

π2k2
h

6δ

 ≥ 1 − δ, (9.2)

where kh = min{k : h ∈ Hk}. Using this bound to define an SRM algorithm gives

SRMH,δ(S) ∈ arg min
h∈H

LS(h) + 2Rkh,m + (b − a)

√
1

2m
log

π2k2
h

6δ

 . (9.3)

Theorem 9.3 gives that with probability at least 1 − (1 + 6
π2 )δ,

LD(SRMH,δ(S)) ≤ LD(h∗) + 2Rkh∗ ,m +
b − a
√
m


√

log kh +
1
2

log
π2

6δ
+

√
1
2

log
π2

6δ


≤ LD(h∗) + 2Rkh∗ ,m +

b − a
√
m

√log kh +

√
2 log

π2

6δ

 .
Letting δ′ = π2+6

π2 δ so that π2

6δ = π2

6
π2

π2+6
1
δ
< 1.03

δ
, this means that with probability at

least 1 − δ′ we have

LD
(
SRMH, π2

π2+6
δ′

(S)
)
≤ LD(h∗) + 2Rkh∗ ,m +

b − a
√
m

√log kh∗ +

√
2 log

1.03
δ′

 . (9.4)

Compare to ERM with Hkh∗ : with probability at least 1 − δ′,

LD(ERMHkh∗
(S)) ≤ LD(h∗) + 2Rkh∗ ,m +

b − a
√
m

√
2 log

2
δ′
.

So, as long as we have a reasonable number of samples compared to the complexity
of h∗ – that is, m ≫ log kh∗ – we pay essentially no penalty for not knowing the
correct Hk in advance!

9.1.2 Problems with bound minimization

Concentration inequalities are usually pretty conservative, since they hold for all dis-
tributions subject to some mild constraints (e.g. sub-Gaussianity). Symmetrization
is also often a bit loose; it introduces a factor of 2 that might not be needed, e.g. in
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equation (11) / Appendix E.4 of [Zho+22] we established that this 2 can (basically)
be a 1 for Gaussian-data ℓ1-loss regression.

So, if we minimize a potentially loose bound, then we might get bad results: because
our bound is too conservative, we’ll have too much bias towards a simple solution.
(If the problem turns out to be realizable, but we didn’t assume that from the outset,
then we can’t adapt to the fast 1/m rate; we’ll operate assuming the slow 1/

√
m rate.)

Fundamentally, this means the performance of our algorithm is based on how good
at theoretical analysis we are; we’d usually rather have an algorithm that works well
whether we’re smart or not.

It’s also kind of weird for us to have to pre-commit to a certain failure probability δ;
that’s not usually how we think about things. That in particular, though, we’ll be
able to avoid.

9.1.3 Aside: Avoiding the δ dependence

It’s pretty annoying that the algorithm depends on a specific choice of δ; that “feels
like” an analysis parameter, not an algorithm one. We can do this by defining a
slight variant of the algorithm; notice that (9.2) implies

Pr

∀h ∈ H. LD(h) ≤ LS(h) + 2Rkh,m + (b − a)

√
1
m

log kh + (b − a)

√
1

2m
log

π2

6δ

 ≥ 1−δ,

since we only made the upper bound looser with
√
a + b ≤

√
a +
√
b for nonnegative

a, b. But when minimizing this upper bound, the (b − a)
√

1
2m log π2

6δ term doesn’t
depend on h at all, and so we can just ignore it;

SRMH(S) ∈ arg min
h∈H

LS(h) + 2Rkh,m + (b − a)

√
1
m

log kh

 .
A slight variant of Theorem 9.3 still applies; we just have to use the εk that splits the
two square root terms up, giving for this variant that with probability at least 1 − δ,

LD(SRMH(S)) ≤ LS(ĥS) + 2RkĥS
,m +

b − a
√
m

√log kĥS
+

√
1
2

log
6 + π2

6δ

w/ prob at least 1 − π2

6+π2 δ

≤ LS(h∗) + 2Rkh∗ ,m +
b − a
√
m

√log kh∗ +

√
1
2

log
6 + π2

6δ

by def of SRM

≤ LD(h∗) + 2Rkh∗ ,m +
b − a
√
m

√log kh∗ +

√
1
2

log
6 + π2

6δ
+

√
1
2

log
6 + π2

6δ

w/ prob at least 1 − 6
6+π2 δ

= LD(h∗) + 2Rkh∗ ,m +
b − a
√
m

√log kh∗ +

√
2 log

1 + π2/6
δ

.
Note that 1 + π2/6 < 2.7. This gets essentially the same result as (9.4), without
requiring committing to a δ in the algorithm.

Note that this was only possible because [a, b] didn’t depend on Hk. This isn’t
always true; for example, our analysis of logistic regression with ∥x∥ ≤ C and
HB = {x 7→ w · x : ∥w∥ ≤ B} used (4.4) to get that b − a = BC. In these cases, if we
want to use our exact SRM analysis, as far as I know we have to incorporate δ into
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the algorithm itself.

9.1.4 Relationship to regularization

Think about using SRM with H = {x 7→ w · x : w ∈ Rd} with Hk = {x 7→ w · x : ∥w∥ ≤
r2k−1} for some r > 0; this should be chosen in advance of seeing the data, e.g. just
picking r = 1. Consider logistic loss, and assume ∥x∥ ≤ C almost surely.

Suppose that h corresponds to a vector w. If ∥w∥ ≥ r, we have

Bkh−1 =
1
2

Bkh = r2kh−2 < ∥w∥ ≤ r2kh−1 = Bkh ,

implying Bkh < 2 ∥w∥ and kh < 2 + log2
∥w∥
r . Thus, in general, Bkh < max(2 ∥w∥ , r)

and kh < 2 + max
(
0, log2

∥w∥
r

)
= max

(
2, log2

4∥w∥
r

)
. Thus, recalling Sections 4.2.2

and 5.2.2, we can use (9.3) to construct an instance of SRM as

arg min
w∈Rd

LS(x 7→ w ·x)+
C max(2 ∥w∥ , r)√

m

2 +

√
log

(
max

(
2, log2

4 ∥w∥
r

))
+

1
2

log
π2

6δ

 .
Now, let’s squint a bit, and assume that we chose an r such that the w with ∥w∥
significantly smaller than r aren’t relevant to the optimization – they’re not confident
enough to achieve a small LS – but that getting a low LS doesn’t require a ∥w∥ so
big that log log2

4∥w∥
r is meaningfully more than “constant.” Then, this optimization

problem looks a lot like

arg min
w∈Rd

LS(x 7→ w · x) +
λ
√
m
∥w∥

for some λ > 0. This is pretty close to the “default” regularized logistic regression,
which would use ∥w∥2. (It also probably wouldn’t have an explicit m in the equation,
but if you’re tuning λ for a fixed particular problem, that doesn’t matter, and indeed
the total amount of regularization should often scale with m according to

√
m, as

we’ll see a little later in the course.)

In fact, the optimization problems with ∥w∥ and with ∥w∥2 are themselves equivalent:
if you consider the curve of possible solutions as you vary λ (the “regularization
path”), you would get the exact same set of solutions. So, SRM can be seen as
motivation for standard regularization techniques.

9.2 nonuniform learnability

The sample complexity for SRM to learn a hypothesis h∗ depends on the particular
h∗, not just on H. This motivates a weaker definition of learning than PAC learning,
called nonuniform learning.

Definition 9.4. An algorithm A(S) (ε, δ)-competes with a hypothesis h if it satisfies
PrS∼Dm(LD(A(S)) ≤ LD(h) + ε) ≥ 1 − δ.

Definition 9.5. An algorithm A nonuniformly learns H there is a finite sample
complexity function m(ε, δ, h) such that for all ε, δ ∈ (0,1) and h ∈ H, given m ≥
m(ε, δ, h) iid samples from any D, A(S) (ε, δ)-competes with h.

Definition 9.6. A hypothesis class H is nonuniformly learnable if there exists an
algorithm A which nonuniformly learns H.
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Theorem 9.3 establishes that SRM nonuniformly learns any H which we can decom-
pose into a countable union of Hk which each allow for uniform convergence.

In fact, for binary classifiers with 0-1 loss, SRM nonuniformly learns any H which is
nonuniformly learnable:

Proposition 9.7. If H of binary classifiers is nonuniformly learnable under the 0-1 loss,
it can be written as a countable union of Hk with finite VC dimension.

Proof. Define
Hk =

{
h ∈ H : m

(
1
8 ,

1
7 , h

)
≤ k

}
,

where m(ε, δ, h) is the sample complexity function of an algorithm A that nonuni-
formly learns H. Then H =

⋃
k≥1
Hk .

For any k, consider Hk . Let D be any distribution realizable by Hk , i.e. there is some
h∗ ∈ Hk with LD(h∗) = 0. Since A(S) competes with that h∗, PrS∼Dm(LD(A(S)) ≤ 1

8 ) ≥
6
7 . This means that we can (roughly) learn any realizable distribution. But our No
Free Lunch theorem, specifically Corollary 8.2, implied that, if VCdim(Hk) = ∞,
then there would be some realizable D that we can’t learn to this (ε, δ). Thus
VCdim(Hk) can’t be infinite.

9.3 minimum description length

9.3.1 Singleton Classes

Suppose we have a countable H = {h1, h2, . . . }. Then we could partition it into
singleton sub-classes, Hk = {hk}. Denoting the weight for the class {h} by wh, each of
these Hk have “uniform convergence” via a simple Hoeffding bound with

εk(m,whδ) ≤ (b − a)

√
1

2m
log

1
whδ

≤ (b − a)

√
1

2m
log

1
wh

+ (b − a)

√
1

2m
log

1
δ
,

splitting out the dependence on δ for simplicity as in Section 9.1.3. SRM then
becomes

SRMH(S) ∈ arg min
h∈H

LS(h) +

√
1

2m
log

1
wh

,

and this has the guarantee by Theorem 9.3 that

LD(SRMH(S)) ≤ LD(h∗) + (b − a)

√
1

2m
log

1
wh∗

+ (b − a)

√
2
m

log
2
δ
.

But. . . how should we set wh? There’s no “smaller” h; what order should we use?

9.3.2 Minimum Description Length

One popular way to decide on weights is based on choosing some prefix-free binary
language to determine the hypotheses: for example, the binary representation of
a gziped Python program implementing that hypothesis. Then we can choose a
weight according to the following result:

Proposition 9.8 (Kraft’s inequality). If S ⊆ {0, 1}∗ is prefix-free (there are no s , s′ ∈ S
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such that s is a prefix of s′), then ∑
s∈S

2−|s| ≤ 1.

Proof. Define the following random process: starting with the empty string, add
either a 0 or a 1 with equal probability. If the current string is in S , terminate; if
no element of S begins with the current string, also terminate; otherwise, repeat.
Since S is prefix-free, this process hits any string s ∈ S with probability 2−|s|; these
probabilities must sum to at most one.

Thus, we can choose a representation for H so that h has description length |h|, and
assign wh = 2−|h|. This gives

MDLH(S) ∈ arg min
h∈H

LS(h) +

√
log 2
2m
|h|

LD(MDLH(S)) ≤ LD(h∗) + (b − a)

√
log 2
2m
|h∗| + (b − a)

√
2
m

log
2
δ
.

This is one formalization of Occam’s razor: if there are multiple explanations of
the data (LS(h1) = 0 = LS(h2)), prefer the simplest one (the one with shortest
explanation).

But we need to pre-commit to a notion of description length before seeing the data. A
nice analogy: codegolf.stackexchange.com, a site where people compete to find
the shortest implementation of a program doing some task, prohibits by default any
language written after the contest was started.

If we choose |h| to be the length of shortest possible implementation of h in some
programming language, this is known as the Kolmogorov complexity. This version of
the MDL principle is then to regularize by the Kolmogorov complexity. If you’re
familiar with Bayesian learning, It’s not quite the same; MAP

wouldn’t have the square
root.

this would be something like maximum a posteriori
(MAP) inference with a Kolmogorov complexity prior. The “free lunch” algorithm
outlined by Nakkiran [Nak21] is closely related to this where H is just the set of
all Turing machines. The fully-Bayesian analogue is (basically) something called
Solomonoff induction. For fuller introductions to these concepts, there are various
relevant textbooks [LV19; Hut05; HQC24].
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