
CPSC 532D — STATISTICAL LEARNING THEORY

Danica J. Sutherland

University of British Columbia, Vancouver

Fall 2024

For syllabus-type material, see the course website.

This file contains all the notes for the course, and will be updated frequently as we
add more sections. Each section is also available as its own standalone file from the
course website; these will generally only be updated after class to correct mistakes
(and I’ll tell you either in class or on Piazza if any of these are important).

These notes are heavily indebted to a variety of sources, including [SSBD14; MRT18;
Bach24; Wai19; Tel21; Ma22] as well as papers cited throughout.

Contents

1 Setup; ERM 5
1.1 Linear regression . 5
1.2 General problem setup . 7
1.3 Empirical Risk Minimization . 8
1.4 Error decompositions . 9

1.4.1 ERM estimation error . 10

2 ERM with finite hypothesis classes 11
2.1 Estimation error: asymptotics . 11
2.2 Uniform convergence, bounded loss 12
2.3 Finite H . 13

2.3.1 Is this finiteness assumption reasonable? 14

3 Concentration inequalities 15
3.1 Markov . 15
3.2 Chernoff bounds . 16
3.3 Subgaussian variables . 16

3.3.1 Proof of Hoeffding’s lemma 18

4 PAC learning; infinite H 19
4.1 PAC learning . 19
4.2 Covering number bounds . 20

4.2.1 Smoothness: Lipschitz functions 21
4.2.2 Putting it together with a set covering 23
4.2.3 Aside: Bounds on covering numbers 26

5 Rademacher complexity 29
5.1 A g-g-g-g-ghost (sample) . 29
5.2 Properties of Rademacher complexity 31

5.2.1 Talagrand’s contraction lemma 32
5.2.2 Complexity of bounded linear functions 33

For more, visit https://cs.ubc.ca/˜dsuth/532D/24w1/.

1

https://cs.ubc.ca/~dsuth/532D/24w1/

5.3 Concentration . 35

6 Growth functions and VC dimension 39
6.1 Zero-one loss . 39
6.2 Finite sets . 40
6.3 Growth functions . 41
6.4 VC dimension . 41

6.4.1 Examples of computing VC dimension 42
6.4.2 Growth function bounds in terms of VC: Sauer-Shelah 44

7 Online learning 47
7.1 Online Binary Classification in Realizable Setting 47
7.2 Decision-Theoretical Online Learning and Exponential Weights (Hedge) 51
7.3 Bandits . 55

7.3.1 Adversarial bandits. 55
7.3.2 Stochastic bandits . 57

8 Lower bounds; no free lunch 65
8.1 No free lunch for high-VC classes . 65

8.1.1 Interpretation . 67
8.1.2 Aside: “learning is NP-hard” 68

8.2 Lower bounds . 69
8.3 The “Fundamental Theorem of Statistical Learning” 70

9 Nonuniform Learning 73
9.1 Structural Risk Minimization . 73

9.1.1 With Rademacher bounds . 75
9.1.2 Problems with bound minimization 75
9.1.3 Aside: Avoiding the δ dependence 76
9.1.4 Relationship to regularization 77

9.2 Nonuniform learnability . 77
9.3 Minimum Description Length . 78

9.3.1 Singleton Classes . 78
9.3.2 Minimum Description Length 78

10 Universal Approximation 81
10.1 Denseness . 81
10.2 Universal Approximators . 82
10.3 Universal approximation of neural networks 83

10.3.1 Constructive proofs . 83
10.3.2 Non-constructive bound via Stone-Weierstrass 85

10.4 Circuit complexity . 86
10.5 Interpretation . 86

11 Kernels 89
11.1 Defining function spaces . 89
11.2 Polynomial functions . 91
11.3 Reproducing kernels . 92

11.3.1 Special case: linear kernel . 93
11.4 Optimizing in the RKHS . 94

11.4.1 Example: kernel ridge regression 94
11.5 Other kernels . 95

11.5.1 Some properties . 97

2

Bibliography 99

3

1 Setup; ERM

This course is about: When should we expect machine learning algorithms to work?
What kind of problems are possible for machine learning models to represent? What
is possible to learn from data?

There are many complementary ways to study these questions. This course takes a
primarily theoretical, mathematical approach, but tries to be guided by experimental
results.

To phrase these questions more precisely, Is linear regression “really
machine learning”?
Obviously Legendre and
Gauss didn’t use that term
in the early 1800s, but one
reasonable definition of
machine learning is
“something you can publish a
NeurIPS paper about,” and
as someone with multiple
NeurIPS papers about linear
regression, that makes the
answer yes.

let’s start by thinking about one of the
simplest and best-understood machine learning models, linear regression. We’ll use
this as an example to set up our more general problem and think about how we can
address those questions.

1.1 linear regression

In the typical linear regression setting, we have m training inputs xi ∈ Rd and
corresponding outputs yi ∈ R. (For one of many possible examples, xi might be a
collection of summary features for a large geographic area, and yi the number of
hectares that burnt in forest fires in a given year.) We’ll denote this as

S =
(
(x1, y1), . . . , (xm, ym)

)
⊂ (Rd × R)m. (1.1)

While I used the term “training set” (because it’s extremely well-established termi-
nology), we actually want to potentially allow repeated data points. Occasionally,
we might also care about the order (e.g. in online learning), so mathematically, we’re
going to use treat S as an m-tuple, not a set.

The usual assumption – which is definitely not always true, but is overwhelmingly
the usual assumption in analyzing these kinds of things – Dm is called a product

distribution, and is a
distribution over (Rd × R)m
of m-length iid sequences.

is that these (x, y) pairs
are independent samples from a distribution D. We also write this S ∼ Dm, meaning
that each of the m entries of S is an independent sample from D.

Our goal is to use S to find a weight vector w You might also want an
offset, w · x + b, but we’ll
usually ignore that, since
you can just add a constant
1 feature to x.

such that w · x ≈ y, for fresh (test)
samples (x, y) ∼ D. Another way to phrase this is that we’re looking for a linear
predictor, i.e. a function hw : Rd → R of the form hw(x) = w · x, such that hw(x) ≈ y.

Statisticians, econometricians, etc. are often most concerned with getting the “right”
w vector. For instance, we might assume y = w∗ · x + Gaussian noise, or written
another way (y | x) ∼ N

(
w∗ · x, σ2

)
, and ask how well we recover w∗, e.g. by showing

that ∥w − w∗∥ goes to zero as m→∞.

Machine learners are generally more concerned with getting predictions right. We’ll
typically measure this with the squared loss,

E
(x,y)∼D

[
1
2 (w · x − y)2

]
= E

(x,y)∼D

[
1
2 (hw(x) − y)2

]
. (1.2)

5

1. setup; erm

Often, recovering the “right” parameter vector, i.e. finding small ∥w − w∗∥,For example, if x ∼ N (µ,Σ)

and y | x ∼ N (w∗ · x, σ2),
let M = µµT + Σ. Then

E(w · x − y)2 =
σ2 + (w − w∗)TM(w − w∗) ≤
σ2 + ∥M∥ ∥w − w∗∥2, where

the operator norm ∥M∥ is
constant for a given problem.

implies
that the predictive error is small (though not always, with nasty enough D).

There are many situations, though, where you can have large ∥w − w∗∥ but small
predictive error. For instance, imagine that the first dimension of x is a person’s
height in metres, and the second dimension is their height in inches, both measured
to arbitrary precision. Because one inch is exactly 2.54 centimetres, the w vectors
(1, 0, . . .) and (0, 1/.0254, . . .) give identical predictions. So do any (w1, w2, . . .) such
that w1 + .0254w2 = 1. There are infinitely many such vectors, and they can be
arbitrarily far from w∗. Statisticians call (versions of) this problem multicollinearity
and talk about how it causes issues with identifiability. For the most part, machine
learners ignore this kind of problem; the different ws give identical predictions
on D. This is in some ways good, because these problems can be far worse with
more complicated kinds of models, such as deep learning; it’s bad in other ways,
since although these examples have identical predictions on D, they can have very
different predictions on other distributions!

Anyway, we’d ideally like to solve the following optimization problem, which mini-
mizes a quantity known variously as the risk, the population loss, or various other
names:

min
w

E
(x,y)∼D

[
1
2 (w · x − y)2

]
= min

h
E

(x,y)∼D

[
1
2 (h(x) − y)2

]
. (1.3)

We don’t have direct access to D, though. Instead, we the most common choice is
to estimate that expectation with an empirical average on the training set (simple
Monte Carlo), and instead solve

min
w

1
2m

m∑
i=1

(w · xi − yi)2 = min
h

1
2m

m∑
i=1

(h(xi) − yi)2. (1.4)

The thing we minimize here is called the training loss, the empirical risk, or various
other names.

As you’ve probably seen before, we can solve this minimization in closed form.
Let X ∈ Rm×d be the matrix whose ith row is xTi , and y ∈ Rm the vector whose

ith entry is yi . Then the objective is 1
2m

∥∥∥Xw − y
∥∥∥2

, which is a convex problem
whose objective has gradient 1

mXT(Xw − y). That’s zero iff XTXw = XTy; if XTX
(which is d × d of rank at most min(n, d)) is invertible, there’s a unique solution
w = (XTX)−1XTy = X†y, where X† is the pseudoinverse. Otherwise, there are
infinitely many minimizers,The metres-and-inches

example above is one such
case: since one column is

0.0254 times the other, X is
not full-rank.

which can be expressed as X†y + z where z is any vector
in the null space of X. The training set predictions for any of these solutions is the
same: Xw = XX†y + Xz = XX†y.

Having found this solution, we have lots of questions to ask: how well did solving
(1.4) do as a proxy for the problem (1.3)? That is, given an estimate ŵ or equivalently
ĥ, what is the loss (1.2) of that predictor? Is it likely to be small, in different
situations? Is it as small as any algorithm could hope to achieve? If we try to
estimate (1.2) for that solution with a test set, how tight should we expect our
estimate to be? If XTX isn’t invertible (always the case if d > n), which of the
infinitely many minimizers should we pick?

For linear regression in particular, many of these questions can be tackled with basic
linear algebra. You may have seen some of them in statistics courses; Chapter 3 of
the textbook of Bach [Bach24] does some of these analyses framed in the language
of learning theory. This is quite interesting, but we’re not going to pursue that

6

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

1. setup; erm

approach in any more detail in this course, instead generalizing to other problems.

1.2 general problem setup

Our default, general learning problem is as follows:

• Instead of a data distribution D over Rd × R, D is over some domain Z. For
supervised learning, Z is often a product space Z = X × Y of (x, y) pairs, where
x is an input object (e.g. an image) and y is a label (e.g. whether the image
contains a dog). Occasionally, though, we want to learn over some other kind
of space that doesn’t have clear input-outputs.

• We have m independent, identically distributed samples z1, . . . , zm ∼ D, col-
lected in a training “set” S = (z1, . . . , zm) ∼ Dm.

• We have a hypothesis class H. In supervised learning, this is usually a set of
predictors h : X → Ŷ , a space of prediction functions.

– In linear regression, H was the set of d-dimensional linear predictors,
x 7→ 2x + 3 means “the
function which, given the
argument x, returns 2x + 3”;
H is a set of functions. This
is like lambda x: 2*x+3

in Python.

{x 7→ w · x : w ∈ Rd}.

– We could use bounded-norm linear predictors, {x 7→ w · x : ∥w∥ ≤ B}.

– We could use decision trees of a certain depth, decision forests of a certain
size, neural networks of a certain architecture,

– Often, Ŷ = Y , but it might not; for example, it’s common to have a
problem with binary labels so that Y = {0, 1}, but to make probabilistic
predictions in Ŷ = [0, 1], or general confidence predictions in R.

• We have a loss function ℓ : H × Z → R. In supervised learning, this often
takes the form ℓ(h, (x, y)) = l(h(x), y) for some l : Ŷ × Y → R. Some common
examples:

– Squared loss: l(ŷ, y) = 1
2 (ŷ − y)2. (Sometimes the 1

2 isn’t included.)

– Zero-one loss: l(ŷ, y) = 1(ŷ , y), The function 1 returns one
if its boolean argument is
true, and zero if not.

usually used for Y = Ŷ a discrete set of
labels. This corresponds to one minus the accuracy of a predictor.

– Logistic loss: l(ŷ, y) = log(1 + exp(−ŷy)) for Ŷ = R, Y = {−1, 1}. This loss
→ 0 if ŷ → y∞, i.e. if y = 1 and ŷ → ∞, or y = −1 and ŷ → −∞: you’re
very confidently right. It’s log 2 if ŷ = 0, a totally ambiguous prediction.
The loss goes→∞ if ŷ → (−y)∞: you’re very confidently wrong.

– Softmax cross-entropy loss, a multi-class generalization of logistic: here
Y = [k] = {1,2, . . . , k}, Ŷ = Rk is the space of logits, and the loss is

l(ŷ, y) = − log
exp(ŷy)
k∑

j=1
exp(ŷj)

= −ŷy + log
k∑

j=1
exp(ŷj).

• LD(h) = Ez∼D ℓ(h, z) = E(x,y)∼D l(h(x), y) is called the risk, the population loss,
the true loss, etc; this was (1.2) in logistic regression.

• LS(h) = 1
m

m∑
i=1

ℓ(h, zi) = 1
m

m∑
i=1

l(h(xi), yi) is the empirical risk, the sample loss, the

training loss (if S is the training set), etc.

• A learning algorithm A is a function that takes in a sample S and returns a
hypothesis in H. Ideally, one with low risk.

7

1. setup; erm

Here’s a recap of our notation, and a quick reference for how to translate notations
across some relevant textbooks.

These notes [SSBD14] [MRT18] [Bach24] [Zhang23]
Data distribution D D D D D

Number of samples m m m n n
Sample set S S S Dn Sn

Hypothesis/parameter h ∈ H h ∈ H h ∈ H θ ∈ Θ w ∈ Ω
Prediction on x h(x) h(x) h(x) fθ(x) f (w, x)

Loss of hypothesis ℓ(h, z) ℓ(h, z) – – φ(w, z)
Loss of prediction ly(ŷ) – L(ŷ, y) ℓ(y, ŷ) L(ŷ, y)

Empirical risk LS(h) LS(h) R̂S(h) R̂(θ) φ(w,D)
Population risk LD(h) LD(h) R(h) R(θ) φ(w, Sn)

1.3 empirical risk minimization

The most common general learning algorithm we’ll think about, the general case of
(1.4), is empirical risk minimization:

ERM(S) ∈ arg min
h∈H

LS(h).

If H is infinite, there might
be not be a minimizer. We
usually won’t worry about

this explicitly, but basically
everything we talk about

could be generalized to
approximate minimizers.

If there are ties, by default we think of the algorithm returning any arbitrary choice.

The returned hypothesis, ERM(S), which we will also often denote ĥS, is called an
empirical risk minimizer (“an ERM”).

For example, ERM with the squared loss and H = {x 7→ w · x} does indeed recover
ordinary least squares:

ERM(S) ∈ arg min
h∈{x 7→w·x :w∈Rd }

LS(h)

= arg min
h∈{x 7→w·x :w∈Rd }

1
m

m∑
i=1

ℓ(h, zi)

= arg min
h∈{x 7→w·x :w∈Rd }

1
m

m∑
i=1

lyi (h(xi))In our notation here,
ERM(S) is returning a

function (which makes these
last couple of lines slightly
tedious); we could equally
well have let H be a set of

parameter vectors and define
a loss on parameters,

ℓ(w, (x, y)) = 1
2 (x · w − y)2.

=

x 7→ x · ŵ : ŵ ∈ arg min
w∈Rd

1
m

m∑
i=1

l(w · xi , yi)

=

x 7→ x · ŵ : ŵ ∈ arg min
w∈Rd

1
m

m∑
i=1

1
2

(w · xi − yi)2

 ,

and now ŵ in the last line is probably what your intro stats class wrote down in the
first place as the definition of linear regression.

We know that LS(ERM(S)) is small by definition, but when can we expect LD(ERM(S))
to be small? The first big chunk of this course is about this question in particular.
There are several ways to analyze this; the classic way is by making sure we choose
an appropriate hypothesis class H. If H is too simple, you’ll never be able to learn
the pattern you’re looking for, but if it’s too complicated, you’ll overfit and pick one
that seems good by chance, i.e. has good LS(ERM(S)) but bad LD(ERM(S)).

Figure 1.1 illustrates this trade-off for polynomial regression. This is similar to

8

1. setup; erm

what you saw in your intro machine learning class; one of the things we’ll do in this
course is formalize this general intuition and prove theorems about it.

0

2

degree 0
train 1.85
test 1.16

degree 1
train 1.71
test 1.22

degree 2
train 0.61
test 0.40

degree 3
train 0.23
test 0.34

degree 4
train 0.15
test 0.39

0

2

degree 5
train 0.15
test 0.39

degree 6
train 0.14
test 0.40

degree 7
train 0.08
test 0.77

degree 8
train 0.08
test 0.66

degree 9
train 0.07
test 3.08

1 0 1

0

2

degree 10
train 0.02
test 67.43

1 0 1

degree 11
train 0.02

test 105.84

1 0 1

degree 12
train 0.02

test 131.03

1 0 1

degree 13
train 0.01

test 43,914.31

1 0 1

degree 14
train 0.00

test 778,473.09

(a) Polynomial regression, h(x) = w0 + w1x + w2x
2 + · · · + wkx

k , for increasing k, to data
points shown in blue. ERM fits are in orange; dashed black lines show E[y | x], a cubic
function. Text gives mean squared error for training and testing sets.

0 2 4 6 8 10 12 14 16
polynomial degree

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ea

n
sq

ua
re

d
er

ro
r

training
testing
irreducible error

(b) Training and test errors from Figure 1.1a.

Figure 1.1: Underfitting to overfitting as H gets bigger.

1.4 error decompositions

Here’s some standard terminology to know to formalize that intuition. For any
estimator ĥS ∈ H (not necessarily just the ERM), we can write

LD(ĥS) − Lbayes︸ ︷︷ ︸
excess error

= LD(ĥS) − inf
h∈H

LD(h)︸ ︷︷ ︸
estimation error

+ inf
h∈H

LD(h) − Lbayes︸ ︷︷ ︸
approximation error

.

The excess error is how much worse you are than the irreducible error Lbayes, also
called the Bayes error or the error of the Bayes predictor (see A1 Q2 for more).
No predictor, no matter its form, could do better than this: there’s just inherent
noise in the problem. The general ℓ(h, z) form unfortunately doesn’t make this

9

1. setup; erm

easy to define (the domain is H), but for ly(ŷ) we can say something like Lbayes =
infh:X→Ŷ measurable ly(h(x)).

The estimation error, also called the statistical error, is the error that comes about
from using your algorithm ĥS rather than picking the best possible predictor in H.
As m→∞, this should (ideally) go to zero.

The approximation errorCPSC 340 used to use
“approximation error” for the

generalization gap,
LD(h) − LS(h). This was a
nonstandard use; it’s been
changed now in 340, and

you should wipe it from your
memory. :)

doesn’t (directly) depend on the number of samples you
see: it’s a function only of how well your hypothesis class H can do, regardless of
estimation.

For example, in the polynomial regression case of Figure 1.1, using a H of linear
functions results in some approximation error, but not much estimation error
(because linear functions are easy to fit). Using aH of degree-fifteen polynomials has
zero approximation error (it contains the Bayes predictor) but really high estimation
error (too many parameters to fit).

Intuitively, as H gets “bigger,” approximation error decreases but estimation error
increases. Usually, approximation error is pretty problem-specific, but we’ll see at
least a few examples of formal analyses of it later in the course. First, we’ll think
about estimation error bounds.

1.4.1 ERM estimation error

Our usual basic way to prove when ERM generalizes well is to take the following
decomposition, where we compare the loss of ĥS to the loss of some arbitrary
comparator hypothesis h∗ ∈ H. Note that we’ll usually think of h∗ as being roughly
the best predictor in H, but we don’t require that, since it might not exist if H is
infinite; instead we’ll start by just comparing to any arbitrary predictor.

LD(ĥS) − LD(h∗) = LD(ĥS) − LS(ĥS) + LS(ĥS)︸ ︷︷ ︸
0

− LS(h∗) + LS(h∗)︸ ︷︷ ︸
0

−LD(h∗)

=
(
LD(ĥS) − LS(ĥS)

)
+ LS(ĥS) − LS(h∗)︸ ︷︷ ︸
≤ 0: ĥS minimizes LS

+
(
LS(h∗) − LD(h∗)

)

≤ LD(ĥS) − LS(ĥS)︸ ︷︷ ︸
A: ĥS’s overfitting

+ LS(h∗) − LD(h∗)︸ ︷︷ ︸
B: h∗’s “underfitting”

. (1.5)

So, if we can bound A and B, then we can say that ĥS isn’t too much worse than h∗.

Now, as long as our bound on B doesn’t depend on the particular choice of h∗, then
this implies that

LD(ĥS) − inf
h∈H

LD(h) ≤ A + BIf you aren’t familiar with
inf, it’s like min but makes

sense even if there isn’t a
minimizer (it’s the largest

lower bound). For example,
infx∈R:x>0 x = 0 even

though 0 isn’t in that set.

.

The next few weeks will be denoted to bounding A + B, how much worse ĥS is than
the best possible thing in H.

10

2 ERM with finite hypothesis classes

In (1.5) we showed that, for any h∗ ∈ H,

LD(ĥS) − LD(h∗) ≤
(
LD(ĥS) − LS(ĥS)

)
+

(
LS(h∗) − LD(h∗)

)
.

We’d like to bound these two terms, which would then give us a bound on how much
worse ĥS is than h∗, the best thing ERM could have done. The first thing to note,
though, is that anything with an S in it – so everything above except for LD(h∗) –
depends on the draw of the random training set S. It’s possible that we could get
some ridiculously unlikely training set where everything behaves nonsensically. So
we’ll need to do some kind of probabilistic bound.

Let’s now try to study that formally.

2.1 estimation error : asymptotics

Let’s start with the second term from (1.5):

LS(h∗) − LD(h∗) =
1
m

m∑
i=1

ℓ(h∗, zi) − E
z∼D

ℓ(h∗, z).

Remember that the only thing that’s random here is S = (z1, . . . , zm), since h∗ is just

some fixed hypothesis. So, we can frame this as 1
m

M∑
i=1

Ri , where the Ri = ℓ(h∗, zi)

are iid random variables with mean E ℓ(h∗, zi) = LD(h). The law of large numbers

therefore guarantees that as m→ ∞, 1
m

m∑
i=1

Ri converges (almost surely) to LD(h∗),

and so this term in the bound converges to zero.

In fact, for many H and ℓ, the other term will also have the same property, implying
(if h∗ is a minimizer of LD) that LD(ĥS)→ LD(h∗). Various formalizations of this last
property are called consistency, and it’s a nice property to have: eventually, your
learning algorithm works as well as it could have. One problem with this notion,
though, is that this is all it tells you. There’s no guarantee about what happens with
m = 1,000, or when going from m = 1,000 to m = 1,000,000, or anything at all
other than “eventually it works.”

A more precise analysis might use the central limit theorem. Let σ2 = Var[Ri]

and assume this is finite; Formally, we’d write

1√
m

m∑
i=1

(Ri − E Ri)
d→

N (0, σ2).

informally, the CLT then says that 1
m

m∑
i=1

Ri behaves like

N (0, σ2/m). In fact, it’s often true that the first term is also asymptotically normal.
This is a nicer result than before: it still doesn’t say anything particular for a finite m
(maybe the CLT takes a long time to kick in), but it tells us a lot about the asymptotic
behaviour, including both its limiting value but also roughly how much variation

11

2. erm with finite hypothesis classes

we can expect around that value.

It can be tough to find these exact limiting distributions in general, though, and
they’re not always true (e.g. the one I didn’t state for the first term above has some
kind-of strict requirements on the way that h is parameterized). A similar but
somewhat looser style of bound is to say thatYou can check the wiki page

for a formal definition of Op,
but it roughly means “with
any constant probability, a

sequence of sampled random
variables is O(1/

√
m).”

the excess error is Op(1/
√
m), which is

implied by the CLT result above, but can also be much easier to show. Again, this
doesn’t imply anything for a finite m (just like how O analyses don’t say anything
for finite input size on your algorithms), but they do say things like, for reasonably
large m, observing four times as much data should roughly halve your excess error.

The most preferred kind of result, though, is usually one with explicit constants:
something like

∀δ > 0. Pr
S∼Dm

LD(ĥS) − inf
h∈H

LD(h) ≤
√

2
m

log
|H| + 1
δ

 ≥ 1 − δ

or, where B is a problem parameter,

E
S∼Dm

LD(ĥS) ≤ inf
h∈H

LD(h) +

√
8B2

m
.

These results give you a rate, but also apply to any m, not just eventually. (They
might not be meaningful for small m, though; if you’re using 0-1 loss, it’s not very
helpful to say the excess error is less than four!)

2.2 uniform convergence , bounded loss

We’re first going to assume that ℓ(h, z) ∈ [a, b] for all h, z; usually a = 0 (but it won’t
hurt us to be more general), and e.g. for the 0-1 loss we have b = 1. For something
like the square loss, it isn’t “automatically” bounded, but it might be depending on
H and D; we’ll discuss this later.

Recall that we have two things to bound in (1.5):

LD(ĥS) − LS(ĥS) = E
z∼D

ℓ(ĥS, z) − 1
m

m∑
i=1

ℓ(ĥS, zi) (A)

and

LS(h∗) − LD(h∗) =
1
m

m∑
i=1

ℓ(h∗, zi) − E
z∼D

ℓ(h∗, z). (B)

As we discussed, (B) is an average of iid random variables. We can bound this with
the following form of Hoeffding’s inequality, which we’ll prove soon:

Proposition 2.1 (Hoeffding, simple form). Let (X1, . . . , Xm) be independent with mean

12

https://en.wikipedia.org/wiki/Big_O_in_probability_notation

2. erm with finite hypothesis classes

µ and almost surely bounded in [a, b]. Define X = 1
m

m∑
i=1

Xi . Then

Pr

X ≤ µ + (b − a)

√
log(1/δ)

2m

 ≥ 1 − δ The first of these results
immediately implies the
other two: use the random
variables Yi = −Xi for the
second, and then use a union
bound, Lemma 2.3, to get
the third.

Pr

X ≥ µ − (b − a)

√
log(1/δ)

2m

 ≥ 1 − δ

Pr

∣∣∣X − µ∣∣∣ ≤ (b − a)

√
log(2/δ)

2m

 ≥ 1 − δ.

Applying this to the random variables Xi = ℓ(h∗, zi) handles the bound for (B).

It’s tempting to also try to apply this result directly to (A), which would then
complete our bound and everything would be really simple. The problem is that
the ℓ(ĥS, zi) aren’t independent! The choice of ĥS depends on all of S, i.e. on all of the
other zj , so ℓ(ĥS, z1) and ℓ(ĥS, z2) are not independent.

So, how can we bound this? The most common way is called uniform convergence.
The idea is, if we know that LD(h) − LS(h) is small for all h ∈ H, then it’ll be small
for ĥS, no matter how we pick it – since it’s something in H. That is, if we know that

sup
h∈H

LD(h) − LS(h) ≤ ε

then we also have that LD(ĥS) − LS(ĥS) ≤ ε. Or, stating it another way,

Pr
S∼Dm

(
LS(ĥS) − LD(ĥS) > ε

)
≤ Pr

S∼Dm
(∃h ∈ H. LS(h) − LD(h) > ε) , (2.1)

and so bounding the right-hand side bounds the left-hand side.

How can we bound that?

2.3 finite H

To start, we’ll make a kind of drastic assumption: that H is finite, i.e. we’re only
considering |H|, say 500, possible hypotheses.

Proposition 2.2. Suppose ℓ(z, h) is almost surely bounded in [a, b], H is finite, and ĥS
is any ERM in H. Then for any δ > 0, with probability at least 1 − δ over the choice of
S ∼ Dm it holds that

LD(ĥS) −min
h∈H

LD(h) ≤ (b − a)

√
2
m

log
|H| + 1
δ

.

Proof. For any hypothesis h, we can allow it a “failure probability” of δ/(|H| + 1) in
Hoeffding’s inequality:

Pr
S∼Dm

LD(h) − LS(h) > (b − a)

√
1

2m
log
|H| + 1
δ

 ≤ δ

|H| + 1
.

If we do this for each hypothesis h ∈ H, we know that the probability of each
particular h being bad is low. We then want to combine them into the probability
that anything is bad; we can do this with a union bound.

13

2. erm with finite hypothesis classes

Lemma 2.3 (Union bound).This fact is really useful. For any two events A and B, Pr(A∪ B) ≤ Pr(A) + Pr(B).

Combining all of them together, the probability that any h happens to look way
better than it is can be bounded as

Pr
S∼Dm

∃h ∈ H. LD(h) − LS(h) > (b − a)

√
1

2m
log
|H| + 1
δ

 ≤ |H| δ

|H| + 1
.

But we’ll also need the other direction for (B): h∗ in particular doesn’t look way
worse than it actually is. Giving it the same failure probability to make things nice,

Pr
S∼Dm

LS(h∗) − LD(h∗) > (b − a)

√
1

2m
log
|H| + 1
δ

 ≤ δ

|H| + 1
.

Now, if (A) ≤ εA and (B) ≤ εB, then (1.5) tells us that LD(ĥS) − LD(h∗) ≤ (A) + (B) ≤
εA + εB. Using another union bound,

Pr
S∼Dm

LD(ĥS) − LD(h∗) > (b − a)

√
1

2m
log
|H| + 1
δ

+ (b − a)

√
1

2m
log
|H| + 1
δ

= Pr

S∼Dm

LD(ĥS) − LD(h∗) > (b − a)

√
2
m

log
|H| + 1
δ

≤ |H|
|H| + 1

δ +
1

|H| + 1
δ = δ.

Another way to state Proposition 2.2 is that with m samples, we can achieve excess
error at most ε with probability at least (|H| + 1) exp

(
− mε2

2(b−a)2

)
.

Or, alternately, we can say that we can achieve excess error at most εwith probability

at least 1 − δ if we have at least 2(b−a)2

ε2 log |H|+1
δ

samples.

2.3.1 Is this finiteness assumption reasonable?

Every H we use in practice is finite. Our models are represented on a computer with
bounded memory, so we consider no more than 2max number of bits hypotheses.

On the other hand, |H| might be really large. Typical vision CNNs are around a
few hundred megabytes: 100 megabytes is 800,000,000 bits, and log(|H| + 1) ≈
log 2800,000,000 = 800,000,000 log 2 ≈ 554,517,744 is quite big. For 0-1 loss, this
would mean that for our bound to show that ERM learns a 100-MB network even to
within an extremely loose ε = 20% additive error with probability at least 1−δ = 50%,
we’d need

m ≥ 2
0.22

(
log(|H| + 1) + log

1
0.5

)
≈ 50 (554 million + 0.7) ≈ 28 billion.

100 MB is a relatively small model these days (ViTs are usually a few gigabytes),
and 28 billion is a lot of samples.

But the union bound we did over H ignores all structure in H. If we change just one
parameter by 0.00001, then we’re treating the error of that new hypothesis totally
separately, when in reality those two errors are tightly correlated. We’ll approach
that soon, with various techniques that will also allow us to handle H with infinite
size; but first, we’ll go back and prove Hoeffding’s inequality.

14

https://en.wikipedia.org/wiki/Boole%27s_inequality

3 Concentration inequalit ies

We’ll now prove Hoeffding’s inequality (Proposition 2.1), and learn a bunch of useful
stuff along the way.

3.1 markov

We’ll start with the following surprisingly simple bound, which turns out to be the
basis for just about everything:

Proposition 3.1 (Markov’s inequality). If X is a nonnegative-valued random variable,
then Pr(X ≥ t) ≤ 1

t E X for all t > 0.

Proof. We know X ≥ 0. We also know, if X ≥ t, then X ≥ t. Combining those two
statements, we can write X ≥ t 1(X ≥ t). Now take the expectation of both sides of
that inequality, giving E X ≥ t E1(X ≥ t) = t Pr(X ≥ t). Rearrange.

This was actually proved by Markov’s PhD advisor Chebyshev. Luckily, though,
Chebyshev has another inequality named after him:

Proposition 3.2 (Chebyshev’s inequality). For any X, Pr(|X − E X| ≥ ε) ≤ 1
ε2 Var X.

Proof. (X − E X)2 is a nonnegative random variable; applying Markov gives Pr((X −
E X)2 ≥ t) ≤ 1

t E(X − E X)2. Change variables to t = ε2.

Equivalently, with probability at least 1 − δ, |X − E X| <
√

Var[X] / δ.

Let’s consider iid X1, . . . , Xm, each with mean µ and variance σ2. Then the random

variable X = 1
m

m∑
i=1

Xi has mean µ and variance σ2/m, so Chebyshev gives that∣∣∣X − µ∣∣∣ ≤ σ/√mδ. This is Op(1/
√
m), as expected, so sometimes this is good enough.

But the dependence on δ is really quite bad compared to what we’d like. For
instance, if the Xi are normal so that X̄ is too, then in (3.2) below we’ll obtain

X − µ ≤ σ√
m

√
2 log 1

δ
. To emphasize the difference:

δ 0.1 0.01 0.001 0.0001 0.00001
1/
√
δ 3.2 10.0 31.6 100.0 316.2√

2 log 1
δ

2.2 3.0 3.7 4.3 4.8

Chebyshev’s inequality is sharp, meaning that it can be an equality in certain cases;
this happens for random variables of the form Pr(X = 0) = 1 − δ, Pr(X = 1/

√
δ) =

Pr(X = −1/
√
δ) = 1

2δ. This X has mean 0 and variance 1, but it still has a big
probability of being really far from zero. “Typical” random variables, like Gaussians,
don’t look like this. So here’s another analysis that takes this into account.

15

3. concentration inequalities

3.2 chernoff bounds

Perhaps the most useful category of results are called Chernoff bounds; they’re
based on

Pr(X ≥ E X + ε) = Pr
(
eλ(X−E X) ≥ eλε

)
≤ e−λεE eλ(X−E X), (3.1)

where we applied Markov to the nonnegative random variable exp(λ(X − E X)) for
any λ > 0.

The quantity MX(λ) = E eλ(X−E X) is known as the centred moment-generating func-
tion; recalling that et = 1 + t + t2

2! + t3

3! + · · · and writing µ = E X, we have

MX(λ) = E eλ(X−µ) = 1 + λE[X − µ] +
λ2

2!
E[(X − µ)2] +

λ3

3!
E[(X − µ)3] + · · · .

So, taking the kth derivative of the centred mgf and then evaluating at λ = 0 gives

M(k)
X (0) = E[(X − µ)k].

Proposition 3.3. If X ∼ N (µ, σ2), then E eλ(X−µ) = e
1
2λ

2σ2
.

Proof. Let’s start with X ∼ N (0, 1). We can write

E
X∼N (0,1)

eλX =
∫

1
√

2π
e−

1
2 x

2
eλx dx

=
∫

1
√

2π
e−

1
2 x

2+λx− 1
2λ

2+ 1
2λ

2
dx

= e
1
2λ

2
∫

1
√

2π
e−

1
2 (x−λ)2

dx

= e
1
2λ

2
,

since the last integral is just the total probability density of an N (λ,1) random
variable. To handle Y = N (µ, σ2), note that this is equivalent to σX + µ, so

eλ(Y−E Y) = eλ(σX+µ−E(σX+µ)) = eλ(σX) = e(λσ)X = e
1
2 σ

2λ2
.

Plugging Proposition 3.3 into (3.1), for X ∼ N (µ, σ2), it holds for any λ > 0 that

Pr(X ≥ µ + ε) ≤ e−λεe
1
2 σ

2λ2
.

The value of λ only appears on the right-hand side, not the left. So we might as
well find the best value of λ to use: the one that gives the tightest bound. Let’s
optimize this in λ: noting that exp is monotonic, we can just check that 1

2σ
2λ2 − λε

has derivative σ2λ − ε, which is zero when λ = ε/σ2 > 0. (And this is indeed a max,
since the second derivative is σ2 > 0.) Plugging in that value of λ, we get the bound

Pr(X ≥ µ + ε) ≤ exp
(
− ε2

2σ2

)
. (3.2)

Equivalently, X < µ + σ
√

2 log 1
δ

with probability at least 1 − δ.

3.3 subgaussian variables

In fact, the only place we used the Gaussian assumption in this argument was in
that E eλ(X−E X) ≤ e

1
2λ

2σ2
. So we can generalize the result to anything satisfying that

16

https://en.wikipedia.org/wiki/Moment-generating_function
https://en.wikipedia.org/wiki/Moment-generating_function

3. concentration inequalities

condition, which we call subgaussian:

Definition 3.4. Watch out with other
sources; notation for
subgaussians is not very
standardized, in particular
whether the parameter is σ
or σ2. Also “X ∈ SG(σ)” is
kind of weird; probably
“Law(X) ∈ SG(σ)” would be
better, but oh well.

A random variable X with mean µ = E[X] is called subgaussian
with parameter σ ≥ 0, written X ∈ SG(σ), if its centred moment-generating function
E[eλ(X−µ)] exists and satisfies that for all λ ∈ R, E[eλ(X−µ)] ≤ e

1
2λ

2σ2
.

As we just saw, normal variables with variance σ2 are SG(σ). Notice also that if
σ1 < σ2, then anything that’s SG(σ1) is also SG(σ2).

Proposition 3.5 (Hoeffding’s lemma). If Pr(a ≤ X ≤ b) = 1, X is SG
(
b−a

2

)
.

Proof. See Section 3.3.1; we’ll probably skip this in class.

Here are some useful properties about building subgaussian variables:

Proposition 3.6. If X1 ∈ SG(σ1) and X2 ∈ SG(σ2) are independent random variables,

then X1 + X2 ∈ SG(
√
σ2

1 + σ2
2).

Proof. E[eλ(X1+X2−E[X1+X2])] = E[eλ(X1−E X1)]E[eλ(X2−E X2)] by independence. Bound-

ing each expectation, this is at most e
1
2λ

2σ2
1 e

1
2λ

2σ2
2 = e

1
2λ

2
(√

σ2
1+σ2

2

)2

.

Proposition 3.7. If X ∈ SG(σ), then aX + b ∈ SG(|a| σ) for any a, b ∈ R.

Proof. E[eλ(aX+b−E[aX+b])] = E[e(aλ)(X−E X)] ≤ e
1
2 (aλ)2σ2

= e
1
2λ

2(|a|σ)2
.

Proposition 3.8 (Chernoff bound for subgaussians). If X ∈ SG(σ), then Pr(X ≥
E X + ε) ≤ exp

(
− ε2

2σ2

)
for ε ≥ 0.

Proof. Exactly as the argument leading from (3.1) to (3.2).

Since −X is also SG(σ) by Proposition 3.7, the same bound holds for a lower de-
viation Pr(X ≤ E X − t). A union bound then immediately gives Pr(

∣∣∣X − µ∣∣∣ ≥ t) ≤
2 exp

(
− t2

2σ2

)
.

Proposition 3.9 (Hoeffding). If X1, . . . , Xm are independent and each SG(σi) with
mean µi , for all ε ≥ 0

Pr

 1
m

m∑
i=1

Xi ≥
1
m

m∑
i=1

µi + ε

 ≤ exp

−
m2ε2

2
m∑
i=1

σ2
i

 .

Proof. By Propositions 3.6 and 3.7, 1
m

m∑
i=1

Xi ∈ SG
(

1
m

√
m∑
i=1

σ2
i

)
. Then apply Proposi-

tion 3.8.

If the Xi have the same mean µi = µ and parameter σi = σ, this becomes

Pr

 1
m

m∑
i=1

Xi ≥ µ + ε

 ≤ exp
(
−mε

2

2σ2

)
, (Hoeffding)

17

3. concentration inequalities

which can also be stated as that, with probability at least 1 − δ,

1
m

m∑
i=1

Xi < µ + σ

√
2
m

log
1
δ
. (Hoeffding’)

The form of Hoeffding we saw before, Proposition 2.1, follows immediately from
Proposition 3.5 and (Hoeffding’).

3.3.1 Proof of Hoeffding’s lemma

This proof roughly follows Zhang [Zhang23, Lemma 2.15].Wikipedia’s proof is similar,
but I think a little less clean.
Other proofs are based more
explicitly on convexity, but

use either opaque changes of
variable [SSBD14, Lemma

B.7] or compute some pretty
nasty derivatives [MRT18,

Lemma D.1]. There’s also a
proof strategy based on

“exponential tilting” (see
[BLM13, Lemma 2.2],
[Rag14, Lemma 1], or
[Wai19, Exercise 2.4])

which is quite related but
just overall a little more

annoying. There are also
proofs based on

symmetrization (see [Wai19,
Examples 2.3-2.4] or

[Rom21]), which are nice
but (a) have a worse

constant and (b) require
symmetrization, which is an

important idea we’ll cover
soon but kind of hard to

understand.

Lemma 3.10. Let X ∼ Bernoulli(p). Then X is SG(1/2).

Proof. The logarithm of the (uncentred) moment-generating function of X is

ψ(λ) = logE eλX = log
(
(1 − p)e0 + peλ

)
.

This has derivatives

ψ′(λ) =
peλ

(1 − p)e0 + peλ

ψ′′(λ) =
peλ

(1 − p)e0 + peλ
−

(peλ)2(
(1 − p)e0 + peλ

)2 = ψ′(λ)(1 − ψ′(λ)).

Since the function x(1 − x) has maximum 1/4, ψ′′(λ) ≤ 1/4. By Taylor’s theorem (in
the Lagrange form), for any λ there exists some ξλ such that

ψ(λ) = ψ(0)︸︷︷︸
0

+λ ψ′(0)︸︷︷︸
p

+
1
2
λ2 ψ′′(ξλ)︸ ︷︷ ︸

≤1/4

≤ λp +
1
8
λ2.

Thus the centred mgf satisfies

E eλ(X−E X) = e−λp E eλX ≤ e−λp
(
eλp+ 1

8λ
2)

= e
1
8λ

2
.

Proposition 3.5 (Hoeffding’s lemma). If Pr(a ≤ X ≤ b) = 1, X is SG
(
b−a

2

)
.

Proof. Using (X − a)/(b − a) and Proposition 3.7, we need only consider a = 0, b = 1.

Let f (λ) = E eλX be the (uncentred) mgf of X, and g(λ) = (1 − µ)e0 + µeλ that of a
Bernoulli(µ) variable, where µ = E X. For λ ≥ 0,

You can interchange this
derivative and expectation,

but it’s trickier to prove than
usual, requiring e.g.

Theorem 3 here.

f ′(λ) =
d

dλ
E[eλX] = E

[
d

dλ
eλX

]
= E[XeλX] ≤ E[Xeλ] = µeλ = g ′(λ),

using in the inequality that λ ≥ 0 and 0 ≤ X ≤ 1. and that 0 ≤ X ≤ 1. The same
steps give f ′(λ) ≥ g ′(λ) for λ ≤ 0. As f (0) = 1 = g(0), it follows that f (λ) ≤ g(λ)
everywhere. The conclusion follows by Lemma 3.10.

18

https://en.wikipedia.org/wiki/Leibniz_integral_rule
https://en.wikipedia.org/wiki/Leibniz_integral_rule
https://planetmath.org/differentiationundertheintegralsign

4 PAC learning; infinite H

Recall that we previously showed Proposition 2.2:

Proposition 2.2. Suppose ℓ(z, h) is almost surely bounded in [a, b], H is finite, and ĥS
is any ERM in H. Then for any δ > 0, with probability at least 1 − δ over the choice of
S ∼ Dm it holds that

LD(ĥS) −min
h∈H

LD(h) ≤ (b − a)

√
2
m

log
|H| + 1
δ

.

Another way to state this result is that with m samples, we can achieve estimation
error at most ε with probability at least 1 − (|H| + 1) exp

(
− mε2

2(b−a)2

)
.

Or, alternately, we can say that we can achieve estimation error at most ε with

probability at least 1 − δ if we have at least 2(b−a)2

ε2 log |H|+1
δ

samples. This last way
establishes the sample complexity of learning to a given estimation error ε with a
given confidence 1 − δ.

4.1 pac learning

This last statement corresponds to one of the standard notions of learnability. Here,
we’re going to use a general idea of a learning algorithm as some function that takes
a sample S ∈ Z∗ (the set of sequences of any length from Z) and returns a hypothesis
in H.

Definition 4.1. An algorithm A : Z∗ → H agnostically PAC learns H with a loss ℓ
if there exists a function m : (0,1)2 → N such that, for every ε, δ ∈ (0,1), for every
distribution D over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm,A

(
LD(A(S)) > inf

h∈H
LD(h) + ε

)
< δ,

where the randomness is both over the choice of S and any internal randomness in
the algorithm A. That is, A can probably get an approximately correct answer, where
“correct” means the best possible loss in H.

If A runs in time polynomial in 1/ε, 1/δ, m, and some notion of the size of h∗, then
we say that A efficiently agnostically PAC learns H.

Definition 4.2. A hypothesis class H is agnostically PAC learnable if there exists an
algorithm A which agnostically PAC learns H.

So, ERM agnostically PAC-learns finite hypothesis classes, with the sample complex-

ity m(ε, δ) = 2(b−a)2

ε2 log |H|+1
δ

. Notice that in the definition of agnostic PAC learning,
there’s no limitation on the distribution – there needs to be an m(ε, δ) that works for

19

4. pac learning; infinite H

any D. Proposition 2.2 satisfies this, but in general, it’s an extremely worst-case kind
of notion.

Often it’s nicer to think about cases where we can make some assumptions on D.
For example, maybe the number of samples you need depends on “how hard” the
particular problem is. We’ll talk about this more a little later in the course. For now,
it’s worth mentioning one common special case:

Definition 4.3.A1 Q4 was partly about this
setting.

Consider a nonnegative loss ℓ(h, z) ≥ 0. A distribution D is called
realizable by H if there exists an h∗ ∈ H such that LD(h∗) = 0.

Definition 4.4.This version is the
“privileged” version that

doesn’t need a modifier
because it’s was introduced

first [Val84].

An algorithm A : Z∗ → H PAC learns H with a loss ℓ if there
exists a function m : (0, 1)2 → N such that, for every ε, δ ∈ (0, 1), for every realizable
distribution D over Z, for any m ≥ m(ε, δ), we have that

Pr
S∼Dm,A

(LD(A(S)) > ε) < δ,

where the randomness is both over the choice of S and any internal randomness in
the algorithm A. That is, A can probably get an approximately correct answer, where
“correct” means zero loss.

If A runs in time polynomial in 1/ε, 1/δ, m, and some notion of the size of h∗, then
we say that A efficiently (realizably) PAC learns H.

Definition 4.5. A hypothesis class H is PAC learnable if there exists an algorithm A
which PAC learns H.

Sometimes people say “realizable PAC learnable” or similar, to emphasize the
difference versus agnostic PAC. The name “agnostic” is because the definition doesn’t
care whether there’s a perfect h∗ or not. (Notice that if A agnostically PAC learns H,
then it also PAC learns H.)

If you read [SSBD14] or other work by computational learning theorists,The emphasis here on “how
many samples for a given

error” is also kind of a
TCS-style framing, whereas
statisticians more often ask

“how much error for a given
number of samples”; I tend
to prefer the latter, but it’s

all equivalent.

there tends
to be a lot of focus on just being learnable versus not being learnable. That problem
has been solved, though, as we’ll see not too much later in class; recent work focuses
much more on rates than on just learnability or not, and tends to be willing to make
some assumptions on D rather than either being totally general or assuming only
realizability.

We’ve shown that anything finite is agnostically PAC learnable. That’s only an upper
bound, though; it doesn’t mean that infinite things aren’t learnable. Which is good,
because that’s what we usually want to learn!

Lemma 6.1 of [SSBD14] gives a really simple example of realizably PAC learning an
infinite class, if you’re curious to see that style of proof. I tried to do an agnostic
version of that, but it was more complicated than I hoped, so let’s do something
more interesting instead.

4.2 covering number bounds

In logistic regression, our data is in a subset of Rd ,This is more convenient
than Y = {0, 1} here. . .

our labels are in Y = {−1, 1} and we
try to predict with a confidence score in Ŷ = R. Our predictors are linear functions
of the form hw(x) = w · x,You usually want an

intercept term, w · x + w0,
but you can achieve that by

padding x with an
always-one dimension.

and the logistic loss is given by

ℓlog(h, (x, y)) = l
log
y (h(x)) = log(1 + exp(−h(x)y)). (4.1)

20

4. pac learning; infinite H

We’ll use the hypothesis class H = {hw = x 7→ w · x : w ∈ Rd , ∥w∥ ≤ B} for some
constant B; this avoids overfitting by using really-really complex w, and is basically
equivalent to doing L2-regularized logistic regression (we’ll talk about this more
later). This H is still infinite, but it has finite volume.

Now, our analysis is going to be based on the idea that if w and v are similar
predictors, i.e. hw(x) ≈ hv(x) for all x, then they’ll behave similarly: LD(hw) ≈ LD(hv)
and LS(hw) ≈ LS(hv). Thus we don’t have to do a totally separate concentration
bound on their empirical risks; we can exploit that they’re similar.

The fundamental idea is going to be one of a “set cover,” or an “ε-net.” To handle
an infinite H that’s nonetheless bounded, we’re going to choose some finite set H0
such that everything in H is close to something in H0, use Proposition 2.2 to say that
LD(h)− LS(h) isn’t too big for anything inH0, and then argue that since LD(h)− LS(h)
is smooth, this means it can’t be too big for anything in H at all.

H
H0

Figure 4.1: A (non-minimal) set cover.

4.2.1 Smoothness: Lipschitz functions

To formalize the idea that similar weight vectors give similar loss, we’ll want a
bound like

|LD(h) − LD(g)| ≤ M ρH(h, g),

for some notion of a distance metric on H. This is called a Lipschitz property.

Definition 4.6. A function f : X → Y is M-Lipschitz with respect to ρX and ρY
if for all x, x′ ∈ X , ρY (f (x), f (x′)) ≤ M ρX (x, x′). The smallest M for which this
inequality holds is the Lipschitz constant, denoted ∥f ∥Lip.

If X and/or Y are subsets of Rd , ρ is Euclidean distance unless otherwise specified.

So, for example, x 7→ |x| is a 1-Lipschitz function, since
∣∣∣|x| − |y|∣∣∣ ≤ ∣∣∣x − y∣∣∣.

The notation ∥f ∥Lip is justified by the following result. If you’re not sure about
function spaces / norms / etc, don’t worry about it (we’ll come back to this later in
the course); the takeaway is the two properties shown in the proof.

Lemma 4.7. Consider a vector space of functions X → Y , where Y is a normed space,
such that f + g is the function x 7→ f (x) + g(x) and af is the function x 7→ af (x). ∥·∥Lip
is a seminorm on this space with respect to ∥· − ·∥Y .

Proof. There are two properties to show. First, subadditivity (which implies the

21

4. pac learning; infinite H

triangle inequality):

∥f + g∥Lip = sup
x,x′

∥f (x) + g(x) − f (x′) − g(x′)∥
ρX (x, x′)

≤ sup
x,x′

∥f (x) − f (x′)∥
ρX (x, x′)

+
∥g(x) − g(x′)∥
ρX (x, x′)

≤ ∥f ∥Lip + ∥g∥Lip .

Second, absolute homogeneity:

∥af ∥Lip = sup
x,x′

∥af (x) − af (x′)∥
ρX (x, x′)

= sup
x,x′

|a| ∥f (x) − f (x′)∥
ρX (x, x′)

= |a| ∥f ∥Lip .

It isn’t a proper norm because ∥x 7→ a∥Lip = 0 for all constant functions.

So, what is ∥LD∥Lip? When z = (x, y) and ℓ(h, (x, y)) = ly(h(x)), we have

|LD(h) − LD(g)| =
∣∣∣∣∣ Ez∼D ℓ(h, z) − E

z∼D
ℓ(g, z)

∣∣∣∣∣
≤ E

z∼D
|ℓ(h, z) − ℓ(g, z)|

= E
(x,y)∼D

∣∣∣ly(h(x)) − ly(g(x))
∣∣∣

≤ E
(x,y)∼D

∥ly∥Lip ρŶ (h(x), g(x)). (4.2)

So, in particular settings we want to find
∥∥∥ly∥∥∥Lip

and bound ρŶ (h(x), g(x)) in terms
of some notion of similarity between h and g.

For the first problem, since for logistic regression l
log
y : R→ R, this result will help:

Lemma 4.8. Let X ⊆ R be a connected, closed set. If a function f : X → R is continuous
and differentiable everywhere on the interior of X , ∥f ∥Lip = supx∈X |f ′(x)|.

Proof. We apply the fundamental theorem of calculus:

∣∣∣f (x′) − f (x)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
x′∫
x

f ′(x)dx

∣∣∣∣∣∣∣∣∣ ≤
x′∫
x

∣∣∣f ′(x)
∣∣∣dx ≤

x′∫
x

∥f ∥Lip dx = ∥f ∥Lip

∣∣∣x′ − x∣∣∣ .
We won’t need this today, but it’s worth noting that if X ⊆ Rd , the same proof idea
gives us that ∥f ∥Lip = supx∈X ∥∇f (x)∥.

Lemma 4.9. For any y ∈ {−1, 1},
∥∥∥∥llog

y

∥∥∥∥
Lip
≤ 1.

Proof. l
log
y is differentiable everywhere on R, and so using Lemma 4.8,

∣∣∣∣∣ d
dŷ

l
log
y (ŷ)

∣∣∣∣∣ =
∣∣∣∣∣ d
dŷ

log(1 + exp(−yŷ))
∣∣∣∣∣ =

∣∣∣∣∣ 1
1 + exp(−yŷ)

exp(−yŷ)(−y)
∣∣∣∣∣

=
∣∣∣∣∣ exp(−yŷ)
1 + exp(−yŷ)

×
exp(yŷ)
exp(yŷ)

∣∣∣∣∣ ∣∣∣−y∣∣∣ =
∣∣∣∣∣ 1
1 + exp(yŷ)

∣∣∣∣∣ ≤ 1.

22

4. pac learning; infinite H

Plugging into (4.2), we get

|LD(hw) − LD(hv)| ≤ E
(x,y)∼D

∥∥∥ly∥∥∥Lip |hw(x) − hv(x)| .

That is, if the predictions are similar, the losses are too. We can further say that if w
and v are close, then their predictions are similar:

|hw(x) − hv(x)| = |w · x − v · x| = |(w − v) · x| ≤ ∥w − v∥ ∥x∥

by Cauchy-Schwarz. Thus

|LD(hw) − LD(hv)| ≤
(

E
(x,y)∼D

∥x∥ ∥ly∥Lip

)
∥w − v∥ ,

giving that LD is
(
E(x,y)∼D ∥x∥ ∥ly∥Lip

)
-Lipschitz with respect to ρH(hw, hv) = ∥w − v∥,

and similarly LS is
(

1
m

m∑
i=1
∥xi∥ ∥lyi∥Lip

)
-Lipschitz. (We could repeat the argument

with empirical averages instead of E, but a slicker way is to note that LS is exactly LD̂S

for the empirical distribution D̂S, the discrete distribution that puts 1/m probability
at each member of S.) Thus we know that

∥LD − LS∥Lip ≤ E
(x,y)∼D

∥x∥ ∥ly∥Lip +
1
m

m∑
i=1

∥xi∥ ∥lyi∥Lip. (4.3)

If we assume for simplicity that the distribution is bounded, Pr(x,y)∼D(∥x∥ ≤ C) = 1,
and that ∥ly∥Lip ≤ M for each y (as with logistic loss, where M = 1), then LD − LS is
guaranteed to be (2CM)-Lipschitz.

4.2.2 Putting it together with a set covering

Now the question is: how big does H0 have to be? We’ll use the following concept:

Definition 4.10. An η-cover of a set U is a set T ⊆ U such that, for all u ∈ U, there
is a t ∈ T with ρ(t, u) ≤ η. The covering number N(U, η) is the size of the smallest
η-cover for U.

We want to cover HB = {hw = (x 7→ w · x) : ∥w∥ ≤ B} with the metric ρ(hw, hv) =
∥w − v∥. We can immediately construct this kind of cover if we have a cover for the
Euclidean ball of radius B. Section 4.2.3 bounds how big this cover needs to be:

Lemma 4.11. Let η ∈ (0, B] and p ∈ [1,∞]. The covering number of the radius-B p-norm
ball in Rd , U = {x ∈ Rd : ∥x∥p ≤ B}, satisfies(

B
η

)d
≤ N(U, η) ≤

(
2B
η

+ 1
)d
≤

(
3B
η

)d
.

(When η ≥ B, trivially N(U, η) = 1.)

We now have all the tools we need for the following result about linear models with
bounded Lipschitz losses.

Proposition 4.12. Let hw(x) = w · x and H = {hw : ∥w∥ ≤ B} for some B > 0. Consider
a loss ℓ(h, (x, y)) = ly(h(x)) for functions ly : R→ R which each have Lipschitz constant
at most M and are bounded in [a, b]. Assume that ∥x∥ ≤ C almost surely under D. Then,

23

4. pac learning; infinite H

with probability at least 1 − δ,

sup
h∈H

LD(h) − LS(h) ≤ 1
√

2m

BCM + (b − a)

√
log

1
δ

+
d
2

log(72m)

 .

Proof. We’ll first choose a η-cover H0 = {w1, . . . , wNη
} ⊂ {w ∈ Rd : ∥w∥ ≤ B}, where η

is a parameter to be set later. Then, for any h ∈ H, let nnH0
(h) ∈ arg minh′∈H0

ρ(h, h′),
using ρ(hw, hv) = ∥w − v∥. Define the function ∆(h) := LD(h) − LS(h) for brevity.
Then

sup
h∈H

∆(h) = sup
h∈H

∆(h) − ∆(nn(h)) + ∆(nn(h))

≤ sup
h∈H

[∆(h) − ∆(nn(h))] + sup
h′∈H0

∆(h′)

≤ 2CMη+ sup
h′∈H0

∆(h′),

where the first term is because of (4.3) and H0 being an η-cover.

The other term is uniform convergence over a finite hypothesis class H0, as in
Proposition 2.2. We can apply Hoeffding to each element of H0, giving it a failure
probability of δ/Nη, and obtain that with probability at least 1 − δ,

sup
h∈H

∆(h) ≤ 2CMη+ (b − a)

√
1

2m
log

Nη

δ

≤ 2CMη+ (b − a)

√
1

2m

[
log

1
δ

+ d log
3B
η

]
.

Now, we could try to exactly optimize the value of η, but I think we won’t be
able to do that analytically. Instead, let’s notice that if η is o(1/

√
m), the first term

being smaller doesn’t really help in rate since the other term is 1/
√
m anyway – but

choosing a smaller ηmakes the log 1
η

worse. Also, the dependence on η there is only

in a log term, so it’s probably okay-ish to choose η = α/
√
m for some α > 0, giving us

sup
h∈H

[LD(h) − LS(h)] ≤ 1
√
m

2CMα +
b − a
√

2

√
log

1
δ

+ d log
3B
√
m

α

 .
Picking α = B/(2

√
2) and using log A = 1

2 log(A2) gives the desired result.

For our motivating problem of logistic regression, M = 1, but there’s one catch: we
can use a = 0 but there isn’t an “inherent” upper bound for b. Given that we know

24

4. pac learning; infinite H

∥x∥ ≤ C and ∥w∥ ≤ B, though, we have that |h(x)| = |w · x| ≤ BC. Thus

ℓ(h, (x, y)) = log(1 + exp(−yh(x)) ≤ log(1 + exp(BC)) =: b

ℓ(h, (x, y)) = log(1 + exp(−yh(x)) ≥ log(1 + exp(−BC)) =: a

b − a = log(1 + exp(BC)) − log(1 + exp(−BC))

= log
(

1 + exp(BC)
1 + exp(−BC)

× exp(BC)
exp(BC)

)

= log
(

1 + exp(BC)
exp(BC) + 1

× exp(BC)
)

= log exp(BC) = BC. (4.4)

Plugging into Proposition 4.12 gives us that with probability at least 1 − δ, logistic
regression with bounded-norm weights on bounded-norm data satisfies

sup
h∈H

LD(h) − LS(h) ≤ BC
√

2m

1 +

√
log

1
δ

+
d
2

log(72m)

 = Op

BC

√
d logm

m

 . (4.5)

Treating everything but m as a constant, the rate is Op

(√
logm
m

)
. This machinery is called

“chaining”; we probably
won’t cover it in class, but
Wainwright [Wai19, Section
5.3.3] has a reasonable
overview.

That
√

logm factor

is actually unnecessary, but getting rid of it with covering number-type arguments
requires some more advanced machinery. Instead, soon we’ll see a simpler way to
show a Op(1/

√
m) rate – in fact, a Op(BC/

√
m) rate, also dramatically improving the

dependence on d – that will also be very generally applicable.

ERM bound We only wrote this proof here for suph∈H LD(h) − LS(h), but since the
loss is bounded, this implies exactly as in (1.5) an upper bound on the generalization
error of any ERM ĥS. Using the general result from Proposition 4.12 with probability
δ/2, and plain Hoeffding with probability δ/2 on the LS(h∗) − LD(h∗) term, gives us

LD(ĥS) − LD(h∗) ≤ 1
√

2m

BCM + (b − a)

√
log

2
δ

+
d
2

log(72m)

 + (b − a)

√
1

2m
log

2
δ
,

and using
√
a + b ≤

√
a +
√
b we can simplify to

LD(ĥS) − LD(h∗) ≤ 1
√

2m

BCM + (b − a)

√
d
2

log(72m) + 2(b − a)

√
log

2
δ

 .
Specializing to logistic regression, we can plug in M = 1, b − a = BC so that

LD(ĥS) − LD(h∗) ≤ BC
√
m

 1
√

2
+

1
2

√
d log(72m) +

√
2 log

2
δ

 = Op

BC

√
d logm

m

 .
(4.6)

A question for yourself here: does this imply that ERM agnostically PAC-learns
logistic regression?

More general versions We used the following properties about the problem:

• A bounded loss, to apply Hoeffding. This could be weakened in various ways,
e.g. another kind of subgaussianity, or other ways to show concentration for a
finite number of points.

• A Lipschitz loss. Some form of this is definitely necessary. You could poten-

25

4. pac learning; infinite H

tially use a locally Lipschitz loss (where the constant varies through space),
but then you have to be more careful in bounding (4.3) or similar.

• A parameterization for H with a covering number bound. We framed this as
covering the parameter set for linear models, but you could use more general
notions of covering for H, as long as they’re compatible with the metric you
use for Lipschitzness in the previous part. This generality is often useful, e.g.
for nonparametric H.

4.2.3 Aside: Bounds on covering numbers

We’ll now prove our upper bound on covering numbers. Recall their definition:

Definition 4.10. An η-cover of a set U is a set T ⊆ U such that, for all u ∈ U, there
is a t ∈ T with ρ(t, u) ≤ η. The covering number N(U, η) is the size of the smallest
η-cover for U.

We’ll also use packing numbers: how many balls can we squeeze into a set T?

Definition 4.13. An η-packing of a set U is a set T ⊆ U such that, for all t, t′ ∈ T
with t , t′, we have ρ(t, t′) > η. The packing number M(U, η) is the maximal size of
any η-packing.

Proposition 4.14. A maximally-sized η-packing T of a set U is also a η-cover of U.

Proof. Suppose there were some point u ∈ U such that ρ(u, t) > η for all t ∈ T.
Then we could add u to the η-packing, producing a packing of size one larger; this
contradicts that T was maximal.

We’re now ready to prove the result:

Lemma 4.11. Let η ∈ (0, B] and p ∈ [1,∞]. The covering number of the radius-B p-norm
ball in Rd , U = {x ∈ Rd : ∥x∥p ≤ B}, satisfies(

B
η

)d
≤ N(U, η) ≤

(
2B
η

+ 1
)d
≤

(
3B
η

)d
.

(When η ≥ B, trivially N(U, η) = 1.)

Proof. By Proposition 4.14, we have that N(U, η) ≤ M(U, η); we’ll first prove the
upper bound on the packing number M. Let T be a maximal η-packing of the
B-ball U = {w ∈ Rd : ∥w∥ ≤ B}. Thus the open η/2-balls centered at each t ∈ T,
{w ∈ Rd : ∥w − t∥p < η/2}, are disjoint: if they weren’t, you could get from one t to
another in distance less than η, contradicting that T is an η-packing. These balls are
also all contained within the ball of radius (B + η/2), since each ∥t∥p ≤ B. Thus∑

t∈T

vol
(
{w ∈ Rd : ∥w − t∥p < η/2}

)
≤ vol

(
{w ∈ Rd : ∥w∥p < B + η/2}

)
.

But we know that the volume of a p-norm ball of radius R in d dimensions is RdV1,

26

https://en.wikipedia.org/wiki/Volume_of_an_n-ball#Balls_in_Lp_norms

4. pac learning; infinite H

where V1 = vol({w ∈ Rd : ∥w∥p < 1}). Thus∑
t∈T

(
η

2

)d
V1 = M(U, η)

(
η

2

)d
V1 ≤

(
B +

η

2

)d
V1

so M(U, η) ≤
(

2B
η

+ 1
)d

=
(

2B + η
η

)d
≤

(
3B
η

)d
,

using at the end that η ≤ B to get a simpler form.

For the lower bound, it holds for a minimal cover T of any set U that

vol(U) ≤ vol

⋃
t∈T

{w : ∥w − t∥p < η}

 ≤∑
t∈T

vol
(
{w : ∥w − t∥p < η}

)
= N(U, η)Vη,

where Vη = vol({w : ∥w∥p < η}). Thus N(U, η) ≥ vol(U)/Vη. Plugging in for U being a
∥·∥p ball in Rd , we obtain the desired lower bound.

A similar upper bound holds more generally for any finite-dimensional Banach
space, I don’t know if the above

proofs can be generalized or
not.

getting (4B/η)d [CS02, Proposition 5]. I don’t know about a lower bound
there. For infinite-dimensional Banach spaces, the lower bound is infinite [Isr15], so
to use covering numbers another setup is necessary.

27

https://en.wikipedia.org/wiki/Banach_space
https://en.wikipedia.org/wiki/Banach_space

5 Rademacher complexity

Last time (Section 4.2) was our first time showing a uniform convergence bound,
one on suph∈H LD(h) − LS(h), for an infinite H. We can then easily turn that into a
bound on the estimation error of ERM, LD(ĥS) − infh∈H LD(h), as in (4.6).

We’re now going to develop a technique that’s less intuitive, but will show a better
result (no

√
d logm), is somewhat more general, and once you understand it can be

easier to use.

We’ll start with a bound on the mean worst-case generalization gap. That is, we’ll
show that

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ ε(m).

This gives us, for instance, that if ĥS is an ERM then

E LD(ĥS) = E
[
LD(ĥS) − LS(ĥS)

]
︸ ︷︷ ︸

≤ε(m)

+E
[
LS(ĥS) − LS(h∗)︸ ︷︷ ︸

≤0

]
+ E

[
LS(h∗)

]
︸ ︷︷ ︸

=LD(h∗)

≤ LD(h∗) + ε(m).

We’ll use this to prove a high-probability bound on suph∈H LD(h) − LS(h) in Sec-
tion 5.3.

5.1 a g-g-g-g-ghost (sample)

Using that LD(h) = ES∼Dm LS(h):

S′ here is sometimes called a
“ghost sample.”

E
S∼Dm

sup
h∈H

LD(h) − LS(h) = E
S∼Dm

sup
h∈H

E
S′∼Dm

LS′ (h) − LS(h).

Now, we’ll exploit the following general fact:

Lemma 5.1. Let fy be a class of functions indexed by y, This should be intuitive,
once you think about it a bit:
if the optimization can see
what particular sample you
got, it can “overfit” better
than if it has to optimize on
average.

and X be some random variable.
Then when the expectations exist,

sup
y

E
X
fy(X) ≤ E

X
sup
y

fy(X).

Proof. For any y, we have fy(X) ≤ supy′ fy′ (X) by definition, no matter the value of
X. Taking the expectation of both sides, for any y, EX fy(X) ≤ EX supy′ fy′ (X). So it’s
also true if we take the supremum over y.

Applying this, we see that

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ E
S∼Dm

S′∼Dm

sup
h∈H

LS′ (h) − LS(h). (5.1)

29

5. rademacher complexity

The right-hand-side of (5.1) is itself a natural thing to think about: how much does
anything in H overfit relative to a test set?

Now, S = (z1, . . . , zm) and S′ = (z′1, . . . , z
′
m) are composed of independent samples

from the same distribution. So, if we decided to swap z3 and z′3, this would still be a
“valid,” equally likely sample for S and S′. Rademacher complexity is based on this
idea.

Watch out that σi has
nothing to do with a

standard deviation or
subgaussian parameter σ;

we’ll refer to the vector
(σ1, . . . , σm) as σ, or σ⃗ in

handwriting. Unfortunate,
but no option is great here.

Notationally, let σi ∈ {−1,1} for i ∈ [m], and define (ui , u′i) =

(zi , z′i) if σi = 1

(z′i , zi) if σi = −1.
Then, for any choice of σ = (σ1, . . . , σm), we have

ℓ(h, z′i) − ℓ(h, zi) = σi(ℓ(h, u′i) − ℓ(h, ui)).

So, for any value of S, S′, and σ, defining U = (u1, . . . , um) and U′ = (u′1, . . . , u
′
m)

accordingly, we have

LS′ (h) − LS(h) =
1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)].

Since this holds for any choice of σ, it also holds if we pick them at random and
then take a mean over that choice. We’ll choose them according to a Rademacher
distribution, also written Unif(±1), which is 1 half the time and −1 the other half.
Thus,

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
σ

E
S,S′∼Dm

E
U,U′

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ S, S′ , σ

 .
Here we’re writing U and U′ as random variables, even though they’re actually
deterministic conditional on S, S′, and σ. The marginal distributions of U and U′

are each exactly Dm, though, the same as S and S′. So, it makes sense for us to switch
the order of the expectations.This switch is allowed by

Fubini’s theorem as long as
E
∣∣∣suph LS′ (h) − LS(h)

∣∣∣ is
finite, which is always true

e.g. for a bounded loss.)

σ | U, U′ is still just random signs; given σ and U, U′,
S and S′ become deterministic. This gives us

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dm

E
σ

E
S,S′

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

∣∣∣∣∣∣∣ U, U′ , σ

 .
But. . . S and S′ no longer appear at all, so we can forget about that expectation on
the right.This proof technique of

introducing a random sign
is called symmetrization.

Continuing,

E
S,S′∼Dm

sup
h∈H

LS′ (h) − LS(h) = E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σi[ℓ(h, u′i) − ℓ(h, ui)]

≤ E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, u′i) + sup
h′∈H

1
m

∑
i

(−σi)ℓ(h′ , ui)

supx f (x) + g(x) ≤
supx f (x) + supx′ g(x′)

= E
U,U′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, u′i) + E
U,U′∼Dm

E
σ

sup
h′∈H

1
m

∑
i

σiℓ(h′ , ui)−σ and σ have the same
distribution

= 2 E
S,S′∼Dm

E
σ

sup
h∈H

1
m

∑
i

σiℓ(h, zi)Renaming U to S

=: 2 E
S,S′∼Dm

Rad ((ℓ ◦ H)|S) .

We’re defining some notation at the end: ℓ ◦ H = {z 7→ ℓ(h, z) : h ∈ H} is a set of

30

5. rademacher complexity

functions from Z to R, and F |S denotes {(f (z1), . . . , f (zm)) : f ∈ F } ⊆ Rm, so that

(ℓ ◦ H)|S = {(ℓ(h, z1), . . . , ℓ(h, zm)) : h ∈ H} ⊆ Rm.

Definition 5.2. The Rademacher complexity of a set V ⊆ Rm is given by Many sources define Rad
with an absolute value
around the sum. This is the
more common modern
definition, since it makes
some things nicer.

Rad(V) = E
σ∼Unif(±1)m

sup
v∈V

1
m

m∑
i=1

σivi = E
σ∼Unif(±1)m

sup
v∈V

σ · v
m

.

One way to think of it is a measure of how much a set V extends in the direction of a
random binary vector. Rad(F |S) measures how well F can align with random signs
on the particular set S, or equivalently how well it can separate a random subset of
S from the rest.

For intuition, it might be nice to compare to the closely-related Gaussian complexity
[BM02], which uses σ ∼ N (0, Im) instead of a Rademacher vector. That’s maybe
more natural to see as a notion of the size of a set: “if I look in a random direction,
how far do I get?” (Remember that the norm of a random Gaussian concentrates
tightly in high dimensions.) For Rademacher, “looking in any direction” versus
“looking along ‘binary’ directions” isn’t so different.

Finally, notice that nothing here depended on the structure of the actual functions
z 7→ ℓ(h, z) ∈ ℓ ◦ H, and so we’ve proved the following result for general function
classes (rather than just those of the form ℓ ◦ H).

Theorem 5.3. For any class F of functions f : Z → R, and any distribution D over Z
with S = (z1, . . . , zm) ∼ Dm, we have

E
S∼Dm

sup
f ∈F

 E
z∼D

[f (z)] − 1
n

m∑
i=1

f (zi)

 ≤ 2 E
S∼Dm

Rad(F |S).

In particular, in our standard learning setup,

E
S∼Dm

sup
h∈H

LD(h) − LS(h) ≤ 2 E
S∼Dm

Rad((ℓ ◦ H)|S).

5.2 properties of rademacher complexity

First, note that

Rad({v}) =
1
m

E
σ
σ · v = 0 :

no matter the vector, a singleton set has no complexity. (In terms of generalization:
any given hypothesis is equally likely to over- or under-estimate the risk.)

On the other extreme, for the vertices of a hypercube,

Rad({−1, 1}m) =
1
m

E
σ

sup
v

m∑
i=1

σivi =
1
m

E
σ
m = 1.

As we’ll see later (Proposition 6.1), this is highly related to considering the complex-
ity of the hypothesis class of all possible {−1, 1}-valued functions; if we tried to do
ERM in the set of “all possible classifiers,” we’d get that the expected zero-one loss
is ≤ 1. Exciting!

31

5. rademacher complexity

Letting cV = {cv : v ∈ V} for any c ∈ R, we have that

Rad(cV) =
1
m

E
σ

sup
v∈V

σ · (cv) =
1
m

E
σ

sup
v∈V
|c| (sign(c)σ) · v = |c|Rad(V) (5.2)

since sign(c)σ has the same distribution as σ.

For V + W = {v + w : v ∈ V, w ∈ W}, also called the Minkowski sum, we get

Rad(V+ W) =
1
m

E
σ

sup
v∈V
w∈W

σ · (v+w) =
1
m

E
σ

sup
v∈V

σ ·v+
1
m

E
σ

sup
w∈W

σ ·w = Rad(V)+Rad(W).

Combined with the fact that Rad({v}) = 0, this means that translating a set by a
constant vector doesn’t change its complexity.

5.2.1 Talagrand’s contraction lemma

How do we compute Rad(ℓ ◦ H|S) for practical losses and hypothesis classes? The
first key step is usually to “peel off” the loss, getting a bound in terms of Rad(H|Sx

).
We can do that with the following lemma, which is also very helpful for bounding
Rad(H) for H that are defined compositionally, like deep networks.

The major way to do that is with the following results, for Lipschitz losses (Defi-
nition 4.6).A 1-Lipschitz function is

called a contraction: it
doesn’t increase the distance

between any points, but
(usually) contracts at least

some.

For example, recall from Lemma 4.9 that logistic loss, used in logistic
regression, is 1-Lipschitz.

Lemma 5.4 (Talagrand). Let φ : Rm → Rm be given by φ(t) = (ϕ1(t1), . . . ,ϕm(tm)),
where each φi is M-Lipschitz. Then

Rad(φ ◦ V) = Rad({φ(v) : v ∈ V}) ≤ M Rad(V).

Our proof will be based on the following special case:

Lemma 5.5. If ϕ : R→ R is 1-Lipschitz, Rad({(ϕ(v1), v2, . . . , vm) : v ∈ V}) ≤ Rad(V).

Proof of Lemma 5.4, assuming Lemma 5.5. First notice that “rotating” the vectors in
V doesn’t change its complexity, since σ has iid entries:

Rad({(v2, . . . , vm, v1) : v ∈ V}) = Rad(V).

Now, notice that each component of 1
Mφ(t) = (1

Mϕ1(t1), . . . , 1
Mϕm(tm)) is 1-Lipschitz.

So, start by applying Lemma 5.5 to V with 1
Mϕ1, then rotating, to obtain

Rad
({(

v2, . . . , vm,
1
Mϕ1(v1)

)
: v ∈ V

})
≤ Rad(V).

Repeat these steps with 1
Mϕ2, then 1

Mϕ3, and so on, until we obtain

Rad
([

1
Mφ

]
◦ V

)
≤ Rad(V).

Finally, scale by M, which by (5.2) means

Rad(φ ◦ V) = M Rad
([

1
Mφ

]
◦ V

)
≤ M Rad(V).

Proof of Lemma 5.5. Let φ(v) = (ϕ(v1), v2, . . . , vm) so that φ◦V = {(ϕ(v1), v2, . . . , vm) :

32

5. rademacher complexity

v ∈ V}. Using Python-like notation where v2: means (v2, v3, . . . , vm) ∈ Rm−1, we have

mRad(φ ◦ V) = E
σ

sup
v∈V

[σ1ϕ(v1) + σ2: · v2:]

=
1
2
E
σ2:

sup
v∈V

[ϕ(v1) + σ2: · v2:] +
1
2
E
σ2:

sup
v′∈V

[
−ϕ(v′1) + σ2: · v′2:

]
=

1
2
E
σ2:

sup
v,v′∈V

[
ϕ(v1) − ϕ(v′1) + σ2: · (v2: + v′2:)

]
.

Now, for points arbitrarily close to the supremum, ϕ(v1) − ϕ(v′1) will always be
nonnegative: if it were negative, simply swapping v and v′ would make that term
positive, and wouldn’t affect the rest of the expression, making the objective bigger.
Thus we can write

mRad(φ ◦ V) =
1
2
E
σ2:

sup
v,v′∈V

∣∣∣ϕ(v1) − ϕ(v′1)
∣∣∣ + σ2: · (v2: + v′2:)

≤ 1
2
E
σ2:

sup
v,v′∈V

∣∣∣v1 − v′1
∣∣∣ + σ2: · (v2: + v′2:)

since ϕ is 1-Lipschitz. Now, notice that the objective of the maximization is identical
if we swap v and v′, so for any point close to the supremum with v1 ≤ v′1, there’s an
exactly equivalent one with v1 ≥ v′1. Thus

mRad(φ ◦ V) ≤ 1
2
E
σ2:

sup
v,v′∈V

v1 − v′1 + σ2: · (v2: + v′2:)

=
1
2
E
σ2:

(
sup
v∈V

[v1 + σ2: · v2:] + sup
v′∈V

[
−v′1 + σ2: · v′2:

])
= E

σ
sup
v∈V

v · σ = mRad(V).

How do we use this? Well, remember that for typical supervised learning losses,

(ℓ ◦ H)|S = {(ℓ(h, z1), . . . , ℓ(h, zm)) : h ∈ H}

= {(ly1
(h(x1)), · · · , lym(h(xm))) : h ∈ H}

= (lSy
◦ H)|Sx

,

where lSy
is a vectorized version of these losses (like φ above) for the vector of

particular labels Sy = (y1, . . . , ym). Then we have a function of x only, so we apply it
to Sx = (x1, . . . , xm). Note that M here might

depend on the particular Sy !
If the functions lyi are all M-Lipschitz, then Talagrand’s lemma

gives us that
Rad((ℓ ◦ H)S) ≤ M Rad(H|Sx

). (5.3)

5.2.2 Complexity of bounded linear functions

When studying covering numbers, we considered logistic regression using the
hypothesis class of bounded-norm linear functions,

HB = {x 7→ ⟨w, x⟩ : ∥w∥ ≤ B}.

To analyze that with Rademacher complexity, the key term is

Rad((ℓlog ◦ HB)|S) ≤ Rad(HB|Sx
),

33

5. rademacher complexity

using (5.3) with Lemma 4.9 that logistic loss is 1-Lipschitz. Now let’s bound that
latter term:

mRad(HB|Sx
) = E

σ
sup
∥w∥≤B

∑
i

σi⟨w, xi⟩

= E
σ

sup
∥w∥≤B

〈
w,

∑
i

σixi

〉

≤ E
σ

sup
∥w∥≤B

∥w∥

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥using Cauchy-Shwartz

= BE
σ

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥
≤ B

√√√√
E
σ

∥∥∥∥∥∥∥∑i

σixi

∥∥∥∥∥∥∥
2

using (E T)2 ≤ E T2 so

|E T| ≤
√
E T2

= B
√

E
σ

∑
ij

σiσj⟨xi , xj⟩

= B
√∑

i

E[σ2
i]︸︷︷︸

1

∥xi∥2 +
∑
i,j

E
σ

[σiσj]︸ ︷︷ ︸
0

⟨xi , xj⟩.

Dividing both sides by m, we can rewrite this final inequality as

Rad(HB|Sx
) ≤ B
√
m

√
1
m

∑
i

∥xi∥2, (5.4)

so this bound on the complexity depends on the particular Sx that you see, similar
to the issue we had with covering numbers.

One solution (as we did before) is to assume thata.s. is “almost surely” =
“with probability one”

D is such that ∥x∥ ≤ C (a.s.),
something often true in practice. This would imply that Rad(HB|Sx

) ≤ BC/
√
m (a.s.).

Note that this gives us an expected-case bound on the excess error of ERM for
logistic regression of

E
S∼Dm

LD(ĥS) − LD(h∗) ≤ 2BC
√
m

; (5.5)

we’ll see in Section 5.3 that, in this case, we can convert this into a bound saying
that, with probability at least 1 − δ,

LD(ĥS) − LD(h∗) ≤ BC
√
m

2 +

√
2 log

2
δ

 = Op

(
BC
√
m

)
. (5.6)

Compare this to the covering number-based bound we showed in (4.6):

LD(ĥS) − LD(h∗) ≤ BC
√
m

 1
√

2
+

1
2

√
d log(72m) +

√
2 log

2
δ

 = Op

BC

√
d logm

m

 .
Sometimes, though, we don’t want to assume this hard upper bound on ∥x∥; for ex-
ample, what if our data is Gaussian? Again using that E X ≤

√
E X2 for nonnegative

34

5. rademacher complexity

X, we can bound the expected value of (5.4) as This only works for the
average Rademacher
complexity, which is the only
thing we’ve seen to care
about yet, but in some
settings you do want a
high-probability bound on
Rad(H|Sx) rather than an
average-case one.

E
S

Rad(HB|Sx
) ≤ B
√
m

E
S

√
1
m

∑
i

∥xi∥2 ≤
B
√
m

√
E
x
∥x∥2. (5.7)

This allows for much broader data distributions, as long as you can bound E ∥x∥2.
For example, for a Gaussian x ∼ N (µ,Σ) this is E ∥x∥2 = ∥µ∥2 + Tr(Σ).

We’ve thus shown an average-case estimation error bound for bounded-norm linear
problems with Lipschitz losses with a rate of O(1/

√
m).

5.3 concentration

Now let’s prove that high-probability bound. We’ll need a new tool: McDiarmid’s
inequality, which lets us show concentration of things other than sample averages.

Theorem 5.6 ([McD89]). Let X1, . . . , Xm be independent, and let f (X1, . . . , Xm) be a
real-valued function satisfying the bounded differences condition

∀i ∈ [m]. sup
x1,...,xm,x

′
i

∣∣∣f (x1, . . . , xm) − f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xm)

∣∣∣ ≤ ci .

Then, with probability at least 1 − δ,

f (X1, . . . , Xm) ≤ E f (X1, . . . , Xm) +

√√
1
2

 m∑
i=1

c2
i

 log
1
δ
.

Proof. This proof has deep
connections to martingale
methods, but we won’t talk
any more about that. If you
take Nick Harvey’s
randomized algorithms
course, you can learn some
more! Or read Section 2.2 of
[Wai19] for a very brief
intro, or read [McD89].

Use Xi:j to denote (Xi , . . . , Xj). For any k ∈ [m], freeze some arbitrary values
for x1:k−1 = (x1, . . . , xk−1). We’re going to consider EXk+1:m

f (x1:k−1, Xk , Xk+1:m) as a
random variable, which is random depending only on the value of Xk: the earlier
arguments are frozen, and the later ones are being averaged over.

First, we know this variable is bounded: it can vary only in an interval of length at
most ck . By assumption, for any particular values for x1:k−1 and xk+1:m,

ck ≥ sup
xk

f (x1:m) − inf
xk

f (x1:m).

This is true for any values of xk+1:m, so it’s also true on average:

ck ≥ E
Xk+1:m

sup
xk

f (x1:k−1, xk , Xk+1:m) − inf
xk

f (x1:k−1, xk , Xk+1:m)

≥ E
Xk+1:m

sup
xk

f (x1:k−1, xk , Xk+1:m) + sup
xk

(−f (x1:k−1, xk , Xk+1:m)) − inf t = sup(−t)

= E
Xk+1:m

sup
xk ,x

′
k

f (x1:k−1, xk , Xk+1:m) − f (x1:k−1, x
′
k , Xk+1:m)

≥ sup
xk ,x

′
k

E
Xk+1:m

f (x1:k−1, xk , Xk+1:m) − f (x1:k−1, x
′
k , Xk+1:m) Lemma 5.1

= sup
xk

E
Xk+1:m

f (x1:k−1, xk , Xk+1:m) − inf
xk

E
Xk+1:m

f (x1:k−1, xk , Xk+1:m).

Thus, by Hoeffding’s lemma (Proposition 3.5), this variable is SG(ck/2). That is, mul-

35

5. rademacher complexity

tiplying the definition of subgaussianity (Definition 3.4) by eλE X for convenience,

E
Xk

exp
(
λ E

Xk+1:m

f (x1:k−1, Xk , Xk+1:m)
)
≤ exp

(
λ E

Xk

E
Xk+1:m

f (x1:k−1, Xk , Xk+1:m) +
1
8
λ2c2

k

)
.

This inequality holds for any x1:k−1, so let’s take the expectation of both sides:

E
X1:k

exp
(
λ E

Xk+1:m

f (X1:m)
)
≤ E

X1:k−1

exp
(
λ E

Xk:m

f (X1:m) +
1
8
λ2c2

k

)
.

That inequality holds for each choice of k. Let’s take the log of each one, and add
them all up:

m∑
k=1

log E
X1:k

exp
(
λ E

Xk+1:m

f (X1:m)
)
≤

m∑
k=1

[
log E

X1:k−1

exp
(
λ E

Xk:m

f (X1:m)
)

+
1
8
λ2c2

k

]
.

Letting ak = logEX1:k
exp(λEXk+1:m

f (X1:m)), we have

m∑
k=1

ak ≤
m∑
k=1

ak−1 +
m∑
k=1

1
8
λ2c2

k .

Most of the terms cancel, leaving us am on the left and a0 on the right:

log E
X1:m

exp (λf (X1:m)) ≤ log exp
(
λ E

X1:m

f (X1:m)
)

+
1
8
λ2

m∑
k=1

c2
k .

Taking the exponential of both sides and rearranging,

E
X1:m

exp
(
λ

(
f (X1:m) − E

X1:m

f (X1:m)
))
≤ exp

1
2
λ2 · 1

4

m∑
k=1

c2
k

 .
This is exactly the definition of f (X1:m) ∈ SG

(
1
2

√
m∑
i=1

c2
i

)
. The Chernoff bound for

subgaussians (Proposition 3.8) then tells us that with probability at least 1 − δ,

f (X1:m) ≤ E f (X1:m) +
1
2

√√
m∑
i=1

c2
i ·

√
2 log

1
δ
.

Considering −f gives an identical form for the lower bound, and a union bound
gives an absolute value version by replacing 1

δ
with 2

δ
.

Notice that if ci = c for all i, then
√

m∑
i=1

c2
i = c

√
m.

(It’s also worth checking for yourself that when f (X1:m) = 1
m

m∑
i=1

Xi , you exactly

recover the bounded version of Hoeffding’s inequality.)

Now that we know McDiarmid’s inequality, we can directly apply it to get a high-
probability bound:

Theorem 5.7. Suppose that ℓ(h, z) ∈ [a, b] for all h, z. Then, with probability at least
1 − δ,

sup
h∈H

LD(h) − LS(h) ≤ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

1
δ
. (5.8)

36

5. rademacher complexity

Thus, if ĥS is an ERM, we have with probability at least 1 − δ that

LD(ĥS) − inf
h∈H

LD(h) ≤ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
2
m

log
2
δ
. (5.9)

Proof. Let S(i) = (z1, . . . , zi−1, z
′ , zi+1, . . . , zm). Now, we have

LD(h) − LS(h) = LD(h) − LS(i)(h) + LS(i)(h) − LS(h);

thus, expanding out LS(i)(h) − LS(h),

sup
h∈H

[LD(h) − LS(h)] − sup
h∈H

[LD(h) − LS(i)(h)] ≤ sup
h∈H

1
m

[
ℓ(h, z′) − ℓ(h, z)

]
≤ b − a

m

because the loss is bounded. The same holds in the other direction:

sup
h∈H

[LD(h) − LS(i)(h)] − sup
h∈H

[LD(h) − LS(h)] ≤ sup
h∈H

1
m

[
ℓ(h, z) − ℓ(h, z′)

]
≤ b − a

m
.

Therefore the worst-case generalization gap, f (S) = suph∈H LD(h) − LS(h), satisfies
the bounded differences condition with c = (b − a)/m. Equation (5.8) follows by
applying McDiarmid.

The other result follows as usual for our ERM bounds: we know that for any h∗ ∈ H,

LD(ĥS) ≤ LS(ĥS) + sup
h∈H

[LD(h) − LS(h)]

≤ LS(ĥS) + E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

(5.8), w/ prob. 1 − δ/2

≤ LS(h∗) + E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

definition of ERM

≤ LD(h∗) + (b − a)

√
1

2m
log

2
δ

+ E sup
h∈H

[LD(h) − LS(h)] + (b − a)

√
1

2m
log

2
δ

Hoeffding, w/ prob. 1 − δ/2,

and the result follows since h∗ was arbitrary.

For bounded-norm bounded-data logistic regression, using (5.5) and (4.4) in (5.9)
gives (5.6).

37

6 Growth functions and VC
dimension

So far, we’ve mainly talked about logistic regression. We proved some bounds
that ERM obtains nearly the optimal value of the logistic loss over a bounded ball
of weight vectors, but we haven’t actually said anything yet about 0-1 loss (i.e.
accuracy).

We’re going to focus for now on binary classifiers, i.e. h that output a binary label,
not a continuous one. If we’re doing logistic regression, we’re thinking about the
“hard prediction,” not the logit or the predicted probability.

6.1 zero-one loss

If h(x) ∈ {−1, 1} and y ∈ {−1, 1}, then the 0-1 loss is

ly(ŷ) =

0 ŷ = y

1 ŷ , y.

This isn’t a function on R, so applying Talagrand’s lemma is a little weird. The trick
is, though: for computing the loss, we can just extend the function ly to R in any
way at all, and the loss will be exactly the same – it just doesn’t care what ly does for
other values of ŷ.

So, let’s just pick a Lipschitz function on R that agrees at the points we need, by
linear interpolation:

ly(ŷ) =

0 yŷ ≥ 1
1
2 −

1
2yŷ −1 ≤ yŷ ≤ 1

1 yŷ ≤ −1.

This has ∥ly∥Lip = 1
2 |y| =

1
2 . Thus:

Proposition 6.1. If H−1,1 is a hypothesis class with outputs in {−1, 1},

Rad((ℓ0−1 ◦ H−1,1)|S) ≤ 1
2

Rad(H−1,1|Sx
). (6.1)

If instead H0,1 maps to {0, 1},

Rad((ℓ0−1 ◦ H0,1)|S) ≤ Rad(H0,1|Sx
). (6.2)

Proof. The first result just applies Talagrand’s contraction lemma (Lemma 5.4) to
the extended ly above.

For the {0,1} case, we can either do the same thing with a slightly different 1-
Lipschitz function, or we can note that we can convert a {0, 1} classifier to a {−1, 1}

39

6. growth functions and vc dimension

classifier by taking 2h − 1 and use basic properties of Rademacher complexity to see

Rad(H−1,1|Sx
) = Rad((2H0,1 − 1)|Sx

) = 2 Rad(H0,1|Sx
).

6.2 finite sets

How do we bound Rad(H|Sx
) for binary classifiers?

One major way is to note that, for binary classifiers,

H|Sx
= {(h(x1), . . . , h(xn)) : h ∈ H} ⊆ {0, 1}m

– and so it can’t be too big. There are only 2m possible bitvectors of behaviour on
the particular set Sx, even if H is infinite. In fact, there may be many fewer possible
things that H is able to do on this particular Sx.

So, let’s first try bounding the Rademacher complexity of an arbitrary finite set
based on its size.

Lemma 6.2. If V is finite and ∥v∥ ≤ B for all v ∈ V, then

Rad(V) ≤ B
m

√
2 log |V|.

Proof. We have

Rad(V) = E
σ

max
v∈V

m∑
i=1

σivi
m

.

Considering any one v for now,
m∑
i=1

σivi is a random variable (depending on σ). It

has mean zero, and since σi is SG
(1−(−1)

2

)
= SG(1) by Hoeffding’s lemma, viσi/m is

SG(|vi | /m). The viσi/m for each i are independent of one another, so this means

m∑
i=1

viσi
m
∈ SG

√√

m∑
i=1

(
|vi |
m

)2
 = SG

(
∥v∥
m

)
⊆ SG

(B
m

)
.

We now want to find the expected max of these |V| random variables. Each is mean
zero and SG(B/m); they’re dependent, since they all use the same σ, but that’s okay.
Lemma 6.3 handles exactly this situation, giving our desired result.

Lemma 6.3. Let X1, . . . , Xn be zero-mean random variables that are each SG(σ), which
are not necessarily independent. Then E

[
maxi∈[n] Xi

]
≤ σ

√
2 log(n).

Proof. This is Assignment 2, Question 2.4.

We can then specialize this to the binary classifier case:

Corollary 6.4. For binary classifiers mapping to {−1, 1}, Rad(H−1,1|Sx
) ≤

√
2
m log

∣∣∣H|Sx

∣∣∣.
For binary classifiers mapping to {0, 1}, Rad(H0,1|Sx

) ≤
√

1
2m log

∣∣∣H|Sx

∣∣∣.
Proof. For binary classifiers mapping to ±1, |h(x)| = 1 so

∥∥∥h|Sx

∥∥∥ =
√
m; the result

follows by plugging in to Lemma 6.2. For binary classifiers mapping to {0,1}, it’s
half of that, by the same scaling-and-translating conversion as before.

40

6. growth functions and vc dimension

Thus Proposition 6.1 and Theorems 5.3 and 5.7 give that for binary classifiers and
zero-one loss, You might want to check for

yourself that this same
equation holds whether H
maps to {0, 1} or {−1, 1}, or
indeed any other
two-element set.

E
S∼Dm

sup
h∈H

[LD(h) − LS(h)] ≤ E
S∼Dm

√
2
m

log
∣∣∣H|Sx

∣∣∣ (6.3)

Pr
S∼Dm

LD(ERMH(S)) − inf
h∈H

LD(h) ≤ E
S∼Dm

√
2
m

log
∣∣∣H|Sx

∣∣∣ +

√
2
m

log
2
δ

 ≥ 1 − δ. (6.4)

Using just that
∣∣∣H|Sx

∣∣∣ ≤ |H|, this becomes that with probability at least 1 − δ

LD(ERMH(S)) −min
h∈H

LD(h) ≤
√

2
m

log |H| +
√

2
m

log
2
δ
.

This is a tiny bit worse than the much more direct bound of Proposition 2.2,

LD(ERMH(S)) −min
h∈H

LD(h) ≤
√

2
m

log
|H| + 1
δ

≤
√

2
m

[
log |H| + log

2
δ

]
,

using |H| + 1 ≤ 2 |H|.

6.3 growth functions

The bound
∣∣∣H|Sx

∣∣∣ ≤ |H| is potentially very, very loose, though. For instance, we know
the left-hand side can’t be more than 2m, even if the right-hand side is infinite.

Plugging in that 2m bound would only give ES suph LD(h) − LS(h) ≤
√

2 log 2 ≈ 1.2,
which is not very interesting since the generalization gap is trivially at most 1! But,
when

∣∣∣H|Sx

∣∣∣ = o(2m), this is far more interesting.

Definition 6.5. The growth function ΓH(m) of a hypothesis class H is given by

ΓH(m) = sup
x1,...,xm∈X

∣∣∣H|(x1,...,xm)

∣∣∣ .
By definition,

∣∣∣HSx

∣∣∣ ≤ ΓH(m) for any Sx of size m; thus for binary classifiers with
zero-one loss, we immediately know that the expected worst-case generalization gap

is at most
√

2
m log ΓH(m).

Unlike our previous Rademacher or covering number bounds, we’ve now dropped
all dependence on the particular distribution D; this is a purely combinatorial
notion. That’s helpful if we’re trying to show PAC learning.

It’s sometimes possible to compute growth functions directly – you’ll do this in an
assignment – but it’s usually much easier to get a bound with the VC dimension.

6.4 vc dimension

Definition 6.6. A hypothesis class H is said to shatter a set Sx ⊆ X if it can achieve
all possible labellings of Sx, i.e.

∣∣∣H|Sx

∣∣∣ = 2m.

Definition 6.7. VC is for Vladimir Vapnik
and Alexey Chervonenkis,
Soviet mathematicians who
developed this theory
starting in the 60s (well
before PAC learning); the
English translation of the
first key paper is [VC71].

The VC dimension of H is the size of the largest set H can shatter:

VCdim(H) = max ({m ≥ 0 : ΓH(m) = 2m}) .

41

6. growth functions and vc dimension

If H can shatter unboundedly large sets, we say its VC dimension is infinite.

It turns out that we can bound the growth function in terms of the VC dimension:
ΓH(m) = O(mVCdim(H)), which then gives us that the expected worst-case generaliza-
tion gap is Õ(

√
2 VCdim(H)/m). We’ll prove this in Section 6.4.2; let’s first explore

how to compute the VC dimension for some different H.

6.4.1 Examples of computing VC dimension

It will be useful for all of our examples below to note that if you can’t shatter any
set of size m, you also can’t shatter any set of size m′ > m: if you could, then by
definition you could shatter any size-m subset of the larger set.

6.4.1.1 Threshold functions

Let ha : R→ {0, 1} be a threshold function ha(x) = 1(x ≥ a), and let H = {ha : a ∈ R}.

To start: we can shatter, say, Sx = {0},We can shatter any set of
size 1, but for VC dimension

we only have to show that
we can shatter one

particular set of that size.

because h−1(0) = 1 and h1(0) = 0. Thus
VCdim(H) ≥ |Sx| = 1.

But we can’t shatter any set Sx of size |Sx| ≥ 2. Let a, b ∈ Sx with a < b. We can’t get
h(a) = 1 and h(b) = 0 with the same h ∈ H, since all h ∈ H are nondecreasing. Thus
no Sx of size 2 can be shattered, and so VCdim(H) < 2.

Thus VCdim(H) = 1.

6.4.1.2 Circles

For X = R2, consider H = {hr,c : r > 0, c ∈ R2} with hr,c(x) = 1(∥x − c∥ ≤ r}, the set of
indicator functions of circles.

We can shatter any set of size two, since we can draw a circle that includes both
points, one that includes either point, or one that includes neither point.

We can also shatter some sets of size three,A bunch of these examples
are easier to see if you draw

them out! I’ll try to add
some TiKZ pictures, but in

the meantime you can draw
them yourself.

since if we put them in an equilateral
triangle we can pick out none, or any one, two, or all three points. (If we put the
three points in a line, we can’t pick out the two edges but not the middle – but that’s
okay, VC dimension is about the largest set you can shatter.)

Claim: we cannot shatter any set of size four, and so VCdim(H) = 3. If we think of
the points as lying roughly in a rectangle, then we can’t pick out opposite corners
without including at least one of the other points. (Ideally you’d formalize this
argument, but let’s not do that now.)

6.4.1.3 Homogeneous linear threshold functions in R2

Let X = R2 and consider H = {x 7→ sgn(w · x) : w ∈ R2}: hyperplanes passing
through the origin. We’re using Y = {−1,1}, and we’re going to define a function
sgn which is like the sign except that sgn(0) = 1 – yeah, that sucks but so do all the
other options. If you want to use Y = {0,1}, then instead write 1(w · x ≥ 0); that’s
nicer to write down, but more annoying to work with.

We can shatter at least some sets of size 2: e.g. {(−1,1), (1,1)}, we can put the
hyperplane along the x-axis to get both the same sign, or put it in along the y-axis
to get them with opposite signs.

42

6. growth functions and vc dimension

We can’t shatter any sets of size 3. A convex hull of a set is the
smallest convex set
containing the original set:
conv(V) = {αv + (1 − α)v′ :
v, v′ ∈ V, α ∈ [0, 1]}. If you
have some points in R2, you
draw straight lines
connecting the “outside”
points to include all the
points.

If the convex hull of the points contains the origin,
then we can’t get them all with the same sign; if the hull doesn’t contain the origin,
then we can’t label them like (1, 0, 1).

So homogenous 2-d linear threshold functions have VC dimension 2.

6.4.1.4 Homogeneous linear threshold functions in Rd

Proposition 6.8. Let H = {x 7→ sgn(w · x) : w ∈ Rd}. Then VCdim(H) = d.

Proof. We can shatter a set of size d: take the set {e1, . . . , ed} for ei the ith standard
basis vector, i.e. the one-hot vector with a 1 in the ith position and 0 everywhere else.
Then we can achieve an arbitrary labeling (y1, . . . , yd) ∈ {0, 1}d by setting wi = yi : we
get w · ei = yi .

To show that we cannot shatter any set of size d + 1, let x1, . . . , xd+1 be a set of
d + 1 points in Rd . Then they can’t be linearly independent: there must be some

α1, . . . , αd+1 such that
d+1∑
i=1

αixi = 0, with not all the αi zero. Let I+ = {i ∈ [d + 1] :

αi > 0}, I0 = {i ∈ [d + 1] : αi = 0}, and I− = {i ∈ [d + 1] : αj < 0}.

Now, ifH can shatter {x1, . . . , xd+1}, we can ask it to assign 1 to the xi with i ∈ I+∪I0,
and −1 to the xi with i ∈ I−. Then we’d have

0 = w · 0 = w ·
d+1∑
i=1

(αixi) =
∑
i∈I+

αi︸︷︷︸
>0

w · xi︸︷︷︸
≥0

+
∑
i∈I0

αi︸︷︷︸
0

w · xi +
∑
i∈I−

αi︸︷︷︸
<0

w · xi︸︷︷︸
<0

.

Suppose that I− is nonempty, or that there are any i ∈ I+ such that w · xi > 0. Then
the sum on the right-hand side is strictly positive, contradicting that it equals 0.

Thus, either we cannot shatter {x1, . . . , xd+1}, or we can but w · xi = 0 for all i ∈ I+
and I− = {}. Considering the second case, [SSBD14] misses analyzing

this case :(, since they just
pretend w · x = 0 is
impossible.

we must have
∑
i∈I+

αixi = 0. Now, find

some w̃ that labels all these points as negative, w̃ · xi < 0 for all i ∈ I+; this must be
possible if the set is shattered. Then we’d have

0 = w̃ · 0 = w̃ ·

∑
i∈I+

αixi

 =
∑
i∈I+

αi︸︷︷︸
>0

w̃ · xi︸︷︷︸
<0

< 0,

a contradiction. We’re left to conclude that H cannot shatter {x1, . . . , xd+1}.

6.4.1.5 Inhomogeneous linear threshold functions in Rd

What about if we don’t enforce that the hyperplane passes through the origin,
H = {x 7→ sgn(w · x + b) : w ∈ Rd , b ∈ R}?

We could analyze this directly, similarly to what we did above; this is Example 3.12
of [MRT18] if you want to see it.

But we can also reduce to the set of homogeneous linear classifiers: if we have
d-dimensional data, we can model that as homogeneous linear classifiers on (d + 1)-
dimensional data with an extra “dummy feature” that’s always 1. The weight w0
corresponding to that feature will just be the offset b.

Using this reduction, we can see:

43

6. growth functions and vc dimension

Proposition 6.9. For x ∈ Rd , VCdim
({
x 7→ sgn(w · x + b) : w ∈ Rd , b ∈ R

})
= d + 1.

Proof. First, we can shatter the set {0, e1, . . . , ed}, which has size d + 1, like before.
We set w0 = y0/2 and wi = yi ; the y0/2 only affects the sign if all the other weights
are “off”, i.e. only on the 0 vector.

Also, we can’t shatter any set of size d + 2. If we could, then there would be d + 2
vectors in Rd+1 shattered by the class of homogeneous thresholds; but that class has
VC dimension d + 1 by Proposition 6.8, so that’s not possible.

6.4.2 Growth function bounds in terms of VC: Sauer-Shelah

As mentioned before, we’re going to show that ΓH(m) is O(mVCdim(H)). Remember
that for m ≤ VCdim(H), we know that ΓH(m) = 2m; this means that ΓH always grows
exponentially up to some point, then drops off to just polynomial growth.

Corollary 6.10. If m ≥ d = VCdim(H),This e is exp(1) ≈ 2.7. then ΓH(m) ≤
(
em
d

)d
.

Plugging into (6.3) and (6.4) gives

Theorem 6.11. Let H be a class of binary classifiers with VCdim(H) = d, and use the
zero-one loss. For any m ≥ d, we have that

E
S∼Dm

sup
h∈H

[LD(h) − LS(h)] ≤
√

2d
m

[logm + 1 − log d]

Pr
S∼Dm

LD(ERMH(S)) −min
h∈H

LD(h) ≤
√

2d
m

[logm + 1 − log d] +

√
2
m

log
2
δ

 ≥ 1 − δ.

When d ≥ 3, we can replace logm + 1 − log d with simply logm above.

We’ll prove Corollary 6.10 as a corollary to the following:

Lemma 6.12 (Sauer-Shelah). Let VCdim(H) ≤ d < ∞. Then ΓH(m) ≤
d∑
i=0

(m
i

)
.

Proof of Corollary 6.10 given Lemma 6.12. We need to show that
d∑
i=0

(m
i

)
≤

(
em
d

)d
for

m ≥ d. We can do this by

d∑
i=0

(
m
i

)
≤

d∑
i=0

(
m
i

) (m
d

)d−i
multiply each term by ≥ 1

≤
m∑
i=0

(
m
i

) (m
d

)d−i
add nonnegative terms

=
(m
d

)d m∑
i=0

(
m
i

) (
d
m

)i

=
(m
d

)d (
1 +

d
m

)m
binomial theorem

≤
(m
d

)d
ed 1 + x ≤ exp(x).

44

6. growth functions and vc dimension

This might be our first time using that 1 + x ≤ exp(x); it follows e.g. from Taylor’s
theorem, and is a useful thing that comes up a lot.

Now, we’ll actually prove Lemma 6.12 itself as a corollary to the following result:

Lemma 6.13 (Pajor). For all finite S ⊆ X ,
∣∣∣H|S∣∣∣ ≤ ∣∣∣{T ⊆ S : T is shattered by H}

∣∣∣.
If S is shattered, both sides of the inequality are 2|S|; otherwise, it’s not obvious that
these things should be related.

Proof of Lemma 6.12 given Lemma 6.13. To bound the number of shattered subsets
of S in Lemma 6.13, recall there can’t possibly be any with size larger than d =
VCdim(H); the number of sets it can shatter is thus upper-bounded by the number

of subsets of S of size at most d, which is just
d∑
i=0

(m
i

)
for m = |S|.

Proof of Lemma 6.13. We’ll proceed by (strong) induction on
∣∣∣H|S∣∣∣.

Base case:
∣∣∣H|S∣∣∣ = 1. For the right-hand side, the empty set is trivially shattered by

any H, so the RHS is always at least 1 as well, and the inequality holds.

Inductive case:
∣∣∣H|S∣∣∣ ≥ 2 and the inequality holds for any T with

∣∣∣H|T∣∣∣ < ∣∣∣H|S∣∣∣.
Then, since there are two distinct labelings, there must be at least one point x ∈ S
that achieves both h(x) = 1 and h′(x) = 0 for some h, h′ ∈ H. Partition H into
H+ = {h ∈ H : h(x) = 1} and H− = {h ∈ H : h(x) = 0}. Now,∣∣∣H|S∣∣∣ =

∣∣∣H+|S
∣∣∣ +

∣∣∣H−|S∣∣∣,
since the two produce disjoint labelings on S (they always disagree on x). They also
produce fewer labelings than H|S itself (there’s at least one labeling in each), so we
can apply the inductive hypothesis to each.

Defining ShatH(S) = {T ⊆ S : T is shattered by H}, we’ve shown that∣∣∣H|S∣∣∣ ≤ ∣∣∣ShatH+
(S)

∣∣∣ +
∣∣∣ShatH−(S)

∣∣∣ .
Note the right-hand side is exactly, keeping track of the “double-counted” sets,∣∣∣ShatH+

(S) ∪ ShatH−(S)
∣∣∣ +

∣∣∣ShatH+
(S) ∩ ShatH−(S)

∣∣∣ ;

it remains to argue that this is at most |ShatH(S)|. To see this, first note that
ShatH+

(S) ∪ ShatH−(S) ⊆ ShatH(S).

Now, consider a set T ∈ ShatH+
(S) ∩ ShatH−(S), i.e. one that’s been double-counted.

Then note that T′ = T ∪ {x} is not in either ShatH+
(S) or ShatH−(S), since these

classes by definition cannot shatter {x}, and so can’t shatter a superset of {x} either.
But H can shatter T′: there’s a hypothesis in H− to achieve any desired labeling
with h(x) = 0 (since T ∈ ShatH−(S)), and likewise there’s a hypothesis in H+ for
any labeling with h(x) = 1. So T′ ∈ ShatH(S). Also, each such double-counted T
corresponds to a different T′, since x < T for each of these Ts. Thus∣∣∣ShatH+

(S) ∩ ShatH−(S)
∣∣∣ ≤ ∣∣∣∣ShatH(S) \

(
ShatH+

(S) ∪ ShatH−(S)
)∣∣∣∣ ,

and so
∣∣∣H|S∣∣∣ ≤ |ShatH(S)| as desired.

45

7 Online learning

This chapter was primarily written by Bingshan Hu.

In batch (offline) learning, usually, we have a learning phase and a prediction phase.
Learner first receives a batch of i.i.d. training samples and then uses these data to
learn a hypothesis, e.g., an ERM (learning phase). The learned hypothesis will be
used for predicting the labels of future samples (prediction phase). In contrast, in
online learning, there is no separation between the learning phase and the prediction
phase. We blend these two phases together by specifying a learning protocol that
regulates all parties participating in the learning.

7.1 online binary classification in realizable setting

Chapter 21.1 of [SSBD14].
Still, we have an instance space X , a label space Y = {−1,1}, a hypothesis class
H : X → Y , and the 0 − 1 loss function ℓ0−1(y, ŷ) = 1 {y , ŷ}. We play this game
sequentially with the following learning protocol.

This is a picture for this.In each round t = 1, 2, . . . , T,
1. Nature (Adversary/Environment) selects xt ∈ X and reveals it to

Learner ;
2. Learner chooses a hypothesis ft ∈ H and predicts ŷt = ft(xt) ∈ { −1, 1} ;
3. Nature plays label yt and reveals it to Learner ;
4. Learner obtains a data sample (xt , yt) and suffers loss ℓ(yt , ŷt) =

1 {yt , ŷt} .

If ℓ(yt , ŷt) = 1 {yt , ŷt} = 1, we say Learner makes a mistake in round t, as its
predicted label is not correct. The goal of Learner is to make as few mistakes as
possible. Intuitively, to choose a good predictor ft in round t, Learner should use all
the data samples attained in previous rounds St−1 := ((x1, y1), (x2, y2), . . . , (xt−1, yt−1))
and even the input xt in round t.

The data sequence ((x1, y1), (x2, y2), . . . , (xT, yT)) does not need to be iid, which is
quite different from the assumption usually batch learning needs. No statistical assumption.

Since Adversary can decide yt based on ŷt, it is hopeless to learn for some some
hypothesis class H, e.g., two constant functions x 7→ +1 and x 7→ −1 are in H.
Because Adversary can make Learner unhappy in each round by declaring yt = −ŷt.

So, we need to put some constraints for Adversary.

With the assumption of
realizability, setting
yt = −ŷt for all t ∈ [T] may
not always be possible.

We get started with a simple learning problem setup. It is about the aforementioned
binary classification problem under the assumption of realizability, i.e., the true label
function f ∗ ∈ H, i.e., yt = f ∗(xt) for all t ∈ [T], and Learner knows H and the fact

47

7. online learning

that f ∗ ∈ H. 1 With this restriction on how Adversary generates the data sequence,
Learner should make as few mistakes as possible. We are interested in how many
mistakes Learner makes after playing this sequential game after T rounds.

Hypothesis class H is finite. Since we know the true label function f ∗ ∈ H,
i.e., there is a perfect hypothesis incurring zero loss in H, it is quite natural to
eliminate any hypothesis in H that has made a mistake after observing (xt , yt) at
the end of each round t. This intuition gives us an idea, called version space, to
develop learning algorithms. The version space at the end of round t is defined
as Ht = {f ∈ H : f (xs) = ys,∀s ∈ [t]}. Then, we can maintain a sequence of version
spaces H = H0 ⊇ H1 ⊇ . . . ⊇ Ht−1 ⊇ Ht ⊇ . . . ⊇ {f ∗}. Hypotheses that have made
mistakes will be kicked out from the version space at the end of each round t. We
eliminate hypotheses from H during the learning once we are confident they are not
good almost surely!

Let’s see Consistent Algorithm first.

Initially, we set H0 = H.
In each round t = 1, 2, . . . , T,

1. Learner receives xt ;
2. Learner chooses ft ∈ Ht−1 arbitrarily and predicts ŷt = ft(xt) ;
3. Nature reveals true label yt = f ∗(xt) and Learner updates Ht =
{f ∈ Ht−1 : f (xt) = yt} .

Note that the number of
mistakes does not depend on
the learning horizon T. For

any length of T, the number
of mistakes is at most |H| − 1.

Now, we exam how many mistakes (the total loss
T∑
t=1

ℓ(yt , ŷt) =
T∑
t=1

ℓ(yt , ft(xt))) that

Consistent Algorithm makes by the end of round T. It is not hard to see that the
number of mistakes is at most |H| − 1, as each mistake forces Learner to eliminate at
least one hypothesis from the version space at the end of that round.

One may ask is it possible to reduce the number of mistakes from |H| to o(|H|)?f (x) = o(g(x)) is equivalent

to lim
x→∞

f (x)
g(x) = 0 if g(x) > 0.

The answer is yes!

Actually, we can do better if we do not pick ft in an arbitrary way! We introduce
another idea, called majority vote. Since some hypotheses in Ht−1 predict +1 while
some predict −1, we simply count which side has more supporters. The side of more
supporters wins! Combining majority vote with version space, we have a much nicer
algorithm, called Halving Algorithm, which reduces the number of mistakes from
O(|H|) to log |H|.

Initially, we set H0 = H.
In round t = 1, 2, . . . , T,

1. Learner receives xt ;
2. Learner predicts ŷt ∈ arg max

y∈{−1,1}

∣∣∣{f ∈ Ht−1 : f (xt) = y}
∣∣∣ ;

3. Nature reveals true label yt = f ∗(xt) and Learner updates Ht =
{f ∈ Ht−1 : f (xt) = yt} .

Theorem 7.1. Halving Algorithm makes at most log2(|H|) mistakes.

1Nature is regulated to play a label function that is consistent with the history data St−1.

48

7. online learning

Proof. According to the majority vote, the version space is halved on each mistake.
If Learner makes a mistake in round t, we have |Ht | ≤ 1

2 |Ht−1|. Let M be the total
number of mistakes. We have

1 ≤ |HT| ≤ |H0| 2−M = |H| 2−M ,

which yields M ≤ log2 (|H|). Note that f ∗ is always in the version spaces. So, we
have 1 ≤ |HT|.

General Hypothesis Class including H is infinite. Still under the assumption
of realizability, now, let us consider a hypothesis class H that may be infinite in
size. For some hypothesis class H, Learner is able to have a strategy that guarantees
it makes a finite number of mistakes. For other hypothesis classes, Nature can
force Learner to make infinitely many mistakes. To gain an understanding of which
hypothesis class falls in the former category and which falls in the latter, we need
to have new concepts, something like VC dimension to measure the richness of a
hypothesis class. We aim at characterizing online learnability. In particular, we
target the following question: What is the optimal online classification learning
algorithm for a given hypothesis class H?

Littlestone dimension characterizes online learnability. A hypothesisH is online learnable
if it has a finite Littlestone dimension denoted as Ldim(H). The idea of Littlestone
dimension is to view online learning as a 2-player sequential game between Learner
and Adversary. The job of Adversary is to force Learner to make mistakes while
preserving realizability.

How does Adversary choose xt to force Learner to make the maximum number of
mistakes, while ensuring realizability? It is easy as Adversary can always choose
yt = −ŷt for the first Ldim(H) rounds in the sequential game.

The strategy for Adversary can be formally described by using a complete binary
tree. Each node of the tree is associated with an instance xt ∈ X . If Learner predicts
ŷt = +1, Adversary will declare the prediction is wrong, i.e., yt = −ŷt = −1 and will
traverse to the right child of the current node. If Learner predicts ŷt = −1, Adversary
will set yt = −ŷt = +1 and will traverse to the left child of the current node. Add a picture of the binary

tree.
To introduce the definition of Litterstone dimension, let us give the definition of an
H shattered tree first.

The depth of the tree is
defined as the number of
edges in a path from the root
to a leaf, i.e., the number of
layers in the tree.

Definition 7.2. (H shattered tree.) A shattered tree of depth d is a sequence of
inputs v1, v2, . . . , v2d−1 ∈ X such that for every root-to-leaf path, ∃f ∗ ∈ H such that
all labels along the path are achieved.

Definition 7.3. (Littlestone dimension.) The Littlestone dimension of hypothesis
class H, Ldim(H), is the maximal integer d such that there exists a shattered tree of
depth d that H shatters. If there is no such largest d, then the Litterstone dimension
is infinite.

Theorem 7.4. Any algorithm makes at least Ldim(H) mistakes.

Proof. Let d∗ = Ldim(H). SinceH has Littlestone dimension d∗, we know there exists
an H shattered tree with depth d∗ that is shattered by H. Adversary will “walk” on
the tree for the first d∗ rounds. In each round t ∈ [d∗], Adversary sets yt = −ŷt. Since
the walk continues for d∗ rounds, Learner makes d∗ mistakes. Now, we check the

49

7. online learning

assumption of realizability. Since H shatters the tree, there ∃f∗ ∈ H such that all the
labels along the root-to-leaf path selected by Adversary can be realized.

Now, we show a learning algorithm, Standard Optimal Algorithm (SOA), makes
at most Ldim(H) mistakes. The algorithm is similar to Halving Algorithm. We
partition the version space by the end of round t − 1 into two sub-version spaces.

Let H(−1)
t−1 := {f ∈ Ht−1 : f (xt) = −1} and H(+1)

t−1 := {f ∈ Ht−1 : f (xt) = +1}.

Initially, we set H0 = H.
In round t = 1, 2, . . . , T,

1. Learner receives xt ;

2. Learner predicts ŷt ∈ arg max
y∈{−1,1}

Ldim
(
H(y)

t−1

)
;

3. Nature reveals true label yt = f ∗(xt) and Learner updates Ht =
{f ∈ Ht−1 : f (xt) = yt} .

Theorem 7.5. SOA makes at most Ldim(H) mistakes.

Proof.

Corollary 7.6. Let H be any hypothesis class. Then, SOA makes exactly Ldim(H)
mistakes.

Proof. From Theorem 7.4, we know SOA makes at least Ldim(H) mistakes. From
Theorem 7.5, we know SOA makes at most Ldim(H) mistakes. Combining these two
results concludes the proof.

VC dimension vs Littlestone Dimension.

Example 1. If H is a finite hypothesis class, we have Ldim(H) ≤ log2 (|H)|). why?

Example 2. Let X = [0, 1] and H = {x 7→ 1 {x < a} : a ∈ [0, 1]} be the class of thresh-
olds on the interval [0, 1]. Then, we have VCdim(H) = 1, but Ldim(H) = ∞.There is a picture for this.

Theorem 7.7. For any hypothesis class H, we have VCdim(H) ≤ Ldim(H). Further, the
gap can be arbitrarily large.

Proof. We first prove that VCdim(H) ≤ Ldim(H). Suppose VCdim(H) = d and let
{x1, x2, . . . , xd} be a shattered set by H. Now, we construct a complete binary tree of
inputs v1, v2, . . . , v2d−1, where all nodes at depth i are set to be xi .There is a picture for this.

Now, the definition of a shattered set clearly implies that we constructed a valid
shattered tree of depth d and conclude that VCdim(H) ≤ Ldim(H).

The class of threshold functions on the unit interval has VC dimension of 1, whereas
its Littlestone dimension is infinite.

50

7. online learning

7.2 decision-theoretical online learning and
exponential weights (hedge)

Practically, we should not assume realizability always holds, i.e., the true labels
yt = f ∗(xt),∀t ∈ [T], are generated by using f ∗. Similar to agnostic setting in
supervised learning, now, we can compare with the best predictor in H. In online
learning, we use the notion of regret, defined as

R(T) := sup
((x1,y1),...,(xT ,yT))

{
T∑
t=1

ℓ(yt , ft(xt)) −min
f ∈H

T∑
t=1

ℓ(yt , f (xt))
}

, (7.1)

to measure the performance gap between
T∑
t=1

ℓ(yt , ft(xt)), the total loss Learner has

made, and min
f ∈H

T∑
t=1

ℓ(yt , f (xt)), the total loss of the best predictor in hindsight. If a

learning algorithm achieves an o(T) regret bound, we say it is a no-regret algorithm.
The intuition is if you play this game long enough, you can compete with the best
predictor in hindsight. Note that o(T) regret implies lim

T→∞
o(T)

T = 0.

To control the regret at Learner’s side, generally, we have two key principles.

1. Randomization. Deterministic Learner fails for some learning problems. Let
hypothesis class H = {f+ : x→ +1, f− : x→ −1} only contain two constant
functions. Adversary can always give Learner yt = −ŷt to force Learner to
suffer loss. So, Learner suffers in total T loss. Now, we investigate the total

loss in hindsight of the best predictor in H, that is, min
f ∈H

T∑
t=1

ℓ(yt , f (xt)) ≤ 1
2 ·(

T∑
t=1

ℓ(yt , f−1(xt)) +
T∑
t=1

ℓ(yt , f+(xt))
)

= 0.5T, which yields the regret is at least

0.5T.

Since Learner always fails if revealing the predicted label ŷt, to make the
problem interesting, we need to give some power to Learner. Now, we change
the learning protocol a bit by allowing Learner to reveal only a probability
distribution over {−1, 1} instead of revealing the predicted label ŷt itself.

2. Exploitation. Here, exploitation refers to
utilizing the already learned
information, i.e., the total
loss of each predictor
observed so far.

We want to track the empirical performance of each predictor,
but we do not eliminate any of them during the learning, as some of them may
not perform well at the beginning of the learning, but later turns out to the
best one.

If the data sequence are i.i.d.
according to some fixed but
unknown distribution, we
can eliminate predictors.

Since we do not plan to eliminate predictors during the learning, we can
maintain a (data-dependent) distribution over all the predictors in H taking
account of each predictor’s total loss suffered so far. For some predictor
performing poorly, we put a small mass on it. We eliminate some predictor in
a soft way!

Decision-Theoretical Online Learning (DTOL). Since Learner is allowed to
reveal a probability distribution over the labels and revealing a distribution over
{−1, 1} can be translated to revealing a distribution overH, now, we can re-formulate
the online learning problem slightly and the modification will be, generally, useful
for bandit problems (and even reinforcement learning problems). We do not use
training samples at all. We get rid of the input space, label space, and hypothesis
class. Instead, we have a fixed set of K actions, denoted by [K]. You can view each action in

[K] as a hypothesis in H.
The learning protocol

51

7. online learning

is modified as follows.

Sometimes, Learner chooses
pt ∈ {e1, e2, . . . , eK}.

In each round t = 1, 2, . . . , T,
1. Learner plays a probability distribution pt ∈ [0, 1]K over all actions ;
2. Nature plays loss vector ℓt =

(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
;

3. Learner observes ℓt and suffer a loss ⟨pt , ℓt⟩ =
∑
j
pj,tℓj,t .

Remarks. (1) A probability distribution pt =
(
p1,t , p2,t , . . . , pK,t

)
is a vector with

all pj,t ≥ 0 and
∑
j
pj,t = 1. (2) In Step 2, Nature can give ℓt based on all the past

information and even pt.

For DTOL, we adapt the notion of regret shown in (7.1) to

R(T) := sup
ℓ1,ℓ2,...,ℓT

 T∑
t=1

⟨pt , ℓt⟩ −min
j∈[K]

T∑
t=1

ℓj,t

 .ℓj,t =
〈
ej , ℓt

〉
. (7.2)

Exponential Weights (Hedge). There is a no-regret algorithm for DTOL. It has
many names such as “Exponential Weights” and “Hedge”. The idea of Hedge is to
maintain weights over actions, and the weight of an action decays exponentially in
the total loss incurred by that action over all previous rounds.

Input: learning rate η ∈ (0, 1] .
Initialize: wj,0 = 1 for all j ∈ [K] .
For t = 1, 2, . . . , T,

1. Set pj,t =
wj,t−1∑

j′
wj′ ,t−1

for all j ∈ [K] ;

2. Observe loss vector ℓt for Nature ;
3. Suffer loss ⟨pt , ℓt⟩ =

∑
j
pj,tℓj,t ;

4. Update wj,t = wj,t−1 · e−ηℓj,t for all j ∈ [K] .

Theorem 7.8. For any sequence of loss vectors (ℓ1, ℓ2, . . . , ℓT) ∈
(
[0, 1]K

)T
, for any

η ∈ (0, 1], we have

T∑
t=1
⟨pt , ℓt⟩ −min

j∈[K]

T∑
t=1

ℓj,t ≤
η

2

T∑
t=1

〈
pt , ℓ

2
t

〉
+ log K

η
.

With η =
√

2 log K
T , we have R(T) ≤

√
2T log K.

Proof. of Theorem 7.8: Fix a sequence of loss vectors (ℓ1, ℓ2, . . . , ℓT). Let Zt =
K∑
j=1

wj,t =
K∑
j=1

wj,t−1 · e−η·ℓj,t =
K∑
j=1

e
−η

t∑
s=1

ℓj,s
be the total weight at the end of round t.

Note that Z0 = K. We have log ZT =
T∑
t=1

log Zt
Zt−1

+ log Z0.

52

7. online learning

Now, we construct the following upper bound to upper bound log ZT. We have

log Zt
Zt−1

= log

K∑
j=1

wj,t−1·e
−η·ℓj,t

K∑
j′=1

wj′ ,t−1

= log

 K∑
j=1

wj,t−1
K∑

j′=1
wj′ ,t−1

· e−η·ℓj,t

= log

 K∑
j=1

pj,t · e−η·ℓj,t

≤(a) log

 K∑
j=1

pj,t ·
(
1 − η · ℓj,t +

η2·ℓ2
j,t

2

)
= log

(
1 − η⟨pt , ℓt⟩ + η2

2

〈
pt , ℓ

2
t

〉)
≤(b) −η⟨pt , ℓt⟩ + η2

2

〈
pt , ℓ

2
t

〉
,

where step (a) uses e−x ≤ 1 − x + x2/2 and step (b) uses log(1 + x) ≤ x.

We also have a lower bound on log ZT, which is

log ZT = log

 K∑
j=1

e
−η

T∑
t=1

ℓj,t

≥ log

max
j∈[K]

e−η
T∑
t=1

ℓj,t

= max
j∈[K]

{
−η

T∑
t=1

ℓj,t

}
.

(7.3)

Now, we have

T∑
t=1
−η⟨pt , ℓt⟩ + η2

2

〈
pt , ℓ

2
t

〉
≥

T∑
t=1

log Zt
Zt−1

= log ZT − log Z0 ≥ max
j∈[K]

{
−η

T∑
t=1

ℓj,t

}
− log K.

⇒
T∑
t=1
⟨pt , ℓt⟩ −min

j∈[K]

{
T∑
t=1

ℓj,t

}
≤ η

2

〈
pt , ℓ

2
t

〉
+ log K

η
.

(7.4)

Remark. Note that in order to achieve the
√

2T log K regret bound, Hedge needs to

input the learning rate η =
√

2 log K
T , depending on the learning horizon T. Later, we

will show how to use doubling-trick to get rid of it!

Hedge with Doubling-Trick. The regret bound R(T) = O
(√

T log K
)

in The-

orem 7.8 relies on inputting the learning rate η =
√

2 log K
T which relies on the

knowledge of the time horizon T.

One may be curious to know is it possible to have a learning algorithm that does not
need to know T in advance, but still preserving the same regret bound?

The answer is yes!!!

We introduce a useful idea, called doubling-trick, for solving online learning prob-
lems. Geometric doubling vs

exponential doubling can be
found here.

Using (Geometric) doubling-trick, we can still achieve an O
(√

T log K)
)

regret

53

https://arxiv.org/pdf/1803.06971
https://arxiv.org/pdf/1803.06971

7. online learning

bound. The idea is to run the algorithm in epochs of lengths 20, 21, . . . , 2r , . . . until
stopping.

At the beginning of each epoch r ≥ 0, we set the learning rate ηr =
√

2 log K
2r based on

2r the length of the current epoch. At the end of epoch r, we reset the algorithm,
that is, we forget all the stuff we have learned. Progressing in this way, we will run
the algorithm for epochs r = 0, 1, . . . , d, where d =

⌈
log2(T + 1) − 1

⌉
= O(log T).

Theorem 7.9. The regret of Hedge with doubling-trick is O
(√

T log K
)
.

Proof. For any r ≥ 0, from (7.8), we have

2r+1∑
t=2r+1

⟨pt , ℓt⟩ − min
jr∈[K]

2r+1∑
t=2r+1

ℓjr ,t ≤
ηr
2

2r+1∑
t=2r+1

〈
pt , ℓ

2
t

〉
+ log K

ηr
≤ O

(√
2r log K

)
.

(7.5)
The regret is

R(T) = sup
ℓ1,ℓ2,...,ℓT

{
T∑
t=1
⟨pt , ℓt⟩ −min

j∈[K]

T∑
t=1

ℓj,t

}
= sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0

2r+1∑
t=2r+1

⟨pt , ℓt⟩ −min
j∈[K]

∑
r≥0

2r+1∑
t=2r+1

ℓj,t

}
The last epoch may not have
a full length, but we can add

0⃗′s to make the last epoch
have a full length ≤ sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0

2r+1∑
t=2r+1

⟨pt , ℓt⟩ −
∑
r≥0

min
jr∈[K]

2r+1∑
t=2r+1

ℓjr ,t

}
= sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0

(
2r+1∑

t=2r+1
⟨pt , ℓt⟩ − min

jr∈[K]

2r+1∑
t=2r+1

ℓjr ,t

)}
= sup

ℓ1,ℓ2,...,ℓT

{∑
r≥0
O(

√
2r log K)

}
=

∑
r≥0
O(

√
2r log K)

= O
(√

T log K
)

.

(7.6)

54

7. online learning

7.3 bandits

Last time we have talked about Hedge/DTOL learning. We usually say it is a
full information game as Learner is able to observe each individual loss in ℓt =(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
. Starting from this lecture, we will talk about multi-armed bandit

(MAB) problems, where only some entry in the loss vector ℓt =
(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
is

revealed in each round.

Learning Protocol. We have a fixed arm set [K]. Actions and arms are
interchangeable. You can
view an arm as a hypothesis.

In each round t = 1, 2, . . . , T,
You can view Step 1 and
Step 2 occur simultaneously.

In Step 3, the remaining
losses other than ℓJt ,t are
still hidden to Learner,
which is the key difference
between DTOL and bandits.

1. Adversary/Environment selects a loss vector ℓt =
(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
that

is hidden to Learner ;
2. Learner pulls an arm Jt ∈ [K] ;
3. Learner suffers/observes loss ℓJt ,t associated with the pulled arm Jt.

The goal of Learner to pull a sequence of arms (J1, J2, . . . , JT) to minimize the total
loss by the end of round T.

Regret is defined as

R(T) :=
T∑
t=1

ℓJt ,t −min
j∈[K]

T∑
t=1

ℓj,t , (7.7)

which is a random variable as J1, J2, . . . , JT and all loss vectors are random.

Based on how the loss vectors (ℓ1, ℓ2, . . . , ℓT) are generated, we have

1. Adversary bandits: no distributional assumption is made.

2. Stochastic bandits: all ℓt are i.i.d. over time according to a fixed but unknown
probability distribution.

Learner needs to make a good balance between

1. Exploitation: Learner needs to pull arms that have smaller losses, as the goal is
to minimize the total loss.

2. Exploration: Learner needs to pull arms that have not been observed too often
to gain information.

7.3.1 Adversarial bandits.

In adversarial bandits, the loss vectors can be generated adversarially. We use pseudo
regret to measure performance of the algorithm used by Learner, defined as

R(T) := E
[

T∑
t=1

ℓJt ,t

]
−min

j∈[K]
E
[

T∑
t=1

ℓj,t

]
, (7.8)

Sometimes people call it
expected regret as it has an
expectation. I am following
the notation of Bubeck and
Cesa-Bianchi [BC12].

where the expectation is taken over (J1, J2, . . . , JT) and all loss vectors over T rounds.

EXP3 (Exponential weights for Exploration and Exploitation). It is quite
similar to Hedge, but in EXP3, only the weight associated with the pulled arm will
be updated at the end of each round t, as only the loss for that arm is revealed.

We construct an estimator ℓ̃t =
(
ℓ̃1,t , ℓ̃2,t , . . . , ℓ̃K,t

)
with each entry ℓ̃j,t = ℓj,t

1{Jt=j}
pj,t

. Importance sampling

55

7. online learning

It is not hard to see that for all arms not played in round t, we set ℓ̃j,t = 0. For

the pulled arm in round t, we set ℓ̃Jt ,t =
ℓJt ,t
pJt ,t

instead of ℓJt ,t by making it more

“important”! Actually, the constructed estimator ℓ̃j,t is an unbiased estimator of ℓj,t,
as we have

EJt∼pt

[
ℓ̃j,t

]
= EJt∼pt

[
ℓj,t

1{Jt=j}
pj,t

]
= ℓj,t . (7.9)

Input: learning rate η ∈ (0, 1] . Initialize: wj,0 = 1 for all j ∈ [K] .
For t = 1, 2, . . . , T,

1. Adversary/Environment selects a loss vector ℓt =
(
ℓ1,t , ℓ2,t , . . . , ℓK,t

)
that

is hidden to Learner ;
2. Learner computes pj,t =

wj,t−1∑
j′
wj′ ,t−1

for all j ∈ [K] ;

3. Learner plays arm Jt ∈ [K] according to pt =
(
p1,t , p2,t , . . . , pK,t

)
;

4. Learner computes loss estimates ℓ̃j,t =
ℓj,t
pj,t

1 {Jt = j} for all j ∈ [K] ;

5. Update wj,t = wj,t−1 · e−ηℓ̃j,t for all j ∈ [K] .

Theorem 7.10. Assume that all loss vectors are bounded with [0, 1] support. If EXP3 is

run with learning rate η =
√

log K
KT , the pseudo regret is at most

√
2TK log K.

Proof.

R(T) = E
[

T∑
t=1

ℓJt ,t

]
−min

j∈[K]
E
[

T∑
t=1

ℓj,t

]
= E

[
T∑
t=1

〈
pt , ℓ̃t

〉]
−min

j∈[K]
E
[

T∑
t=1

EJt∼pt

[
ℓ̃j,t

]]
= E

[
T∑
t=1

〈
pt , ℓ̃t

〉]
−min

j∈[K]
E
[

T∑
t=1

ℓ̃j,t

]
≤ E

[
T∑
t=1

〈
pt , ℓ̃t

〉]
− E

[
min
j∈[K]

T∑
t=1

ℓ̃j,t

]

= E

T∑
t=1

〈
pt , ℓ̃t

〉
−min

j∈[K]

T∑
t=1

ℓ̃j,t︸ ︷︷ ︸
regret of Hedge

≤(a) E

[
η

2

T∑
t=1

〈
pt , ℓ̃

2
t

〉
+ log K

η

]
=(b) E

 η2 T∑
t=1

∑
j∈[K]

pj,t
ℓ2
j,t

pj,t

 + log K
η

≤ η

2 KT + log K
η

.

(7.10)

Tuning η =
√

log K
KT gives the stated regret bound.

Step (a) uses Theorem 7.8 in previous lecture. Note that from (7.9), we know
EJt∼pt

[
ℓ̃j,t

]
∈ [0, 1]. So, it is safe to use Theorem 7.8 directly.

Step (b) uses EJt∼pt

[
ℓ̃2
j,t

]
= EJt∼pt

[
ℓ2
j,t

1{Jt=j}
p2
j,t

]
=

ℓ2
j,t

pj,t
.

56

7. online learning

Remark. Note that inputting η =
√

log K
KT into EXP3 means that it is not an anytime

learning algorithm. To make it anytime, you can set the learning rate ηt =
√

log K
tK in

each round t. The regret analysis is much more complicated (refer to Theorem 3.1
in [BC12]).

7.3.2 Stochastic bandits

In stochastic bandits, we have a fixed arm set [K] and each arm j ∈ [K] is associated
with a reward distribution vj . We can use ΘK := (v1, v2, . . . , vK) to specify a K-armed
stochastic bandit problem instance.

In each round t = 1, 2, . . . , T,
1. Environment generate a reward vector Xt =

(
X1,t , X2,t , . . . , XK,t

)
with

each Xj,t ∼ vj . This reward vector is hidden to Learner ;
2. Learner pulls an arm Jt ∈ [K] ;
3. Learner obtains/observes XJt ,t, the reward of the pulled arm Jt.

We still use pseudo regret to measure performance of Alg , defined as

R(Alg;ΘK; T) := max
j∈[K]

E
[

T∑
t=1

Xj,t

]
− E

[
T∑
t=1

XJt ,t

]
, (7.11)

where the randomness is taken over J1, J2, . . . , JT and all reward vectors. Note that
since we have statistical assumptions on reward vectors, different ΘK may give
different regret. That is also to say, for a fixed algorithm, when working over
different problem instances, the regret could be different.

The goal of Learner is to pull arms sequentially to minimize regret.

Let µj = EXj∼vj [Xj] denote the mean reward of arm j. Without loss of generality, we
assume the first arm is the optimal one, that is, µ1 > µj for all j , 1.

For any j , 1, let ∆j := µ1 − µj denote the mean reward gap. We also call it the
sub-optimality gap between the optimal arm 1 and the sub-optimal arm j. Let
∆1 = 0.

Now, we can rewrite R(T) as

R(T) = max
j∈[K]

E
[

T∑
t=1

Xj,t

]
− E

[
T∑
t=1

XJt ,t

]
= T · µ1 −

T∑
t=1

E
[
µJt

]
=

T∑
t=1

E
[
µ1 − µJt

]
=

T∑
t=1

E
[
∆Jt

]
=

T∑
t=1

∑
j∈[K]

E [1 {Jt = j}] · ∆j

=
∑

j∈[K]:∆j>0
E

T∑
t=1

1 {Jt = j}

︸ ︷︷ ︸
=:nj,T

· ∆j .

(7.12)

57

7. online learning

Let nj,t−1 :=
t−1∑
s=1

1 {Js = j} denote the total number of pulls for arm j by the end of

round t − 1. Then, E
[
nj,T

]
is the expected number of pulls of arm j by the end of

learning and ∆j is the singe round performance loss when pulling a sub-optimal
arm j.

From the last step in (7.12), it is not hard to see, to minimize the regret, it is
important to control the number of pulls of sub-optimal arms. But we have no
idea which arms are sub-optimal. So, we have to pull each arm a certain amount of
times in order to learn whether they are sub-optimal or not confidently. We need
information!

Here, I should mention exploitation-vs-exploration.

Upper Confidence Bound (UCB). It is inspired by the principle of being optimistic
in the face of uncertainty. Usually, all UCB-based algorithms are optimistic learning
algorithms and follow a template to decompose regret. Also, they can be justified by
concentration inequalities, e.g., Hoeffdin’s inequality.

Recall ΘK := (v1, v2, . . . , vK) is the bandit instance we are interested in. Actually,
for developing regret minimization algorithm, we are interested in (µ1, µ2, . . . , µK).
Note that only the mean reward gaps appear in the regret.

Recall nj,t−1 =
t−1∑
s=1

1 {Js = j} is the number of pulls of arm j by the end of round t − 1.

Now, let µ̂j,nj,t−1
:= 1

nj,t−1

t−1∑
s=1

Xj,s1 {Js = j} be the empirical mean of arm j by the end

of round t − 1, i.e., the average of nj,t−1 iid random variables according to vj .

Now, we can construct an empirical model Θ̂t =
(
µ̂1,n1,t−1

, µ̂2,n2,t−1
, . . . , µ̂K,nK,t−1

)
.exploitation-vs-exploration

Hoeffding’s inequality

upper confidence bound

w.t.p. µ̄1,t ≥ µ1

Assume all reward distributions have a [0,1] support. The idea of UCB12, an
algorithm in UCB family, is to construct an optimistic model Θt =

(
µ̄1,t , µ̄2,t , . . . , µ̄K,t

)
with each j ∈ [K]

µ̄j,t = µ̂j,nj,t−1
+

√
2 ln(t)
nj,t−1

. (7.13)

In each round t = 1, 2, . . . , T,
1. Environment generate a reward vector Xt =

(
X1,t , X2,t , . . . , XK,t

)
with

each Xj,t ∼ vj . This reward vector is hidden to Learner ;

2. Learner constructs the upper confidence bound µ̄j,t = µ̂j,nj,t−1
+

√
2 ln(t)
nj,t−1

for all j ∈ [K] ;
3. Learner pulls the arm with the highest upper confidence bound, i.e.,

Jt ∈ arg max
j∈[K]

µ̄j,t ;

4. Learner observes XJt ,t, the reward of the pulled arm Jt ;
5. Learner updates nJt ,t = nJt ,t−1 + 1 and the empirical mean µ̂Jt ,nJt ,t

.

2UCB1 works for all Sub-Gaussian reward distributions.

58

7. online learning

Theorem 7.11. If all reward distributions in ΘK have a [0, 1] support, we have

R(UCB1;ΘK; T) ≤
∑

j∈[K]:∆j>0

8 ln T
∆j

+ Constant .

Proof. Fix a sub-optimal arm j, we upper bound E[nj,T].

Let Lj := □·ln T
∆2
j

, where □ is a constant that will be tuned later. You can view Lj as the
amount of observations
needed to conclude that this
arm is not the optimal one.We have

E
[
nj,T

]
= E

[
T∑
t=1

1 {Jt = j}
]

= E
[

T∑
t=1

1
{
Jt = j, nj,t−1 ≤ Lj

}]
+ E

[
T∑
t=1

1
{
Jt = j, nj,t−1 > Lj

}]
= E

[
T∑
t=1

1
{
Jt = j, nj,t > nj,t−1, nj,t−1 ≤ Lj

}]
+ E

[
T∑
t=1

1
{
Jt = j, nj,t > nj,t−1, nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
Jt = j, nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
Jt = j, µ̄j,t ≥ µ̄1,t , nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
Jt = j, µ̄j,t ≥ µ1, nj,t−1 > Lj,t

}]
+ E

[
T∑
t=1

1
{
µ̄1,t ≤ µ1, nj,t−1 > Lj

}]
≤ Lj + E

[
T∑
t=1

1
{
µ̄j,t ≥ µj + ∆j , nj,t−1 > Lj

}]
+ E

[
T∑
t=1

1
{
µ̄1,t ≤ µ1

}]
.

(7.14)

Now, we set Lj = 8 ln(T)
∆2
j

. Then, we have ∆j =
√

8 ln T
Lj

.

E
[

T∑
t=1

1
{
µ̄j,t ≥ µj + ∆j , nj,t−1 > Lj

}]
= E

[
T∑
t=1

1
{
µ̂j,nj,t−1

+
√

2 ln(t)
nj,t−1

≥ µj +
√

8 ln T
Lj

, nj,t−1 > Lj

}]
≤ E

[
T∑
t=1

1
{
µ̂j,nj,t−1

+
√

2 ln(T)
nj,t−1

≥ µj +
√

8 ln T
nj,t−1

, nj,t−1 > Lj

}]
≤ E

[
T∑
t=1

1
{
µ̂j,nj,t−1

≥ µj +
√

2 ln T
nj,t−1

, nj,t−1 > Lj

}]
≤

T∑
t=1

t−1∑
h=Lj

E
[
1
{
µ̂j,h ≥ µj +

√
2 ln T
h

}]
≤ T2 · e−2·2 ln T

= O(1) .

(7.15)

Similarly, we have E
[

T∑
t=1

1
{
µ̄1,t ≤ µ1

}]
= O(1).

Now, we have E
[
nj,T

]
≤ Lj + O(1) = 8 ln T

∆2
j

+ O(1), which gives If problem-dependent
parameters, e.g., all ∆j ,
appear in the regret bound,
we say it is a
problem-dependent regret
bound.

R(UCB1;ΘK; T) =
∑

j∈[K]:∆j>0
E
[
nj,T

]
· ∆j

≤
∑

j∈[K]:∆j>0

8 ln T
∆j

+ Constant .
(7.16)

59

7. online learning

Worst-case Regret Bound for UCB1. Let us consider a 2-armed bandit problem,
where the first arm is the optimal one and the second arm has a mean reward gap
∆ = 1

T . Clearly, according to Theorem 7.11, we have R(UCB1;ΘK; T) = 8T ln T,
which is even worse than T. Does it mean UCB1 fails this learning task?

To answer this question, we are motivated to study the worst-case regret bound,
defined as

sup
ΘK∈ΠK

R(UCB1;ΘK; T) , (7.17)

where Π is a set of distributions with a [0, 1] support.

Theorem 7.12. We have

sup
ΘK∈ΠK

R(UCB1;ΘK; T) ≤ O(
√

KT ln T) . (7.18)

Proof. Fix ΘK and set ∆ :=
√

K ln T
T . We have

R(UCB1;ΘK; T) =
T∑
t=1

∑
j∈[K]

E [1 {Jt = j}] · ∆j

=
T∑
t=1

∑
j∈[K]:∆j≤∆

E [1 {Jt = j}] · ∆j +
T∑
t=1

∑
j∈[K]:∆j>∆

E [1 {Jt = j}] · ∆j

≤ T · ∆ +
T∑
t=1

∑
j∈[K]:∆j>∆

E [1 {Jt = j}] · ∆j

≤ T · ∆ +
∑

j∈[K]:∆j>∆

(
8 ln T
∆j

+ O(1)
)

≤ T · ∆ +
∑

j∈[K]:∆j>∆

(
8 ln T
∆

+ O(1)
)

≤ T · ∆ + K8 ln T
∆

+ O(K)
= O(

√
KT ln T) .

(7.19)

One may ask whether UCB1 is optimal in the worst case sense or not. The definition
of minimax optimality, a joint of property between a family of algorithms and
distributions, can answer this question. We skip the proof here and only show the
conclusion: UCB1 is minimax optimal up to an extra

√
ln T factor.

60

7. online learning

Arm Elimination Algorithm. As UCB1 only has an O(
√

KT ln T) worst-case regret
bound, now, we show an algorithm that enjoys an O(

√
KT ln K) worst-case regret

bound, which is slightly better than UCB1.

Suppose we have a special K-armed bandit problem with one arm having a mean
reward µ∗ and all the remaining arms having the same mean reward µ∗ − ∆, i.e., the
mean reward gap for any sub-optimal arm is ∆. Learner knows ∆ and µ∗ but does not
know which arm is the optimal one. To solve this special bandit problem, we can use
the following Arm Elimination algorithm [AO10]:

Input: [K], µ∗, ∆, and T.

1. Pull each arm n = 2 ln(T∆2)
∆2 times and compute the empirical mean µ̂j,n

of each arm j ∈ [K] ;
2. Commit to the arm with the highest empirical mean until the end of the

learning, i.e., pull arm J = arg maxj∈[K] µ̂j,n for the remaining T − Kn
rounds.

Theorem 7.13. Arm Elimination enjoys an O
(

K ln(T∆2)
∆

+ K
∆

)
problem-dependent regret

bound. It also enjoys an O(
√

KT ln K) worst-case regret bound.

Proof. Let i∗ denote the index of the optimal arm. Without loss of generality, we
assume it is unique. We first upper bound the probability that the committed arm is
not the optimal one. We have

P {J , i∗} ≤ P
{

max
j∈[K]\{i∗}

µ̂j,n ≥ µ̂i∗,n
}
≤

∑
j∈[K]\{i∗}

P
{
µ̂j,n ≥ µ̂i∗,n

}
≤ (K − 1) · 2e−n

∆2
2 .

(7.20)

The problem-dependent regret R(T) is

(K − 1) · n · ∆︸ ︷︷ ︸
regret in Step 1

+P {J , i∗} · (T − Kn) · ∆︸ ︷︷ ︸
regret in Step 2

≤ K · 2 ln(T∆2)
∆2 · ∆ + K · 2e−n

∆2
2 · T · ∆

= 2K ln(T∆2)
∆

+ K · 2
T∆2 · T · ∆

= O
(

K ln(T∆2)
∆

+ K
∆

)
.

(7.21)

Let ∆̃ := e
√

K√
T

. If ∆ ≤ ∆̃, we have the regret is at most T · ∆̃ = e
√

KT. If ∆ > ∆̃, we

have O
(

K ln(T∆2)
∆

+ K
∆

)
≤ O

(
K ln(T∆̃2)

∆̃
+ K
∆̃

)
= O(

√
KT ln K), where the inequality uses

the fact that f (x) = ln(Tx2)
x is a decreasing function when Tx2 ≥ e2.

Arm Elimination Algorithm with Doubling-Trick. Since we cannot assume we
know ∆ in advance and all sub-optimal arms have the same ∆, we cannot use Arm
Elimination directly for solving practical learning problems. A good thing is we can
introduce doubling-trick into Arm Elimination to make it work by estimating ∆j .

61

7. online learning

Input: [K] and T.
Initialization: Set ∆̂1 = 0.5 and B1 = [K].It is also fine to set ∆̂0 = 0

and start from r = 0. For epochs r = 1, 2, . . . up to log T,
1. For each arm j ∈ Br , pull it until the total number of pulls hits nr =

2 ln(KT∆̂2
r)

∆̂2
r

;

2. All arms i ∈ Br such thatYou can view Br as a version
space in batch learning.

µ̂i,nr
+

√
log(KT∆̂2

r)
2 · nr︸ ︷︷ ︸

upper confidence bound of arm i

≥ max
j∈Br

µ̂j,nr
−

√
log(KT∆̂2

r)
2 · nr︸ ︷︷ ︸

lower confidence bound of j∗r ∈ arg maxj∈Br
µ̂j,nr

.

(7.22)
will be kept in Br+1.This is a picture for this.

Set ∆̂r+1 = ∆̂r
2 = 0.5r+1.

If |Br+1| = 1, commit to that arm until the end of the learning.

Theorem 7.14. Arm Elimination with Doubling-Trick has a
∑

j∈[K]:∆j>0
O

(
ln(T∆2

j)
∆j

+ ln K
∆j

)
problem-dependent regret bound and an O(

√
KT ln K) worst-case regret bound.

Proof. Let i∗ denote the index of the unique optimal arm. Fix a sub-optimal arm j.

Let rj =
⌈
log

(
1
∆j

)⌉
. Then, we have 0.5∆j ≤ 0.5rj = ∆̂rj ≤ ∆j .

We claim that the probability that this arm j is kept in Brj+1 is very low. Formally,
we have

P
{
j ∈ Brj+1

}
= P

j ∈ Brj , µ̂j,nrj
+

√
log(KT∆̂2

rj)
2·nrj

≥ max
j∈Brj

µ̂j,nrj
−
√

log(KT∆̂2
rj)

2·nrj

≤ P

µ̂j,nrj
+

√
log(KT∆̂2

rj)
2·nrj

≥ max
j∈Brj

µ̂j,nrj
−
√

log(KT∆̂2
rj)

2·nrj
, i∗ ∈ Brj

+ P

µ̂j,nrj
+

√
log(KT∆̂2

rj)
2·nrj

≥ max
j∈Brj

µ̂j,nrj
−
√

log(KT∆̂2
rj)

2·nrj
, i∗ < Brj

≤ P

µ̂j,nrj
+

√√
log(KT∆̂2

rj)

2 · nrj
≥ µ̂i∗,nrj

−

√√
log(KT∆̂2

rj)

2 · nrj

︸ ︷︷ ︸
UCB analysis, Hoeffding’s inequality

+ P {i∗ < B2} + P {i∗ ∈ B2, i
∗ < B3} + . . . + P

{
i∗ ∈ B2, . . . , i

∗ ∈ Brj−1, i
∗ < Brj

}
≤ 2

KT∆̂2
rj

+
rj−1∑
r=1

2
T∆̂2

r

≤
rj∑
r=1

2
T∆̂2

r

=
rj∑
r=1

2
T·0.52r

= O
(

1
T·0.52rj

)
= O

(
1

T·∆2
j

)
.

(7.23)

62

7. online learning

The total regret from this sub-optimal arm j is at most

nrj · ∆j︸ ︷︷ ︸
regret until the end of epoch rj

+ T · P
{
j ∈ Brj+1

}
· ∆j︸ ︷︷ ︸

regret for the remaining rounds

≤
2 ln(KT∆̂2

rj
)

∆̂2
rj

· ∆j + T · O
(

1
T·∆2

j

)
· ∆j

≤
2 ln(KT∆2

j)

0.25∆2
j
· ∆j + T · O

(
1

T·∆2
j

)
· ∆j

= O
(

ln(T∆2
j)

∆j
+ ln K

∆j

)
.

(7.24)

Summing over all the sub-optimal arms, we have the problem-dependent regret is
at most

R(T) =
∑

j∈[K]:∆j>0

O

 ln(T∆2
j)

∆j
+

ln K
∆j

 . (7.25)

Let ∆̃ := e
√

K ln K√
T

. We have

R(T) ≤ T · ∆̃ +
∑

j∈[K]:∆j>∆̃

O
(

ln(T∆2
j)

∆j
+ ln K

∆j

)
≤ e

√
KT ln K +

∑
j∈[K]:∆j>∆̃

O
(

ln(T∆̃2)
∆̃

+ ln K
∆̃

)
≤ e

√
KT ln K + O

(
K ln(T∆̃2)

∆̃
+ K ln K

∆̃

)
≤ e

√
KT ln K + O

(
K ln(e2K ln K)

e
√

K ln K√
T

+ K ln K
e
√

K ln K√
T

)
= O(

√
KT ln K) .

(7.26)

We have

P {i∗ < B2} = P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
< max

j∈B1\{i∗}
µ̂j,n1

−
√

log(KT∆̂2
1)

2·n1

}
≤

∑
j∈B1\{i∗}

P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
< µ̂j,n1

−
√

log(KT∆̂2
1)

2·n1

}
≤

∑
j∈B1\{i∗}

(
P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
≤ µ1

}
+ P

{
µ̂j,n1

−
√

log(KT∆̂2
1)

2·n1
≥ µj

})
≤ 2

T∆̂2
1

.

(7.27)

P {i∗ ∈ B2, i
∗ < B3}

= P
{
µ̂i∗,n1

+
√

log(KT∆̂2
1)

2·n1
≥ max

j∈B1

µ̂j,n1
−
√

log(KT∆̂2
1)

2·n1
, µ̂i∗,n2

+
√

log(KT∆̂2
2)

2·n2
< max

j∈B2\{i∗}
µ̂j,n2

−
√

log(KT∆̂2
2)

2·n2

}
≤ P

{
µ̂i∗,n2

+
√

log(KT∆̂2
2)

2·n2
< max

j∈B2\{i∗}
µ̂j,n2

−
√

log(KT∆̂2
2)

2·n2

}
≤ 2

T∆̂2
2

.

(7.28)

Similarly, we have

P
{
i∗ ∈ B2, . . . , i

∗ ∈ Brj−1, i
∗ < Brj

}
≤ 2

T∆̂2
rj−1

.

63

8 Lower bounds; no free lunch

Armed with our knowledge of online learning from Chapter 7, let’s now return to
the offline setting from Chapters 1, 2 and 4 to 6. Should this have just come

before Chapter 7? Probably,
but the teaching timing
wasn’t right. . . .

In the offline setting, so far we’ve only done upper bounds: in this case, we know
we can learn at least this well. But if we only know upper bounds, we never really
know how tight they are, and so we can never really know if one algorithm is better
than another, or if a learner will really fail in some situation or if it’s just that our
proof wasn’t good enough.

One way to approach this problem is with asymptotic results, as described e.g.
by [Bach24] who summarizes and translates results from the classic textbook of
van der Vaart [vdV98]. For instance, if H = {hw : w ∈ W} for some open set of
possible parametersW ⊆ RD, the loss is sufficiently “nice” as a function of w, and
there’s a minimizer h∗ = hw∗ , then as long as some extra “niceness” assumptions also
hold, it’s true for the ERM that

E
S∼Dm

LD(ĥS)−LD(h∗) = Θ

 1
m

Tr

[∇2
wLD(h∗)

]−1
E

z∼D

[
(∇wℓ(hw, z))(∇wℓ(hw, z))T|w=w∗

] .
This gives a fast 1/m rate – better than the 1/

√
m we’ve gotten so far (except in

A1 Q4) – and along the way it actually also tells us that w − w∗ is asymptotically
Gaussian, and some other nice things. If we can evaluate the stuff inside the trace,
we could also then explicitly say “this H converges faster than that one,” or compare
to an asymptotic rate for some different algorithm. But: the “niceness” assumptions
don’t always hold, the expressions aren’t always easy to analyze, and they’re purely
asymptotic results, so we don’t know whether they’re a good approximation after
m = 20 or only after m = 100, 000, 000, 000.

Instead, let’s use a different route to lower bounds, specifically focusing on binary
classifiers where these things are easiest.

8.1 no free lunch for high-vc classes

Theorem 8.1. This result is similar to
Theorem 5.1 of [SSBD14],
but incorporating the idea of
VC dimension (which they
haven’t introduced yet at
that point).

LetH be a hypothesis set of binary classifiers over X . Let m ≤ VCdim(H)/2.
Then, using 0-1 loss,

inf
A

sup
D realizable by H

Pr
S∼Dm,A

(
LD(A(S)) ≥ 1

8

)
≥ 1

7
,

where the infimum over A is over all (possibly randomized) learning algorithms which
return hypotheses in H, and the probability is over both the sampling of a training set
and any internal randomness in A.

Before we prove this, let’s unpack the quantifiers a bit. For any m and any learning

65

8. lower bounds; no free lunch

algorithmA, there is some realizable distribution D such thatA has at least constant
probability of failing with m samples, i.e. getting at least 1/8 error. Note that this
distribution depends on m and on A.

This result immediately implies the following:

Corollary 8.2. Any H with VCdim(H) = ∞ is not PAC learnable.

This doesn’t necessarily mean that there’s any single D that A fails on forever. But,
at any m, there’s still some distribution that’s too hard. This removes the possibility
of PAC learning, which needs to work for all distributions at a uniform rate.

Proof of Theorem 8.1. We’re first going to pick a shatterable set of size 2m, X̃ =
{x̃1, . . . , x̃2m} ⊆ X ; at least one such set must exist, since 2m ≤ VCdim(H). Then we’ll
pick the marginal distribution of x, Dx, to be a discrete uniform distribution on X̃ .
To construct our hard D, we’re going to use this Dx and then somehow assign a y
for each x.

Since we’re being totally generic with respect to A, it’s going to be hard to say which
y | x labeling rule in particular is going to be hard for A to learn. So, as a proof
technique, we’re going to start with a random labeling rule, and then settle on a
particular one later. Specifically, for each vector of possible labels y ∈ {0, 1}m, choose
some particular f ∈ H such that f (xj) = yj for all j; there must be at least one, since
H shatters X̃ . Let F be the set of these functions (of size exactly 2m), and choose
f ∼ Unif(F), i.e. we’re picking a labeling function uniformly from F . For any f , let
the distribution D(f) denote the distribution that you get by sampling x ∼ Dx and
then assigning y | x = f (x).

Now, for any sample of inputs Sx = (x1, . . . , xm), we can implicitly construct a sample
of pairs S =

(
(x1, f (x1)), . . . , (xm, f (xm))

)
. Run the algorithm A to get ĥS = A(S),

which itself might be random given S. Its expected loss over the process of choosing
a distribution, sampling a training set, and running the algorithm is

E
f ∼Unif(F)

E
S∼Dm

(f)

E
A

LD(f)
(A(S)) = E

f
E
S
E
A

E
x∼Dx

1
(
[A(S)](x) , f (x)

)
.

Using the law of total expectation, let’s break this expectation up based on whether
the test x is in the training data S or not:

E
f ,S,A

E
x
1(ĥS(x) , f (x)) = E

f ,S,A

[
Pr(x < Sx) E

x∼Dx

[1(ĥS(x) , f (x)) | x < Sx]

+ Pr(x ∈ Sx) E
x∼Dx

[1(ĥS(x) , f (x)) | x ∈ Sx]
]
.

For the second term, we’re not going to worry about what the algorithm does on the
data it’s actually seen, since the algorithm might be good: we’ll just bound this as
being at least zero.

For the first term, we know since Dx is uniform and |Sx| ≤ m that

Pr(x < Sx) =

∣∣∣X̃ \ Sx

∣∣∣∣∣∣X̃ ∣∣∣ ≥ m
2m

=
1
2
.

Also, since our labels f (x̃j) are uniformly random and totally independent of one
another, and S is independent of those labels for points x̃ < S, whether ĥS agrees

66

8. lower bounds; no free lunch

with f is just a pure coin flip: Ex[1(ĥS(x) , f (x)) | x < Sx] = 1
2 .

Combining, we know that

E
f ∼Unif(F)

E
S∼Dm

(f)

LD(f)
(ĥS) ≥ 1

4 .

But, if the average over f of the expected loss ES∼Dm
(f)

LD(f)
(ĥS) is at least 1

4 , This proof technique is
known as the probabilistic
method, and often
attributed to Paul Erdős.

then there

must be at least one particular f such that the expected loss is at least 1
4 ! Pick one

and call it g; this will be the labeling function claimed by the theorem.

We’ve now shown the average loss is large, but we still want to show that the loss
has high probability of being large. Now, LD(g)

(ĥS) is a random variable bounded
in [0,1], and we already know one way to bound those variables in terms of their
means: Markov’s inequality. But Markov’s inequality bounds the probability of
things being big, and we want to bound the probability of this being small. So we’ll
need to switch it around, which is sometimes called “reverse Markov”:

Pr(LD(g)
(ĥS) ≤ 1

8) = Pr
(
1 − LD(g)

≥ 1 − 1
8

)
≤

1 − E LD(g)
(ĥS)

7
8

≤
(
1 − 1

4

) 8
7

=
6
7
.

Thus, for the realizable D(g) we picked above,

Pr
S∼Dm

(g)

(
LD(g)

(ĥS) > 1
8

)
≥ 1

7
.

8.1.1 Interpretation

Theorem 8.1 is sometimes called a “no free lunch” theorem, in that there is no
algorithm that always works (in the sense of PAC learning): every algorithm fails on
at least one distribution.

In fact, basically this same proof strategy implies [Wol96] that, if you only care
about the “off-sample” error (the average error on (x, y) | x < Sx), there are just
as many possible distributions where your predictor is right as where it’s wrong,
regardless of your learning algorithm. If you don’t assume anything about the world,
all algorithms perform the same on average over all possible worlds.

This is in some ways a deep philosophical problem, called the problem of induction
and generally credited to David Hume. The fact that the sun rose every day so
far doesn’t, from “pure first principles,” imply anything about whether it will rise
tomorrow: we just decide to prefer “simple” explanations, i.e. we choose some H
that we like. But that doesn’t really answer which H would be good.

Actually, VC or Rademacher theory can’t answer that problem either: it’s preferable
to choose a H with small complexity, but since Rad((H + {f })|S) = Rad(H|S), and
VCdim(H) = VCdim({x 7→ h(x)f (x) : h ∈ H}) for ±1-valued h and f , we haven’t
actually seen any objective notion of a “simple hypothesis”: only ways to say that
sets of hypotheses are all similar enough to one another.

Sometimes people get a little mystical about no free lunch theorems, though –
e.g. https://no-free-lunch.org says that this result “calls the whole of science
into question.” But the world is not uniformly random; we know from experience
that some kinds of H tend to work better than others. so, although there is some
distribution that every algorithm fails on, it’s not the case in the world we live in that
all algorithms are the same as each other. (And, interestingly, there are (impractical)

67

https://en.wikipedia.org/wiki/Problem_of_induction
https://no-free-lunch.org

8. lower bounds; no free lunch

learning algorithms that are always at least as good as any other algorithm, up to
(huge) constants: free-lunch.org used to (but, alas, no longer) point to the paper
of Nakkiran [Nak21].)

8.1.2 Aside: “learning is NP-hard”

Another example of this kind of claim (based on a different underlying theorem)
is given by van Rooij et al. [vRoo+24], who say (in reaction to recent progress of
LLMs):

[We present] a mathematical proof of inherent intractability (formally,
NP-hardness) of the task that [...] AI engineers set themselves. This
intractability implies that any factual AI system created in the short-run
(say, within the next few decades or so) is so astronomically unlikely to
be anything like a human mind, or even a coherent capacity that is part
of that mind, that claims of ‘inevitability’ of AGI within the foreseeable
future are revealed to be false and misleading. We realize that this
implication may appear counterintuitive given everyday experiences and
interactions with currently impressive AI systems, but we will explain
why it is not. As we will carefully unpack later in the paper, it is a mistake
to assume that AI systems’ performance is either currently human-level,
or will simply continue to improve and the systems will soon constitute
human-level A(G)I. The problem is that—in line with our intractability
result—the performance cannot scale up.

What they actually prove (their Theorem 2) can be rephrased roughly as follows:

Theorem 8.3 (“Ingenia Theorem”, [vRoo+24]). Let X = {0, 1}N and Y a fixed finite set.
For each x, define Yx ⊊ Y to be the set of “acceptable” responses to an input x. Let H be a
hypothesis class containing all functions implemented by circuits with complexity at most
a parameter D; for instance, for each N and D there exists a class of feedforward neural
networks satisfying this. A realizable distribution D is one where Pr(x,y)∼D(y ∈ Yx) = 1
and there exists h∗ ∈ H with Pr(x,y)∼D(h∗(x) ∈ Yx) = 1. Suppose that there exists a
polynomial-time algorithm, allowed to randomly sample from D as a constant-time
operation, which with probability at least Ω(1/Nα) for some α > 0 successfully identifies
a hypothesis h ∈ H satisfying

Pr
(x,y)∼D

(h(x) ∈ Yx) ≥ |Yx|
|Y |

+ εN ,

for some εN = Ω(1/Nβ), for some β > 0. Then NP ⊆ BPP.

This conclusion contradicts a very common assumption in complexity theory. So,
although we don’t 100% know this for a fact, we should probably think that this
implies there is no polynomial-time algorithm satisfying the above properties, i.e.
that can improve on random guessing.

Does this imply that “AI” is computationally infeasible? Not really. Assuming
NP ⊈ BPP, it implies that for any given polynomial-time learning algorithm, there
exist some distributions which cannot be efficiently learned. (This is true even for
distributions which are themselves efficiently computable. The universal induc-
tion approach considered e.g. by Nakkiran [Nak21] finds computationally-efficient
hypotheses but it does so in an extremely computationally-inefficient way.)

This obviously doesn’t mean, though, that every distribution can’t be efficiently

68

https://en.wikipedia.org/wiki/NP (complexity)
https://en.wikipedia.org/wiki/BPP (complexity)

8. lower bounds; no free lunch

learned. For instance, the distribution that always says “banana please” in response
to any input at all can be. Is “human-like behaviour” a distribution that can be
efficiently learned by some algorithm? I don’t know (other than to say that, well,
humans do it), and this theorem doesn’t say either!

8.2 lower bounds

Theorem 8.1 only applies when m ≤ VCdim(H)/2. We can use it, though, to also get
a quantitative lower bound for higher m:

Theorem 8.4. This theorem roughly
follows [MRT18, Theorem
3.20]. That result merges
this result with Theorem 8.1
in a way I find really hard
to follow; their theorem
statement is also obviously
incorrect when
m < (VCdim(H) − 1)/32.
[SSBD14, Theorem 6.8]
states a similar result, but
leaves this part as an
exercise.

Let H be a set of binary classifiers over X such that VCdim(H) ≥ 2. For
any m > VCdim(H)/2,

inf
A

sup
D realizable by H

Pr
S∼Dm

(
LD(A(S)) >

VCdim(H) − 1
32m

)
>

1
100

where LD uses zero-one loss, and the infimum over A is over all learning algorithms
returning hypotheses in H.

Proof. Choose a set X̃ = {x̃1, . . . , x̃d} of size d = VCdim(H) which can be shattered
by H. We’re going to choose a distribution that puts most of its probability mass on
x̃1, in such a way that we’re likely to see less than half of the other points from the
distribution. Specifically, for an ε > 0 to choose later,

Pr
x∼Dx

(x = x̃1) = 1 − ε, for all i > 1, Pr
x∼Dx

(x = x̃i) =
ε

d − 1
.

Now, let D̃ be the distribution over {x̃2, . . . , x̃d} selected by Theorem 8.1 with m =
(d − 1)/2, and let f ∈ H be the labeling function chosen in D̃. Our distribution will
be found by sampling x ∼ Dx and then letting y | x = f (x).

Now, we’re going to prove that it’s fairly likely that samples from Dx contain at most
(d − 1)/2 of the non-x̃1 points. How many points we don’t see is a little annoying to
characterize exactly, but we can get a bound based on

Q =
m∑
i=1

1(xi , x̃1);

if we repeat any of the non-x̃1 points, Q will double-count them, but it’s a valid
upper bound on the number of non-x̃1 points we see. Notice that Pr(xi , x̃1) = ε,
and each of the indicators is iid Bernoulli(ε), so Q ∼ Binomial(m, ε).

A standard tail bound for binomial variables, Proposition 8.5 with γ = 1, shows that

Pr(Q ≥ 2mε) ≤ exp
(
−1

3
mε

)
.

To use this result, we want 2mε = 1
2 (d − 1); so, pick ε = (d − 1)/(4m). This is valid,

since m > d/2 implies that ε < 1
2
d−1
d < 1

2 . Then we see less than half of the non-x̃1
points with probability at least

1 − exp
(
−m

3
· d − 1

4m

)
= 1 − exp

(
−d − 1

12

)
≥ 1 − exp

(
− 1

12

)
> 0.07,

since 1 − exp(−1/12) ≈ 0.07995.

So, with more than 7% probability, a sample of size m from D will contain at most

69

8. lower bounds; no free lunch

(d − 1)/2 of the non-x̃1 points. Then, Theorem 8.1 tells us that with probability at
least 1/7, LD̃(A(S)) ≥ 1

8 . If this happens, this implies that LD(A(S)) ≥ 1
8 ε = d−1

32m ,
since the total probability of the non-x̃1 points is exactly ε. So, we have more than a
1
7 · 7% = 1% chance of seeing d−1

32m error on D, as desired.

Proposition 8.5. If X ∼ Binomial(m, p), then for any γ > 0 it holds that

Pr(X ≥ (1 + γ)mp) ≤ exp
(
−1

3
mpγ2

)
.

This is an immediate consequence of the multiplicative Chernoff bound, which is
e.g. Theorem D.4 of [MRT18]. The proof technique is different from how we proved
Hoeffding/etc, and I don’t know if it holds as generally, but you should be able to
follow their proof (which uses their Theorem D.3) just fine.

Agnostic case You can get a bigger error if you don’t require D to be realizable:
Theorem 3.23 of [MRT18] gives that for any m and H,

inf
A

sup
D

Pr

LD(A(S)) − inf
h∈H

LD(h) ≥
√

d
320m

 ≥ 1
64

. (8.1)

Section 28.2 of [SSBD14] is similar.

More generally These styles of theorems are sometimes called “minimax bounds,”
and algorithms are called “minimax-optimal” or simply “minimax” if they achieve
the lower bound (usually only up to constants, though that’s also sometimes called
“rate-optimal”). In the VC notes we showed that ERM gets error Õp(

√
d/m), which

combined with the agnostic result above shows that ERM is (up to log factors)
rate-optimal for finite-VC classes. Although we haven’t shown this (see Section 28.3
of [SSBD14] or 6.5 of [Zhang23]), ERM for binary classifiers achieves Õp(d/m) error
in the realizable setting, so by Theorem 8.4 ERM is also (up to log factors) minimax
rate-optimal for realizable distributions too.

Minimax rates are also available for various other problems, including things like
linear regression, density estimation, and optimization. We won’t talk a lot about
lower bounds in this course, but they can be really nice to know whether your
learning algorithm is “good” or not. (The problem, though, is they tend to be
extremely “worst-case,” and might not be too informative about problems you’re
likely to actually see – similar to no free lunch arguments.)

8.3 the “fundamental theorem of statistical
learning”

We’ve now shown all the necessary parts for a pretty complete qualitative under-
standing of PAC learning for binary classifiers.

Theorem 8.6 (Fundamental Theorem of Statistical Learning).This name is only, as far as I
know, used by [SSBD14].

For H a class of func-
tions h : X → {0, 1} and with the 0-1 loss, the following are equivalent:

1. Uniform convergence: for all ε, δ ∈ (0, 1), we have that suph∈H LD(h) − LS(h) < ε
with probability at least 1 − δ as long as m ≥ mUC(ε, δ) < ∞.[SSBD14] use two-sided

uniform convergence: in the
setting of the theorem here,

one-sided bounds imply
two-sided ones, but (a)

one-sided is what we really
use, and (b) in more general
settings the distinction can

matter.

2. Any ERM rule agnostically PAC-learns H.
3. H is agnostically PAC learnable.
4. Any ERM rule PAC-learns H.

70

8. lower bounds; no free lunch

5. H is PAC learnable.
6. VCdim(H) < ∞.

Proof. 1 implying 2 is our usual argument:

LD(ĥS) ≤ LS(ĥS) + sup
h∈H

LD(h) − LS(h) ≤ LS(h∗) + ε ≤ LD(h∗) + [LS(h∗) − LD(h∗)] + ε,

plus Hoeffding on LS(h∗) − LD(h∗).

2 implying 3, and 4 implying 5, are immediate.

2 implying 4, and 3 implying 5, is also straightforward from the definitions.

Corollary 8.2 shows that 5 implies 6.

6 implying 1 is shown by Theorem 6.11.

Theorem 6.8 of [SSBD14] gives a quantitative version, bounding the sample com-
plexities in terms of the VC dimension, by collecting lower bounds like Theorem 8.4
and (8.1) and upper bounds like Theorem 6.11 and the realizable equivalent that
we didn’t prove.

71

9 Nonuniform Learning

Recall the decomposition of error we made back in Section 1.4:

LD(ĥS) − Lbayes︸ ︷︷ ︸
excess error

= LD(ĥS) − inf
h∈H

LD(h)︸ ︷︷ ︸
estimation error

+ inf
h∈H

LD(h) − Lbayes︸ ︷︷ ︸
approximation error

.

We’ve talked a lot about the estimation error of ERM, bounding it in terms of
Rademacher complexity or (when applicable) VC dimension. What we haven’t
really talked about yet is the approximation error. We drew some examples with
polynomials in Figure 1.1, but if we don’t know what the optimal predictor looks
like. . . what should we do?

There are some particular cases where we can analyze this approximation error gap
mathematically, if we assume things about the form of D. But those assumptions
usually rely on constants that are hard to know for any specific problem, and there’s
not usually a clear way to estimate them (or the Bayes error) from data, either.

The practical solution is generally to just try a bunch of different H and/or a bunch
of different learning algorithms, then pick the best based on a validation set V.
This is a good idea in practice, and we can make some theoretical guarantees on its
generalization based on LV being close to LD. But it’s still hard to use that approach
to say anything with confidence about the approximation error.

9.1 structural risk minimization

SRM says: let’s use a huge H, one where the approximation error is going to be small,
maybe even zero if H is what’s called universal (coming up soon!). This will probably
mean H has infinite VC dimension, large Rademacher complexity, etc. But let’s
decompose

H = H1 ∪ H2 ∪ · · · =
⋃
k∈N
Hk .

For instance, we might have Hk the set of decision trees of depth k, the set of degree-
k polynomials, or the set of linear classifiers with ∥w∥ ≤ 2k . We’re going to assume
that each Hk has uniform convergence:

∀k ∈ N. Pr
S∼Dm

sup
h∈Hk

LD(h) − LS(h) ≤ εk(m, δ)

 ≥ 1 − δ (9.1)

for functions εk satisfying that for all k and all δ ∈ (0, 1), limm→∞ εk(m, δ) = 0.

We’ll also need a set of weights wk ≥ 0 such that
∞∑
k=1

wk ≤ 1; a typical choice is

73

9. nonuniform learning

6/(π2k2) ≈ 0.61/k2, since
∞∑
k=1

1
k2 = π2

6 .This is the problem that
made Euler famous.

Proposition 9.1. Let H = H1 ∪ H2 ∪ . . . satisfy (9.1), and let wk ≥ 0 have
∞∑
k=1

wk ≤ 1.

Then for any D, with probability at least 1 − δ over the choice of S ∼ Dm, we have

∀h ∈ H. LD(h) ≤ LS(h) + min
k:h∈Hk

εk(m, δwk).

Proof. We do a union bound over the Hk , allocating δw1 probability that anything
in H1 violates the bound, δw2 that anything in H2 does, and so on. Thus the total
probability anything in H violates it is at most

∑
k
δwk ≤ δ.

SRM is then the algorithm that minimizes this upper bound on LD(h):

Definition 9.2. Given bounds on a decomposition of H as in (9.1), and weights
wk ≥ 0 with

∑
wk ≤ 1 and

⋃
k:wk>0

Hk = H, structural risk minimization is given by

SRMH,δ(S) ∈ arg min
h∈H

[
LS(h) + εkh(m, δwkh)

]
where kh ∈ arg min

k:h∈Hk

εk(m,wkδ).

Typically, kh = min{k : h ∈ Hk}.

We can implement this minimization by a finite number of calls to an “ERM oracle”,
as long as our loss is lower-bounded by a ≤ ℓ(h, z), e.g. a = 0:

function SRMH,δ(S)
best←∞
for k = 1, 2, . . . do

hk ← ERMHk
(S)

cand loss← LS(hk) + εk(m,wkδ)
if cand < best then

ĥ← hk
best← cand

if mink′>k a + εk′ (m,wk′δ) > best then
break

return ĥ

Note that if we “decompose” as H1 = H, then SRM becomes just ERMH.

Theorem 9.3. Let h∗ ∈ H be any fixed hypothesis in the setup of Definition 9.2, and let
a ≤ ℓ(h, z) ≤ b for all h ∈ H, z ∈ Z. Then, with probability at least 1 − δ − δ′ over the
choice of random samples S ∼ Dm, SRM satisfies

LD(SRMH,δ(S)) ≤ LD(h∗) + εkh∗
(
m,wkh∗ δ

)
+ (b − a)

√
1

2m log 1
δ′ .

Proof. Let ĥS = SRMH(S). We have that

LD(ĥS) ≤ LS(ĥS) + εkĥS
(m,wkĥS

δ) by Proposition 9.1, prob ≥ 1 − δ

≤ LS(h∗) + εkh∗ (m,wkh∗ δ) by def of SRM;

the conclusion follows by applying Hoeffding’s inequality with probability δ′ to
upper-bound LS(h∗).

74

https://en.wikipedia.org/wiki/Basel_problem

9. nonuniform learning

Compare this to ERM that just knows in advance whichHkh∗ to pick; with probability
at least 1 − 2δ, that would have performance

LD(ERMH(S)) ≤ LD(h∗) + εkh∗ (m, δ) + (b − a)

√
1

2m
log

1
δ
.

How much worse this is depends on how much worse εkh∗ (m,wkh∗ δ) is than εkh∗ (m, δ).

9.1.1 With Rademacher bounds

Since this is a little abstract, let’s see what happens if we plug in the Rademacher
bound of Theorem 5.7: let Rk,m = ES∼Dm Rad((ℓ ◦Hk)|S), assume a ≤ ℓ(h, z) ≤ b, and
for simplicity assume that Rk+1,m ≥ Rk,m for all k. Then

εk(m, δ) = 2Rk,m + (b − a)

√
1

2m
log

1
δ
.

Let’s also plug in wk = 6/(π2k2). Then Proposition 9.1 becomes that

Pr

∀h ∈ H. LD(h) ≤ LS(h) + 2Rkh,m + (b − a)

√
1

2m
log

π2k2
h

6δ

 ≥ 1 − δ, (9.2)

where kh = min{k : h ∈ Hk}. Using this bound to define an SRM algorithm gives

SRMH,δ(S) ∈ arg min
h∈H

LS(h) + 2Rkh,m + (b − a)

√
1

2m
log

π2k2
h

6δ

 . (9.3)

Theorem 9.3 gives that with probability at least 1 − (1 + 6
π2)δ,

LD(SRMH,δ(S)) ≤ LD(h∗) + 2Rkh∗ ,m +
b − a
√
m

√

log kh +
1
2

log
π2

6δ
+

√
1
2

log
π2

6δ

≤ LD(h∗) + 2Rkh∗ ,m +

b − a
√
m

√log kh +

√
2 log

π2

6δ

 .
Letting δ′ = π2+6

π2 δ so that π2

6δ = π2

6
π2

π2+6
1
δ
< 1.03

δ
, this means that with probability at

least 1 − δ′ we have

LD
(
SRMH, π2

π2+6
δ′

(S)
)
≤ LD(h∗) + 2Rkh∗ ,m +

b − a
√
m

√log kh∗ +

√
2 log

1.03
δ′

 . (9.4)

Compare to ERM with Hkh∗ : with probability at least 1 − δ′,

LD(ERMHkh∗
(S)) ≤ LD(h∗) + 2Rkh∗ ,m +

b − a
√
m

√
2 log

2
δ′
.

So, as long as we have a reasonable number of samples compared to the complexity
of h∗ – that is, m ≫ log kh∗ – we pay essentially no penalty for not knowing the
correct Hk in advance!

9.1.2 Problems with bound minimization

Concentration inequalities are usually pretty conservative, since they hold for all dis-
tributions subject to some mild constraints (e.g. sub-Gaussianity). Symmetrization

75

9. nonuniform learning

is also often a bit loose; it introduces a factor of 2 that might not be needed, e.g. in
equation (11) / Appendix E.4 of [Zho+22] we established that this 2 can (basically)
be a 1 for Gaussian-data ℓ1-loss regression.

So, if we minimize a potentially loose bound, then we might get bad results: because
our bound is too conservative, we’ll have too much bias towards a simple solution.
(If the problem turns out to be realizable, but we didn’t assume that from the outset,
then we can’t adapt to the fast 1/m rate; we’ll operate assuming the slow 1/

√
m rate.)

Fundamentally, this means the performance of our algorithm is based on how good
at theoretical analysis we are; we’d usually rather have an algorithm that works well
whether we’re smart or not.

It’s also kind of weird for us to have to pre-commit to a certain failure probability δ;
that’s not usually how we think about things. That in particular, though, we’ll be
able to avoid.

9.1.3 Aside: Avoiding the δ dependence

It’s pretty annoying that the algorithm depends on a specific choice of δ; that “feels
like” an analysis parameter, not an algorithm one. We can do this by defining a
slight variant of the algorithm; notice that (9.2) implies

Pr

∀h ∈ H. LD(h) ≤ LS(h) + 2Rkh,m + (b − a)

√
1
m

log kh + (b − a)

√
1

2m
log

π2

6δ

 ≥ 1−δ,

since we only made the upper bound looser with
√
a + b ≤

√
a +
√
b for nonnegative

a, b. But when minimizing this upper bound, the (b − a)
√

1
2m log π2

6δ term doesn’t
depend on h at all, and so we can just ignore it;

SRMH(S) ∈ arg min
h∈H

LS(h) + 2Rkh,m + (b − a)

√
1
m

log kh

 .
A slight variant of Theorem 9.3 still applies; we just have to use the εk that splits the
two square root terms up, giving for this variant that with probability at least 1 − δ,

LD(SRMH(S)) ≤ LS(ĥS) + 2RkĥS
,m +

b − a
√
m

√log kĥS
+

√
1
2

log
6 + π2

6δ

w/ prob at least 1 − π2

6+π2 δ

≤ LS(h∗) + 2Rkh∗ ,m +
b − a
√
m

√log kh∗ +

√
1
2

log
6 + π2

6δ

by def of SRM

≤ LD(h∗) + 2Rkh∗ ,m +
b − a
√
m

√log kh∗ +

√
1
2

log
6 + π2

6δ
+

√
1
2

log
6 + π2

6δ

w/ prob at least 1 − 6
6+π2 δ

= LD(h∗) + 2Rkh∗ ,m +
b − a
√
m

√log kh∗ +

√
2 log

1 + π2/6
δ

.
Note that 1 + π2/6 < 2.7. This gets essentially the same result as (9.4), without
requiring committing to a δ in the algorithm.

Note that this was only possible because [a, b] didn’t depend on Hk. This isn’t
always true; for example, our analysis of logistic regression with ∥x∥ ≤ C and
HB = {x 7→ w · x : ∥w∥ ≤ B} used (4.4) to get that b − a = BC. In these cases, if we

76

9. nonuniform learning

want to use our exact SRM analysis, as far as I know we have to incorporate δ into
the algorithm itself.

9.1.4 Relationship to regularization

Think about using SRM with H = {x 7→ w · x : w ∈ Rd} with Hk = {x 7→ w · x : ∥w∥ ≤
r2k−1} for some r > 0; this should be chosen in advance of seeing the data, e.g. just
picking r = 1. Consider logistic loss, and assume ∥x∥ ≤ C almost surely.

Suppose that h corresponds to a vector w. If ∥w∥ ≥ r, we have

Bkh−1 =
1
2

Bkh = r2kh−2 < ∥w∥ ≤ r2kh−1 = Bkh ,

implying Bkh < 2 ∥w∥ and kh < 2 + log2
∥w∥
r . Thus, in general, Bkh < max(2 ∥w∥ , r)

and kh < 2 + max
(
0, log2

∥w∥
r

)
= max

(
2, log2

4∥w∥
r

)
. Thus, recalling Sections 4.2.2

and 5.2.2, we can use (9.3) to construct an instance of SRM as

arg min
w∈Rd

LS(x 7→ w ·x)+
C max(2 ∥w∥ , r)√

m

2 +

√
log

(
max

(
2, log2

4 ∥w∥
r

))
+

1
2

log
π2

6δ

 .
Now, let’s squint a bit, and assume that we chose an r such that the w with ∥w∥
significantly smaller than r aren’t relevant to the optimization – they’re not confident
enough to achieve a small LS – but that getting a low LS doesn’t require a ∥w∥ so
big that log log2

4∥w∥
r is meaningfully more than “constant.” Then, this optimization

problem looks a lot like

arg min
w∈Rd

LS(x 7→ w · x) +
λ
√
m
∥w∥

for some λ > 0. This is pretty close to the “default” regularized logistic regression,
which would use ∥w∥2. (It also probably wouldn’t have an explicit m in the equation,
but if you’re tuning λ for a fixed particular problem, that doesn’t matter, and indeed
the total amount of regularization should often scale with m according to

√
m, as

we’ll see a little later in the course.)

In fact, the optimization problems with ∥w∥ and with ∥w∥2 are themselves equivalent:
if you consider the curve of possible solutions as you vary λ (the “regularization
path”), you would get the exact same set of solutions. So, SRM can be seen as
motivation for standard regularization techniques.

9.2 nonuniform learnability

The sample complexity for SRM to learn a hypothesis h∗ depends on the particular
h∗, not just on H. This motivates a weaker definition of learning than PAC learning,
called nonuniform learning.

Definition 9.4. An algorithm A(S) (ε, δ)-competes with a hypothesis h if it satisfies
PrS∼Dm(LD(A(S)) ≤ LD(h) + ε) ≥ 1 − δ.

Definition 9.5. An algorithm A nonuniformly learns H there is a finite sample
complexity function m(ε, δ, h) such that for all ε, δ ∈ (0,1) and h ∈ H, given m ≥
m(ε, δ, h) iid samples from any D, A(S) (ε, δ)-competes with h.

Definition 9.6. A hypothesis class H is nonuniformly learnable if there exists an

77

9. nonuniform learning

algorithm A which nonuniformly learns H.

Theorem 9.3 establishes that SRM nonuniformly learns any H which we can decom-
pose into a countable union of Hk which each allow for uniform convergence.

In fact, for binary classifiers with 0-1 loss, SRM nonuniformly learns any H which is
nonuniformly learnable:

Proposition 9.7. If H of binary classifiers is nonuniformly learnable under the 0-1 loss,
it can be written as a countable union of Hk with finite VC dimension.

Proof. Define
Hk =

{
h ∈ H : m

(
1
8 ,

1
7 , h

)
≤ k

}
,

where m(ε, δ, h) is the sample complexity function of an algorithm A that nonuni-
formly learns H. Then H =

⋃
k≥1
Hk .

For any k, consider Hk . Let D be any distribution realizable by Hk , i.e. there is some
h∗ ∈ Hk with LD(h∗) = 0. Since A(S) competes with that h∗, PrS∼Dm(LD(A(S)) ≤ 1

8) ≥
6
7 . This means that we can (roughly) learn any realizable distribution. But our No
Free Lunch theorem, specifically Corollary 8.2, implied that, if VCdim(Hk) = ∞,
then there would be some realizable D that we can’t learn to this (ε, δ). Thus
VCdim(Hk) can’t be infinite.

9.3 minimum description length

9.3.1 Singleton Classes

Suppose we have a countable H = {h1, h2, . . . }. Then we could partition it into
singleton sub-classes, Hk = {hk}. Denoting the weight for the class {h} by wh, each of
these Hk have “uniform convergence” via a simple Hoeffding bound with

εk(m,whδ) ≤ (b − a)

√
1

2m
log

1
whδ

≤ (b − a)

√
1

2m
log

1
wh

+ (b − a)

√
1

2m
log

1
δ
,

splitting out the dependence on δ for simplicity as in Section 9.1.3. SRM then
becomes

SRMH(S) ∈ arg min
h∈H

LS(h) +

√
1

2m
log

1
wh

,

and this has the guarantee by Theorem 9.3 that

LD(SRMH(S)) ≤ LD(h∗) + (b − a)

√
1

2m
log

1
wh∗

+ (b − a)

√
2
m

log
2
δ
.

But. . . how should we set wh? There’s no “smaller” h; what order should we use?

9.3.2 Minimum Description Length

One popular way to decide on weights is based on choosing some prefix-free binary
language to determine the hypotheses: for example, the binary representation of
a gziped Python program implementing that hypothesis. Then we can choose a
weight according to the following result:

78

9. nonuniform learning

Proposition 9.8 (Kraft’s inequality). If S ⊆ {0, 1}∗ is prefix-free (there are no s , s′ ∈ S
such that s is a prefix of s′), then ∑

s∈S
2−|s| ≤ 1.

Proof. Define the following random process: starting with the empty string, add
either a 0 or a 1 with equal probability. If the current string is in S , terminate; if
no element of S begins with the current string, also terminate; otherwise, repeat.
Since S is prefix-free, this process hits any string s ∈ S with probability 2−|s|; these
probabilities must sum to at most one.

Thus, we can choose a representation for H so that h has description length |h|, and
assign wh = 2−|h|. This gives

MDLH(S) ∈ arg min
h∈H

LS(h) +

√
log 2
2m
|h|

LD(MDLH(S)) ≤ LD(h∗) + (b − a)

√
log 2
2m
|h∗| + (b − a)

√
2
m

log
2
δ
.

This is one formalization of Occam’s razor: if there are multiple explanations of
the data (LS(h1) = 0 = LS(h2)), prefer the simplest one (the one with shortest
explanation).

But we need to pre-commit to a notion of description length before seeing the data. A
nice analogy: codegolf.stackexchange.com, a site where people compete to find
the shortest implementation of a program doing some task, prohibits by default any
language written after the contest was started.

If we choose |h| to be the length of shortest possible implementation of h in some
programming language, this is known as the Kolmogorov complexity. This version of
the MDL principle is then to regularize by the Kolmogorov complexity. If you’re
familiar with Bayesian learning, It’s not quite the same; MAP

wouldn’t have the square
root.

this would be something like maximum a posteriori
(MAP) inference with a Kolmogorov complexity prior. The “free lunch” algorithm
outlined by Nakkiran [Nak21] is closely related to this where H is just the set of
all Turing machines. The fully-Bayesian analogue is (basically) something called
Solomonoff induction. For fuller introductions to these concepts, there are various
relevant textbooks [LV19; Hut05; HQC24].

79

https://codegolf.meta.stackexchange.com/questions/1061/loopholes-that-are-forbidden-by-default/1071#comment4646_1071

10 Universal Approximation

In our motivation of SRM in Chapter 9, we talked about wanting to use an H so big
that the approximation error infh∈H LD(h) − Lbayes is zero. What kinds of H satisfy
that?

To keep things simple, we’ll think about Y ⊆ R today.

One example would be the set of all functions X → Y . This way leads a million
mathematical counterexamples of being able to do even super basic things like
computing expectations, let alone being able to learn.

A milder set to target is the set of all continuous functions. If there’s a continu-
ous function achieving the Bayes error, then this immediately guarantees that the
approximation error would be zero.

Definition 10.1. For a metric space X , C(X) denotes the Banach space of continuous
functions X → R, with norm given by ∥f ∥∞ = supx∈X |f (x)|.

Recall that if f and g are elements of a function space and a ∈ R, we have that af + g
is the function mapping x to af (x) + g(x). So, ∥f − g∥∞ = supx∈X |f (x) − g(x)| is one
possible distance metric on functions.

The following result suggests that this is a reasonable (if strict) way to calculate
distances between functions.

Proposition 10.2. Suppose that ℓ(h, (x, y)) = ly(h(x)) for ly : R → R. Then LD is(
E(x,y)∼D

∥∥∥ly∥∥∥Lip

)
-Lipschitz with respect to ∥h − g∥∞.

Proof. We have that

|LD(h) − LD(g)| =
∣∣∣∣∣∣ E
(x,y)∼D

ly(h(x)) − E
(x,y)∼D

ly(g(x))

∣∣∣∣∣∣ ≤ E
(x,y)∼D

∣∣∣ly(h(x)) − ly(g(x))
∣∣∣

≤ E
(x,y)∼D

∥∥∥ly∥∥∥Lip |h(x) − g(x)| ≤
(

E
(x,y)∼D

∥∥∥ly∥∥∥Lip

)
∥h − g∥∞ .

10.1 denseness

Even if the “target function” isn’t continuous, the approximation error could still be
zero.

Example 10.3. Consider X = R and the true labels being determined by the dis-
continuous function y = 1(x > 0). Although this function isn’t in C(X), you can get

81

10. universal approximation

arbitrarily close to it, e.g. by taking the continuous functions

fσ(x) =

0 if x ≤ 0

x/σ if 0 ≤ x ≤ σ
1 if x ≥ σ.

The 0-1 loss here is

LD(fσ) = Pr
(
x ∈ (0, σ)

)
E
[
1 − x

σ
| x ∈ (0, σ)

]
< Pr

(
x ∈ (0, σ)

)
.

As σ → 0, we have LD(fσ) → 0 regardless of D. Thus, infh∈C(X) LD(h) = 0, even
though there is no h ∈ C(X) with LD(h) = 0. Therefore the approximation error, in
this case, is zero.

C(X) can approximate many interesting function classes. We can frame this with
the following definition from metric topology:

Definition 10.4. Let G ⊆ F for some metric space F . We say that G is dense in F
with respect to the metric ρ if, for every f ∈ F , infg∈G ρ(g, f) = 0.

That is, for every point in f ∈ F that isn’t in G, you need to be able to get arbitrarily
close to f with points in G.

A canonical example is that the set of rational numbers is dense in the set of real
numbers.

Proposition 10.5. Suppose that H is dense in F with respect to ∥·∥∞, and use loss
ℓ(h, (x, y)) = ly(h(x)) with finite E(x,y)∼D

∥∥∥ly∥∥∥Lip
. Then infh∈H LD(h) = inff ∈F LD(f).

Proof. Let M = E(x,y)∼D
∥∥∥ly∥∥∥Lip

< ∞. Choose (f1, f2, . . .) to be a sequence in F such

that LD(fi) → inff ∈F LD(f). For each fi , choose a gi ∈ G such that ∥fi − gi∥∞ ≤
1
i ,

which is possible because G is dense in F . Then, by Proposition 10.2, |LD(gi) − LD(fi)| ≤
M ∥gi − fi∥∞ ≤

M
i → 0, and thus (LD(gi)) converges to the same point as (LD(fi)).

10.2 universal approximators

Definition 10.6. We call a hypothesis class HThere are many variants of
universality [see e.g. SFL10];
this is a reasonable baseline.

of functions X → R universal if
H∩ C(X) is dense in C(X) with respect to ∥·∥∞.

The following property is known as separating compact sets. It establishes that
thresholding functions in a universal hypothesis class can shatter any set, so that
VCdim(sgn ◦H) = ∞. It also implies that the Rademacher complexity is infinite.

Proposition 10.7. Let V, W ⊂ X be disjoint compact sets,Finite sets are compact. and let H be universal.
Choose any a ≥ 0. Then there exists an h ∈ H such that h(x) > a for all x ∈ V, and
h(x) < −a for all x ∈ W.

Proof. Define ρV(x) = minv∈V ∥x − v∥, and likewise ρW. Since the sets are compact,
we can use just min instead of inf, and they’ll still be well-defined continuous
functions in C(X). Since the sets are compact and disjoint, if ρV(x) = 0 then

82

10. universal approximation

ρW(x) > 0, and vice versa. Thus the following g is well-defined and continuous:

g(x) = 2a
ρV(x) − ρW(x)
ρV(x) + ρW(x)

.

If x ∈ V, then DV(x) = 0, and so g(x) = −2a for x ∈ V. Likewise, g(x) = 2a for x ∈ W.
Thus, any h ∈ H with ∥h − g∥∞ < a will satisfy the property we want. Since g is
continuous and H is dense in C(X), such an h must exist.

This result implies that, at least for binary classifiers, it’s impossible to PAC-learn a
universal H. Depending on the H, though, we may be able to nonuniformly learn
it with SRM or similar algorithms. If we use a decomposition H = H1 ∪ H2 ∪ · · ·
for H1 ⊂ H2 ⊂ · · · , then even though the approximation error in all of H is zero,
the approximation error in Hk might not be. As we consider Hk for increasing
k, we trade off higher estimation error for lower approximation error. When H
is universal, there might be some Hk where we can achieve zero approximation
error (if there’s some h ∈ H achieving the minimal loss, Well-specified doesn’t imply

realizable; you might have
infh∈H LD(h) > 0.

also called the well-specified
setting). We might, though, only have the approximation error of Hk going to zero
as k increases, called a misspecified setting; this would be true e.g. in Example 10.3
with Hk = {f : ∥f ∥Lip ≤ k}.

10.3 universal approximation of neural networks

As you may have heard before (probably invoked in somewhat mystical ways),
classes of neural networks are universal.

A feedforward neural network (or multilayer perceptron, MLP) is a function defined
hierarchically as

f (x) = f (D)(x) f (k)(x) = σk(Wkf
(k−1)(x) + bk) f (0)(x) = x,

where Wk ∈ Rd′k×dk−1 , bk ∈ Rd′k , and σk : Rd′k → Rdk ; usually, dk = d′k. Typically
σD(z) = z, while intermediate hidden layers use nonlinear activations. Many common
choices are componentwise, such as ReLU(z) = max{z,0}, tanh, or sigmoid(z) =

1
1+exp(−z) . Other choices include softmax(z) = (exp(zj))j /

∑
j

exp(zj), max pooling,

attention operators, and so on.

On A3 Q3, you bounded the Rademacher complexity for some such networks, with
some assumptions on σk, D, bounds on Wk, and that bk = 0. (There are [slightly]
better bounds than this one; we’ll talk about this a bit soon.) Your bound didn’t
explicitly depend on the number of parameters, just on their norms.

It’s worth noting now that neural networks are usually trained via stochastic gradient
descent, but this non-convex optimization can be difficult: in general, it’s NP-hard,
even to optimize a single ReLU unit with square loss [GKMR21]. We’ll talk more
about optimization soon.

10.3.1 Constructive proofs

The following result is easy to understand, and extremely simple, but is indicative
of universal approximation results in general.

Theorem 10.8. Let g : [0, 1]→ R be M-Lipschitz. For any ε > 0, there exists a network
f such that ∥f − g∥∞ ≤ ε, where the network has one hidden layer of width N = ⌈M/ε⌉

83

10. universal approximation

using threshold activations σ(t) = 1(t ≥ 0), and a linear output unit.

Proof. We’re going to construct a piecewise-constant approximation to g. For i ∈
{0, . . . , N − 1}, let bi = iε

M , i.e.

b0 = 0, b1 =
ε

M
, · · · , bN−1 =

(⌈M
ε

⌉
− 1

)
ε

M
<

M
ε
· ε

M
= 1.

We’re going to construct

f (x) =

g(0) if 0 ≤ x < b1

g(b1) if b1 ≤ x < b2
...

g(bN−1) if bN−1 ≤ x ≤ 1

as a two-layer network. To do this, let a0 = g(0), and for i ≥ 1 let ai = g(bi) − ai−1, so
that

k∑
i=0

ai = g(0) + (g(b1) − g(0)) + (g(b2) − (g(b1) − g(0))) + · · · = g(bk).

Thus the desired f is just

f (x) =
N−1∑
i=0

ai 1(x ≥ bi),

which is a network of the desired form: the first layer has a weight matrix of all ones,
and a bias vector collecting the negatives of the thresholds bi , while the second layer
has weights collecting the ai and no offset.

Now, consider any input x, and let k = max{k : bk ≤ x}.You could use a narrower
network by depending on the

total variation of g, how
much it “wiggles” up and
down: if g is pretty flat in

some region, there’s no need
to keep putting points there,

you only need a new one
when g changes more than ε.

Then, since g is M-Lipschitz,

|g(x) − f (x)| ≤ |g(x) − g(bk)|︸ ︷︷ ︸
≤M |x−bk |

+ |g(bk) − f (bk)|︸ ︷︷ ︸
0

+ |f (bk) − f (x)|︸ ︷︷ ︸
0

≤ M
ε

M
= ε.

We could do a similar thing with ReLU networks, using piecewise-linear approxima-
tions rather than piecewise-constant.

Here’s a similar result in Rd :

Theorem 10.9. Let g : [0, 1]d → R be continuous. For any ε > 0,δ exists for any ε, since
continuous functions on

compact domains are
uniformly continuous, and
∥·∥2 and ∥·∥∞ are equivalent.

choose δ > 0 such that
∥x − x′∥∞ ≤ δ implies |g(x) − g(x′)| ≤ ε. Then there is a three-layer ReLU network f with
Ω

(
1
δd

)
ReLU nodes satisfying

∫
[0,1]d

|f (x) − g(x)| dx ≤ 2ε.

Proof (sketch). Approximate the continuous g by a piecewise-constant h, with pieces
given by hyper-rectangles. Construct a two-layer ReLU net to check whether the
input x is in each hyper-rectangle. Put those networks side-by-side as the first two
layers of f , so that the second hidden layer is just an indicator vector of which
hyper-rectangle x is in. Use a linear readout layer to set any value on those pieces.

For details, see Theorem 2.1 of Telgarsky [Tel21].

Notice the curse of dimensionality: the size of the network depends exponentially
on the dimension, which for deep learning is typically at least hundreds, perhaps
millions or more. This isn’t just a proof artifact; it’s necessary to approximate

84

10. universal approximation

arbitrary continuous functions. The construction also needs really large weights,
and has a really bad Lipschitz constant; it also only gives an L1 approximation
bound, not sup-norm like before.

10.3.2 Non-constructive bound via Stone-Weierstrass

We can actually get a sup-norm bound with only one hidden layer a different way,
using the celebrated Stone-Weierstrass approximation theorem from analysis.

Theorem 10.10 (Stone-Weierstrass, special case). Let X be a compact metric space.
Suppose F is a set of functions from X → R such that:

• Each f ∈ F is continuous: F ⊆ C(X).

• For each x ∈ X , there is at least one f ∈ F with f (x) , 0.

• For all f , g ∈ F and α ∈ R, we have αf + g ∈ F and f g = (x 7→ f (x)g(x)) ∈ F . F is an algebra.

• For each x , x′ ∈ X , there is at least one f ∈ F with f (x) , f (x′). F separates points.

Then F is dense in C(X) with respect to ∥·∥∞.

You may have heard of the Weierstrass theorem, which shows that polynomial
functions are dense in C(X); this is a generalization.

Proposition 10.11. The set of functions Fexp is dense in C(X), where

Fexp =

x 7→ m∑
i=1

ai exp(wi · x) : m ≥ 1;w1, . . . , wm ∈ Rd ; a1, . . . , am ∈ R

 .

Notice that Fexp is a set of one-hidden-layer neural networks with exponential
hidden activations and unbounded width.

Proof. We just need to show that it satisfies the conditions of Stone-Weierstrass. The

first two are clear. For f (x) =
m∑
i=1

ai exp(wi · x) and g(x) =
m′∑
i=1

a′i exp(w′i · x), we have

αf + g =

x 7→ m∑
i=1

(αai) exp(wi · x) +
m′∑
i=1

a′i exp(w′i · x)

 ∈ Fexp

f g =

x 7→ m∑
i=1

m′∑
j=1

aia
′
i exp((wi + w′j) · x)

 ∈ Fexp.

To show Fexp separates x1 and x2, consider f (x) = exp((x1 − x2) · x), so that

f (x1)
f (x2)

=
exp

(
∥x1∥2 − x2 · x1

)
exp

(
x1 · x2 − ∥x2∥2

) = exp
(
∥x1∥2 − 2x1 · x2 + ∥x2∥2

)
= exp

(
∥x1 − x2∥2

)
,

which is one iff x1 = x2.

Proposition 10.12 ([HSW89]). Let σ : R→ R be continuous with limz→−∞ σ(z) = 0,
limz→∞ σ(z) = 1. Then Fσ is dense in C(X), where Fσ is defined as

Fσ =

x 7→ m∑
i=1

aiσ(wi · x) : m ≥ 1;w1, . . . , wm ∈ Rd ; a1, . . . , am ∈ R

 .

85

10. universal approximation

Proof (sketch). For any continuous target g, first find an f0 ∈ Fexp such that ∥f0 − g∥∞ ≤
ε/2. Now, find some coefficients such that

exp(z) ≈
∑
j

cjσ(tjz)

is sufficiently accurate so that when we replace each exp(wi ·x) in f0 by
∑
i
ciσ(tiwi ·x),

we find an f ∈ Fσ such that ∥f − f0∥∞ ≤ ε/2.

More generally, this works if σ is anything that’s not a polynomial [LLPS93]. (A
shallow network with fixed-degree polynomial activations is itself a polynomial of
fixed degree.) These are for shallow, wide networks, but if you use a deep, narrow
network you can get away even with polynomial activations [KL20].

There are also a variety of other results. Maybe most important is an infinite-
width construction of Barron [Bar93]; also see Section 3 of [Tel21] or Section 9.3 of
[Bach24].

10.4 circuit complexity

We won’t go into depth on this perspective, but it’s definitely worth knowing it
exists. Shalev-Shwartz and Ben-David [SSBD14, Chapter 20] overview the general
basic results, but the standard classic text seems to be Parberry [Par94]. There’s also
recent work, particularly on Transformers.

The short version:

• Two-layer networks with threshold activations can represent all functions
from {±1}d → {±1}. Since computers always represent things as binary strings,
that’s pretty powerful.

• But, it takes exponential width to do that.

• But, for any Boolean function that can computed with maximal runtime T,
there exists a network of size O(T2) that implements that function.

10.5 interpretation

“Neural networks can do anything!!”

(You don’t hear “decision trees can do anything!!” as often, but it’s just as true. . . .)

These results mean that, for any (continuous) function (on a bounded domain) that
we’d like to approximate, there is some neural net that can closely approximate
that behaviour. Continuous functions also aren’t a huge limit, as in Example 10.3.
So, there is some neural network that can approximate “what’s the next bit in the
response of a very smart human to a Unicode string of length at most 128,000 bytes.”
But that network is going to be very large (in parameter count and also weight norm).
There’s also a really really big decision tree that can do that.

So, does ERM in a large enough hypothesis class, or SRM, or whatever other learning
algorithm, necessarily generalize? Maybe not.

Also, for neural networks ERM is NP-hard; does gradient descent approximate it
well? Maybe not.

86

10. universal approximation

But, are these constructions with enormous norms indicative of the actual norm
required for functions we care about? Maybe not.

One way to help answer these questions is to characterize what kinds of functions
have large norms. This is mostly beyond the scope of this course, but the typical
traditional scheme is based on functions in Sobolev classes; [Bach24] has a bunch of
material on this. There’s also recent work on, say, constructing Transformers to do
some particular task, as an existence proof of approximation for that task (rather
than universally).

87

11 Kernels

We’ve mentioned a couple times the idea of implementing a polynomial classifier as
a special case of a linear one: in R, a cubic classifier might look like

h(x) = w0 + w1x + w2x
2 + w3x

3

where we have four parameters in w. Notice that we can also write this as

h(x) = w · φ(x), w ∈ R4, φ(x) = (1, x, x2, x3).

Now, consider the set of all cubic functions

F = {x 7→ w · φ(x) = w0 + w1x + w2x
2 + w3x

3 : w ∈ R4}.

We’re going to introduce some machinery to think about F as a function space,
along the lines of the space C(X) from Definition 10.1. “Kernel” is a

super-overloaded word. This
is not the same thing as in
kernel density estimation,
the kernel of a convolution,
the kernel of a probability
density, the kernel of a linear
map, a CUDA kernel, an
operating system kernel. . .

This will lead to kernel
methods that allow us to optimize over F using basically the same techniques as
optimizing over linear spaces.

11.1 defining function spaces

To think of F as a vector space of functions, let f , f ′ ∈ F correspond to weight
vectors w, w′. Then we can let f + f ′ be the function with weight vector w + w′, and
af that with weight vector aw. This definition makes it a valid vector space:

Definition 11.1. A real vector space is a non-empty set V along with the operations
of vector addition, denoted v + w ∈ V for any v, w ∈ V, and scalar multiplication,
denoted av ∈ V for any v ∈ V and a ∈ R, satisfying the following requirements:

• Vector addition is associative: for all u, v, w ∈ V, u + (v + w) = (u + v) + w.

• Vector addition is commutative: for all v, w ∈ V, v + w = w + v.

• Vector addition has an identity: there is some zero vector 0 ∈ V such that for
all v ∈ V, v + 0 = v.

• Vector addition has inverses: for each v ∈ V, there is some −v ∈ V such that
v + (−v) = 0.

• Compatibility of scalar multiplication: for all a, b ∈ R and v ∈ V, a(bV) =
(ab)V.

• Identity of scalar multiplication: for all v ∈ V, (1)v = v

• Distributive property I: for all a ∈ R and v, w ∈ V, a(v + w) = av + aw.

• Distributive property II: for all a, b ∈ R and v ∈ V, (a + b)v = av + bv.

89

https://en.wikipedia.org/wiki/Vector_space#Definition_and_basic_properties

11. kernels

A lot of the familiar linear algebra stuff you know and love from Rd applies to any
vector space as well.

Definition 11.2. A real normed vector space is a real vector space V with a norm: a
function V→ R, written ∥v∥, such that:

• Non-negativity: for all v ∈ V, ∥v∥ ≥ 0.

• Positive definitenesss: for every v ∈ V, ∥v∥ = 0 if and only if v = 0.

• Absolute homogeneity: for every a ∈ R and v ∈ V, ∥av∥ = |a| ∥v∥.

• Sub-additivity / triangle inequality: for every v, w ∈ V, ∥v + w∥ ≤ ∥v∥ + ∥w∥.

The norm of a normed vector space induces the metric ρ(x, y) = ∥x − y∥, which we
can check satisfies the formal definition of a metric space:

Definition 11.3. A metric space is a set X along with a function ρ : X × X → R,
called the metric, satisfying the following properties:

• Non-negativity: for all x, y ∈ X , ρ(x, y) ≥ 0.

• Positive definiteness for all x, y ∈ X , ρ(x, y) = 0 if and only if x = y.

• Symmetry: for all x, y ∈ X , ρ(x, y) = ρ(y, x).

• Triangle inequality: for all x, y, z ∈ X , ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Definition 11.4. Consider a sequence x1, x2, . . . in a metric space X .

This sequence has a limit x∞ if for every ε > 0, there exists a positive integer N such
that for all n > N, ρ(xn, x∞) < ε.

This sequence is called Cauchy if, for every ε > 0, there exists a positive integer N
such that for all m, n > N, ρ(xm, xn) < ε.

The metric space X is called complete if all Cauchy sequences in X have limits in X .

Definition 11.5. A real Banach space is a real normed vector space whose norm
induces a complete vector space.

You can check that C(X) is a Banach space.

There’s one other major structure in Rd that we don’t have yet: dot products.

Definition 11.6. A real inner product space is a real vector space V together with an
inner product, a function V × V→ R written ⟨v, w⟩ satisfying

• Symmetry: for all v, w ∈ V, ⟨v, w⟩ = ⟨w, v⟩.

• Linearity: for all u, v, w ∈ V and a, b ∈ R, ⟨au + bv, w⟩ = a ⟨u, w⟩ + b ⟨v, w⟩.

• Positive-definiteness: if v , 0, then ⟨v, v⟩ > 0.

An inner product space is also a normed vector space with ∥v∥ =
√
⟨v, v⟩, and hence

a metric space with ρ(v, w) = ∥v − w∥ =
√
⟨v − w, v − w⟩.

Definition 11.7. A real Hilbert space is a real inner product space whose induced
metric space is complete.

90

11. kernels

11.2 polynomial functions

Now, recall our function space

F = {x 7→ w · φ(x) = w0 + w1x + w2x
2 + w3x

3 : w ∈ R4}

with addition defined by adding weight vectors, and scalar multiplication by scaling
the weight vectors. We can also define an inner product ⟨f , f ′⟩F by w · w′, also
giving the norm ∥f ∥F = ∥w∥. We can check that this satisfies all the conditions we
need, including completeness, for F to define a Hilbert space.

Now, let’s think about a different function class. Choose any c > 0 and define

Fc = {x 7→ w · φ(x) = w0

√
c3 + w1

√
3c2x + w2

√
3cx2 + w3x

3 : w ∈ R4},

then again define addition / scalar multiplication / inner products in terms of these
weight vectors w. The reason for this reparameterization is that we get

φ(x) · φ(x′) = c3 + 3c2xx′ + 3c(xx′)2 + (xx′)3 = (xx′ + c)3,

which makes φ(x) · φ(x′) much easier to compute. The same thing happens in
higher dimensions or with higher polynomial degrees; for degree-ℓ polynomials in
d dimensions, there are O(dℓ) parameters, but we can compute this inner product
ϕ(x) · ϕ(x′) still in O(d) time.

We call this function φ(x) · φ(x′) the kernel function:

k(x, x′) = φ(x) · φ(x′).

We’ll see soon that it’s a very fundamental object.

The set of functions in F and Fc for any c are the same, as functions; addition
and scalar multiplication also agree between all of them. But the inner product
doesn’t! So ∥w∥, and hence ∥f ∥Fc , is different depending on your choice of c. (Larger
c will mean the lower-order coefficients can be smaller in order to express the same
function, and so means that ∥f ∥F is more determined by the coefficient on x3.) This
will be important when we use algorithms that depend on ∥f ∥F .

Now, let’s do something slightly weird. Recall that

φ(x) = (
√
c3,
√
c2x,
√
cx2, x3) ∈ R4.

Elements of Fc are functions corresponding to any w ∈ R4. So what happens if we
think of the element of φ(x) as a weight vector for an element in Fc? This would
give us a function of the form

x′ 7→
√
c3
√
c3 +
√

3c2x
√

3c2x′ +
√

3cx
√

3c(x′)2 + x3(x′)3

= c3 + 3c2xx′ + 3c(xx′)2 + (xx′)3

= (xx′ + c)3 = φ(x) · φ(x′).

That is, if we evaluate the function with weights φ(x) at a point x′, we just get the
kernel back. There isn’t any magic here; we defined F that way in the first place!
Letting fw ∈ F denote the function with weight vector w, this means that

⟨fφ(x), fφ(x′)⟩F = k(x, x′).

91

11. kernels

Now, because it’s a vector space, we know that
n∑
i=1

αifφ(xi) ∈ F for any n, αi ∈ R, and

choice of xi . By the linearity properties of inner product spaces,〈 n∑
i=1

αifφ(xi), fφ(x)

〉
F

=
n∑
i=1

αi⟨fφ(xi), fφ(x)⟩F =
n∑
i=1

αik(xi , x).

Since fφ(xi) ∈ F is a function from X to R, this is the same as taking a linear
combination of the functions, in terms of their pointwise evaluations.

So, we can think of F as having a vector space structure without direct reference
to w, where af + f ′ is defined as the function x 7→ af (x) + f ′(x), and where f (x) =
⟨f , fϕ(x)⟩F (also known as the reproducing property) – at least for any f that’s a
linear combination of fϕ(xi) for some xi . This will be the basis for our construction
of a reproducing kernel Hilbert space (RKHS) for a generic kernel.

The notation fφ(x) is a little bit cumbersome. Kernels people often use k(x, ·) to denote
this. This notation is justified because k(x, ·) would normally mean the function
t 7→ k(x, t); but that’s exactly what you get when you do fφ(x)(t) = φ(x) ·φ(t) = k(x, t).

11.3 reproducing kernels

Not every function can be a kernel: it needs to be possible to write as an inner
product. So:

Definition 11.8. A function k : X × X → R is a positive definite kernel if and
only if there exists some Hilbert space G and feature map φ : X → G such that
k(x, x′) = ⟨φ(x),φ(x′)⟩G.

Notice that the space, and the map, don’t need to be unique (e.g. you could always
use −φ instead of φ). Sometimes it’s clear what such a map is: for the cubic kernel we
considered above, we used G = R4 and φ(x) = (

√
c3,
√

3c2x,
√

3cx2, x3). Sometimes,
though, it’s not obvious for a given k whether there is such a map or not.

The definition implies that we need k(x, x′) = k(x′ , x), and that k(x, x) ≥ 0. But those
are only necessary, not sufficient.

Theorem 11.9 ([Aro50]).Unfortunately people are
very inconsistent about

terminology around positive
definiteness. For matrices,

“positive semi-definite”
unambiguously means the

eigenvalues are nonnegative,
and “strictly positive

definite” unambiguously
means eigenvalues are all

positive, but “positive
definite” might mean either.
Some people get annoyed if

you try to say “positive
semi-definite kernel

function,” though.

A function k : X × X → R is a positive definite kernel if and

only if for all m ≥ 1 and x1, . . . , xm ∈ X , the kernel matrix

k(x1, x1) . . . k(x1, xm)

...
. . .

...
k(xm, x1) . . . k(xm, xm)

 ∈
Rm×m is positive semi-definite.

Recall that a positive semi-definite matrix can be equivalently characterized as:

• For all α ∈ Rm, αTKα ≥ 0.

• All eigenvalues of K are nonnegative.

• K = LLT for some L ∈ Rm×m.

Proof (sketch). One direction is easy: if k(x, x′) = ⟨ϕ(x),ϕ(x′)⟩G, then

αTKα =
m∑
i=1

m∑
j=1

αi⟨φ(xi),φ(xj)⟩Gαj =

∥∥∥∥∥∥∥
m∑
i=1

αiφ(xi)

∥∥∥∥∥∥∥
2

G

≥ 0.

92

11. kernels

To show the other direction, given a k satisfying this property, we’ll construct a
space F : the reproducing kernel Hilbert space.

We’ll start by building a “pre-Hilbert space” F0, containing functions X → R. Start
by defining the functions ϕ(x) = [x′ 7→ k(x, x′)] for all x. Then, let F0 be the set of

all linear combinations of these functions,
m∑
i=1

αiϕ(xi) for any m ≥ 0, x1, . . . , xm ∈ X ,

α1, . . . , αm ∈ R. Define an inner product by〈 m∑
i=1

αiϕ(xi),
n∑

j=1

βjϕ(x′j)
〉
F0

=
m∑
i=1

n∑
j=1

k(xi , x
′
j).

This satisfies the required linearity and nonnegativity properties to be an inner
product. It also has the reproducing properties that we expect:

⟨ϕ(x),ϕ(x′)⟩F0
= k(x, x′) ⟨f ,ϕ(x)⟩F0

= f (x).

Notice also that this is well-defined in the sense that it’s representation-independent:〈 m∑
i=1

αiϕ(xi), f
′
〉
F0

=
m∑
i=1

αi⟨ϕ(xi), f
′⟩F0

=
m∑
i=1

αif
′(xi),

which doesn’t depend on how we wrote f ′ as a linear combination, just on its values.

The only thing left is that we need F0 to be complete: it’s conceivable that not
all Cauchy sequences have limits in this space. So, we construct the RKHS as the
completion of F0: just add the limits in, defining their inner products as limits of
the inner products of the sequence (which is guaranteed to exist since the sequence

is Cauchy and R is complete). So, not all f ∈ F can be written as
n∑
i=1

αiϕ(xi), but you

can always get arbitrarily close (in the distance defined by ∥·∥F) to f with things of
that form.

After checking all the details work out, we’ve constructed a Hilbert space and a
feature map for any k.

(There are also other ways to define an RKHS; it turns out each RKHS has a unique
kernel, and each kernel has a unique RKHS, though there could be more than Hilbert
space aligning with the definition.)

11.3.1 Special case: linear kernel

If we use k(x, x′) = x · x′ for x ∈ Rd , then ϕ(x) = [x′ 7→ x′ · x] is just a linear function
with weight x. Also,∥∥∥ϕ(x)

∥∥∥F =
√
⟨ϕ(x),ϕ(x)⟩F =

√
k(x, x) = ∥x∥ .

So everything we’ve done with linear predictors can be thought of as operating in
the RKHS corresponding to a linear kernel. This is often a useful thing to think
about if you’re looking at some complicated kernel expression: see what it’d be with
a linear kernel.

93

11. kernels

11.4 optimizing in the rkhs

Theorem 11.10 (Representer theorem). If F is an RKHS with feature map ϕ, then for
any function L : Rm → R and any nondecreasing function R : R→ R ∪ {∞},

arg min
f ∈F

L(f (x1), . . . , f (xm)) + R(∥f ∥)

contains a solution of the form f =
m∑
i=1

αiϕ(xi), where S = (x1, . . . , xm). If R is strictly

increasing, all solutions are of this form.

Notice that arg minf :∥f ∥F ≤B LS(f) fits this form: use R(t) =

0 t ≤ B

∞ t > B
.

Proof. Let F∥ be the subspace of F spanned by {ϕ(xi)}mi=1, and F⊥ its orthogonal
complement. Then any element of F can be uniquely decomposed into f∥ + f⊥,
where f∥ ∈ F∥, f⊥ ∈ F⊥, and ⟨f∥, f⊥⟩F = 0. Now, since

f (xi) = ⟨f ,ϕ(xi)⟩F = ⟨f∥ + f⊥,ϕ(xi)⟩F = ⟨f∥,ϕ(xi)⟩F + ⟨f⊥,ϕ(xi)⟩F︸ ︷︷ ︸
0

,

the L component only depends on f∥. Also,

∥f ∥2F =
∥∥∥f∥∥∥∥2

F + ∥f⊥∥2F + 2 ⟨f∥, f⊥⟩F︸ ︷︷ ︸
0

=
∥∥∥f∥∥∥∥2

F + ∥f⊥∥2F .

Thus, having a nonzero value of f⊥ does not change L, and cannot help R. If R is
strictly increasing, it can only hurt the overall objective.

That is, any problem will have a solution of the form w =
∑
i
αiϕ(xi). This allows us

to reduce optimization in F – potentially infinite-dimensional – to optimization
over α ∈ Rm.

11.4.1 Example: kernel ridge regression

Consider the problem
min
h∈F

Lsq
S (h) + λ ∥h∥2F (11.1)

for λ > 0. First off, with a linear kernel, this becomes just plain ridge regression
minw Lsq

S (x 7→ w · x) + λ ∥w∥2.

We know that all solutions will be of the form
m∑
i=1

αiϕ(xi), so (11.1) is equivalent to

min
α∈Rm

Lsq
S

∑
i

αiϕ(xi)

 + λ

∥∥∥∥∥∥∥∑i

αiϕ(xi)

∥∥∥∥∥∥∥
2

F

. (11.2)

The second term here is just∥∥∥∥∥∥∥∑i

αiϕ(xi)

∥∥∥∥∥∥∥
2

F

=
∑
i,j

αik(xi , xj)αj = αTK|Sx
α,

94

11. kernels

where K|Sx
∈ Rm×m is the kernel matrix on Sx, as in Theorem 11.9. For the first term,

notice that ∑
i

αik(xi , xj) = αTK|Sx
ej

where ej ∈ Rm is the jth standard basis vector. Then

Lsq
S

∑
i

αiϕ(xi)

 =
1
m

∑
i

(
αTK|Sx

ei − yi
)2

=
1
m

∥∥∥Kα − y
∥∥∥2
Rm .

Thus the overall problem is

α̂ ∈ arg min
α

1
m
αTK|Sx

K|Sx
α − 2

m
yTK|Sx

α +
1
m
yTy + λαTK|Sx

α

= arg min
α

αTK|Sx
(K|Sx

+ mλI)α − 2yTK|Sx
α.

Setting the gradient to zero gives that we want

K|Sx
(K|Sx

+ mλI)α = K|Sx
y,

which is achieved by
α̂ = (K|Sx

+ mλI)−1y.

When λ > 0 this inverse is guaranteed to exist, since K|Sx
is positive semidefinite, so

K|Sx
+ mλ has all eigenvalues at least mλ.

We can also make predictions on an arbitrary test point with

〈∑
i

α̂iϕ(xi),ϕ(x)
〉
F

=
∑
i

α̂ik(xi , x) = α̂ ·

k(x1, x)

...
k(xm, x)

 .
It’s worth checking for yourself that this agrees with standard ridge regression.

People sometimes call this
transformed version a dual
form, especially e.g. for
kernel ridge regression.
While “dual” isn’t
necessarily a strictly defined
term, note that it’s not a
Lagrange dual.

(You might have to use the Woodbury matrix identity to line them up, since usual
expressions for ridge regression invert a d × d matrix instead of an m × m one. In
340, we called this version the “other normal equations.”)

We often won’t be able to solve things in closed form like we can for kernel ridge
regression. But the representer theorem will still be helpful for any problem of the
right form; we just still might have to run an optimization algorithm like gradient
descent on the α variables.

11.5 other kernels

The most common kernel people use is the Gaussian kernel, also called the “square
exponential” or “exponentiated quadratic” by some communities:

k(x, x′) = exp
(
− 1

2σ2

∥∥∥x − x′∥∥∥2
)
.

My preferred way to prove this is a kernel goes through the following construction:

Proposition 11.11. Let k, k1, k2, . . . be positive definite kernels on X . Then the following
are all also positive definite kernels:

1. γk = (x, x′) 7→ γk(x, x′) for any γ > 0.

95

https://en.wikipedia.org/wiki/Woodbury_matrix_identity

11. kernels

2. k1 + k2 = (x, x′) 7→ k1(x, x′) + k2(x, x′).

3. k1k2 = (x, x′) 7→ k1(x, x′)k2(x, x′).

4. kn = (x, x′) 7→ k(x, x′)n for any nonnegative integer n.

5. k∞ = (x, x′) 7→ limn→∞ kn(x, x′), when the limit always exists.

6. ek = (x, x′) 7→ exp(k(x, x′)).

7. (x, x′) 7→ f (x)k(x, x′)f (x′) for any function f : X → R.

8. (x, x′) 7→ k′(f (x), f (x′)) for any function f : X → X ′ and k′ a kernel on X ′.

Proof. Let ϕ,ϕ1,ϕ2, . . . be the feature maps for these kernels, and K, K1, K2, . . . the
kernel matrices for arbitrary (x1, . . . , xm) ∈ Xm.

1. Use the feature map x 7→ √γφ.

2. αT(K1 + K2)α = αTK1α + αTK2α ≥ 0.

3. This is called the Schur product theorem. Define independent multivariate
normal random vectors V ∼ N (0, K1) and W ∼ N (0, K2). Let V ⊙W be the
elementwise product of V and W; this has covariance matrix K1 ⊙ K2, and
covariances must be psd.

4. Iteratively apply the previous property; also, k0 has feature map x 7→ 1.

5. αTK∞α = αT[limn→∞ Kn]α = limn→∞ α
TKnα ≥ 0.

6. Use exp(k(x, x′)) = limN→∞
N∑
n=0

1
n!k(x, x′)n and the previous properties.

7. Use the feature map x 7→ f (x)ϕ(x).

8. Use the feature map x 7→ ϕ′(f (x)).

To get the Gaussian kernel, notice that

exp
(
− 1

2σ2

∥∥∥x − x′∥∥∥2
)

= exp
(
− 1

2σ2 ∥x∥
2
)

exp
(1
σ2 x · x

′
)

exp
(
− 1

2σ2

∥∥∥x′∥∥∥2
)

and apply the properties above.

The Gaussian kernel is universal; you can prove this fairly immediately via Stone-
Weierstrass (Theorem 10.10).

The Gaussian is not always the best kernel, particularly in high dimensions. Func-
tions in F for a Gaussian kernel are very smooth; the Matérn kernel is preferred in
some settings where rougher functions are expected. Another good general-purpose
kernel is the distance kernel [SSGF13]

k(x, x′) = ρ(x, O) + ρ(x′ , O) − ρ(x, x′)

where ρ is a (semi)metric, and O ∈ X is some arbitrary center point, perhaps 0. This
kernel isn’t actually universal [SSGF13, Proposition 35], but it is “almost universal”
and works well in various settings.

If you have a good (e.g. deep) feature extractor ψ, using a kernel of the form
k(ψ(x),ψ(x′)) can often be a good idea. This usually won’t be universal, but that
usually doesn’t matter for the particular problem you’re looking at.

96

https://en.wikipedia.org/wiki/Schur_product_theorem

11. kernels

11.5.1 Some properties

Proposition 11.12. Consider a kernel k with RKHS F . Then

Rad
({
f ∈ F : ∥f ∥F ≤ B

} ∣∣∣
Sx

)
≤ B
√
m

√√
1
m

m∑
i=1

k(xi , xi).

Proof. The analysis in Section 5.2.2 carries through exactly when replacing xi with

k(xi , ·) ∈ F , in which case
∥∥∥φ(xi)

∥∥∥2
= ⟨k(xi , ·), k(xi , ·)⟩F = k(xi , xi).

For many kernels, such as the Gaussian, k(x, x) = 1 no matter the choice of x. This
makes it even simpler to handle than for the linear case, since we don’t care about
the data distribution.

This is a case where Rademacher analyses are much better than straightforward uses
of covering numbers, since for infinite-dimensional kernels like the Gaussian the
covering number of the sphere is infinite [Isr15].

Proposition 11.13. Let f ∈ F , the RKHS with kernel k. Then

|f (x)| ≤ ∥f ∥F
√
k(x, x)

∣∣∣f (x) − f (x′)
∣∣∣ ≤ ∥f ∥F √

k(x, x) + k(x′ , x′) − 2k(x, x′).

Proof. We have by the representer property and Cauchy-Schwartz that

|f (x)| =
∣∣∣⟨f ,ϕ(x)⟩F

∣∣∣ ≤ ∥f ∥F ∥∥∥ϕ(x)
∥∥∥F .

Similarly,∣∣∣f (x) − f (x′)
∣∣∣ =

∣∣∣⟨f ,ϕ(x) − ϕ(x′)⟩F
∣∣∣ ≤ ∥f ∥F √

k(x, x) + k(x′ , x′) − 2k(x, x′).

Many more properties of this kind are available. For shift-invariant kernels, k(x, x′) =
κ(x − x′), a lot is available via Fourier properties of κ.

We’ve only scratched the surface here. We’ll touch on kernels again through the rest
of the course, but if you want more, Chapter 7 of [Bach24] goes in some more depth,
and [SC08] is a classic very deep/mathematically thorough reference. Bayesian-
oriented people might also want to see connections to Gaussian Processes [RW06;
KHSS18], which are very much “almost the same thing” from a slightly different
point of view.

97

Bibliography

[AO10] Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds
for the stochastic multi-armed bandit problem. Periodica Mathematica
Hungarica 61.1-2 (2010), pages 55–65.

[Aro50] Nachman Aronszajn. Theory of Reproducing Kernels. Transactions of
the American Mathematical Society 68.3 (May 1950), pages 337–404.

[Bach24] Francis Bach. Learning Theory from First Principles. Draft version. Au-
gust 2024.

[Bar93] Andrew R. Barron. Universal Approximation Bounds for Superposi-
tions of a Sigmoidal Function. IEEE Transactions on Information Theory
39 (3 1993), pages 930–45.

[BC12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foundations and
Trends® in Machine Learning 5.1 (2012), pages 1–122. arXiv: 1204.5721.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration
Inequalities: A Nonasymptotic Theory of Independence. Oxford University
Press, 2013.

[BM02] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian
Complexities: Risk Bounds and Structural Results. Journal of Machine
Learning Research 3 (2002), pages 463–482.

[CS02] Felipe Cucker and Steve Smale. On the mathematical foundations of
learning. Bulletin of the American Mathematical Society 39.1 (2002),
pages 1–49.

[GKMR21] Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman.
“Tight Hardness Results for Training Depth-2 ReLU Networks”. ITCS.
2021. arXiv: 2011.13550.

[HQC24] Marcus Hutter, David Quarel, and Elliot Catt. An Introduction to Uni-
versal Artificial Intelligence. 2024.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halber White. Multilayer
Feedforward Networks are Universal Approximators. Neural Networks
2 (1989), pages 359–366.

[Hut05] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions
based on Algorithmic Probability. 2005.

[Isr15] Robert Israel. Can the ball B(0, r0) be covered with a finite number of balls
of radius < r0. Mathematics Stack Exchange. April 1, 2015.

[KHSS18] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K
Sriperumbudur. Gaussian Processes and Kernel Methods: A Review on
Connections and Equivalences. 2018. arXiv: 1807.02582.

[KL20] Patrick Kidger and Terry Lyons. “Universal Approximation with Deep
Narrow Networks”. COLT. 2020. arXiv: 1905.08539.

[LLPS93] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation

99

https://link.springer.com/article/10.1007/s10998-010-3055-6
https://link.springer.com/article/10.1007/s10998-010-3055-6
http://dx.doi.org/10.2307/1990404
https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://arxiv.org/abs/1204.5721
https://arxiv.org/abs/1204.5721
https://arxiv.org/abs/1204.5721
https://go.exlibris.link/MhGdKzSL
https://go.exlibris.link/MhGdKzSL
https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
https://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00923-5/S0273-0979-01-00923-5.pdf
https://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00923-5/S0273-0979-01-00923-5.pdf
https://arxiv.org/abs/2011.13550
https://arxiv.org/abs/2011.13550
http://www.hutter1.net/ai/uaibook2.htm
http://www.hutter1.net/ai/uaibook2.htm
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1007/b138233
http://dx.doi.org/10.1007/b138233
https://math.stackexchange.com/q/1214701
https://math.stackexchange.com/q/1214701
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1905.08539
https://arxiv.org/abs/1905.08539
https://arxiv.org/abs/1905.08539
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1016/S0893-6080(05)80131-5

BIBLIOGRAPHY

function can approximate any function. Neural Networks 6.6 (1993),
pages 861–867.

[LV19] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. 4th edition. 2019.

[Ma22] Tengyu Ma. Lecture Notes for Machine Learning Theory (CS229M/STATS214).
June 2022.

[McD89] Colin McDiarmid. On the method of bounded differences. Surveys
in Combinatorics, 1989: Invited Papers at the Twelfth British Combina-
torial Conference. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1989, pages 148–188.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talkwalkar. Founda-
tions of Machine Learning. 2nd edition. MIT Press, 2018.

[Nak21] Preetum Nakkiran. Turing-Universal Learners with Optimal Scaling Laws.
2021. arXiv: 2111.05321.

[Par94] Ian Parberry. Circuit complexity and neural networks. MIT Press, 1994.
[Rag14] Maxim Raginsky. Concentration inequalities. September 2014.
[Rom21] Marc Romanı́. A short proof of Hoeffding’s lemma. May 1, 2021.
[RW06] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian

Processes for Machine Learning. MIT Press, 2006.
[SC08] Ingo Steinwart and Andreas Christmann. Support Vector Machines.

Springer, 2008.
[SFL10] Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R. G. Lanckriet.

“On the relation between universality, characteristic kernels and RKHS
embedding of measures”. AISTATS. 2010. arXiv: 1003.0887.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[SSGF13] Dino Sejdinovic, Bharath K. Sriperumbudur, Arthur Gretton, and Kenji
Fukumizu. Equivalence of distance-based and RKHS-based statistics in
hypothesis testing. Annals of Statistics 41.5 (October 2013), pages 2263–
2291.

[Tel21] Matus Telgarsky. Deep learning theory lecture notes. October 2021.
[Val84] Leslie G. Valiant. A Theory of the Learnable. Communications of the

ACM 27.11 (1984), pages 1134–1142.
[VC71] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the Uniform

Convergence of Relative Frequencies of Events to Their Probabilities.
Theory of Probability & Its Applications 16.2 (1971), pages 264–280.

[vdV98] Aad W. van der Vaart. Asymptotic Statistics. Cambridge University
Press, 1998.

[vRoo+24] Iris van Rooij, Olivia Guest, Federico Adolfi, Ronald de Haan, Antonina
Kolokolova, and Patricia Rich. Reclaiming AI as a Theoretical Tool for
Cognitive Science. Computational Brain & Behavior (2024).

[Wai19] Martin Wainwright. High-dimensional statistics: a non-asymptotic view-
point. Cambridge University Press, 2019.

[Wol96] David H. Wolpert. The Lack of A Priori Distinctions Between Learning
Algorithms. Neural Computation 8.7 (October 1996), pages 1341–1390.

[Zhang23] Tong Zhang. Mathematical Analysis of Machine Learning Algorithms.
Pre-publication version. 2023.

[Zho+22] Lijia Zhou, Frederic Koehler, Pragya Sur, Danica J. Sutherland, and
Nathan Srebro. “A Non-Asymptotic Moreau Envelope Theory for High-
Dimensional Generalized Linear Models”. NeurIPS. 2022. arXiv: 2210.
12082.

100

http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1007/978-3-030-11298-1
http://dx.doi.org/10.1007/978-3-030-11298-1
https://github.com/tengyuma/cs229m_notes/blob/main/master.pdf
http://dx.doi.org/10.1017/CBO9781107359949.008
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
https://arxiv.org/abs/2111.05321
https://arxiv.org/abs/2111.05321
https://go.exlibris.link/dfCmBkCW
http://maxim.ece.illinois.edu/teaching/fall14/notes/concentration.pdf
https://marcromani.github.io/2021-05-01-hoeffding-lemma/
https://gaussianprocess.org/gpml/chapters/
https://gaussianprocess.org/gpml/chapters/
http://dx.doi.org/10.1007/978-0-387-77242-4
https://arxiv.org/abs/1003.0887
https://arxiv.org/abs/1003.0887
https://arxiv.org/abs/1003.0887
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html
http://dx.doi.org/10.1214/13-AOS1140
http://dx.doi.org/10.1214/13-AOS1140
https://mjt.cs.illinois.edu/dlt/
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1137/1116025
http://dx.doi.org/10.1137/1116025
https://www.cambridge.org/core/books/asymptotic-statistics/A3C7DAD3F7E66A1FA60E9C8FE132EE1D
http://dx.doi.org/10.1007/s42113-024-00217-5
http://dx.doi.org/10.1007/s42113-024-00217-5
https://go.exlibris.link/9ZMcv9J6
https://go.exlibris.link/9ZMcv9J6
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://tongzhang-ml.org/lt-book/lt-book.pdf
https://arxiv.org/abs/2210.12082
https://arxiv.org/abs/2210.12082
https://arxiv.org/abs/2210.12082
https://arxiv.org/abs/2210.12082

	Setup; ERM
	Linear regression
	General problem setup
	Empirical Risk Minimization
	Error decompositions
	ERM estimation error

	ERM with finite hypothesis classes
	Estimation error: asymptotics
	Uniform convergence, bounded loss
	Finite hypothesis classes
	Is this finiteness assumption reasonable?

	Concentration inequalities
	Markov
	Chernoff bounds
	Subgaussian variables
	Proof of Hoeffding's lemma

	PAC learning; infinite hypothesis classes
	PAC learning
	Covering number bounds
	Smoothness: Lipschitz functions
	Putting it together with a set covering
	Aside: Bounds on covering numbers

	Rademacher complexity
	A g-g-g-g-ghost (sample)
	Properties of Rademacher complexity
	Talagrand's contraction lemma
	Complexity of bounded linear functions

	Concentration

	Growth functions and VC dimension
	Zero-one loss
	Finite sets
	Growth functions
	VC dimension
	Examples of computing VC dimension
	Growth function bounds in terms of VC: Sauer-Shelah

	Online learning
	Online Binary Classification in Realizable Setting
	Decision-Theoretical Online Learning and Exponential Weights (Hedge)
	Bandits
	Adversarial bandits.
	Stochastic bandits

	Lower bounds; no free lunch
	No free lunch for high-VC classes
	Interpretation
	Aside: ``learning is NP-hard''

	Lower bounds
	The ``Fundamental Theorem of Statistical Learning''

	Nonuniform Learning
	Structural Risk Minimization
	With Rademacher bounds
	Problems with bound minimization
	Aside: Avoiding the dependence
	Relationship to regularization

	Nonuniform learnability
	Minimum Description Length
	Singleton Classes
	Minimum Description Length

	Universal Approximation
	Denseness
	Universal Approximators
	Universal approximation of neural networks
	Constructive proofs
	Non-constructive bound via Stone-Weierstrass

	Circuit complexity
	Interpretation

	Kernels
	Defining function spaces
	Polynomial functions
	Reproducing kernels
	Special case: linear kernel

	Optimizing in the RKHS
	Example: kernel ridge regression

	Other kernels
	Some properties

	Bibliography

