## Automatic Differentiation (1)

Slides Prepared By:
Atılım Güneş Baydin gunes@robots.ox.ac.uk

## Outline

This lecture:

- Derivatives in machine learning
- Review of essential concepts (what is a derivative, Jacobian, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:

- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)


## Derivatives and machine learning

## Derivatives in machine learning

"Backprop" and gradient descent are at the core of all recent advances Computer vision


Top-5 error rate for ImageNet (NVIDIA devblog)
Speech recognition/synthesis


Word error rates (Huang et al., 2014)


Faster R-CNN (Ren et al. 2015)
Machine translation



Google Neural Machine Translation System (GNMT)

## Derivatives in machine learning

"Backprop" and gradient descent are at the core of all recent advances Probabilistic programming (and modeling)


- Variational inference
- "Neural" density estimation
- Transformed distributions via bijectors
- Normalizing flows (Rezende \& Mohamed, 2015)
- Masked autoregressive flows (Papamakarios et al., 2017)


## Derivatives in machine learning

At the core of all: differentiable functions (programs) whose parameters are tuned by gradient-based optimization

$$
\begin{aligned}
& Q(\boldsymbol{w})=\sum_{i=1}^{N} Q_{i}(\boldsymbol{w}) \\
& \boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}-\eta \sum_{i=1}^{d} \nabla_{w} Q_{i}(\boldsymbol{w})
\end{aligned}
$$


(Ruder, 2017) http://ruder.io/optimizing-gradient-descent/

## Automatic differentiation

Execute differentiable functions (programs) via automatic differentiation
A word on naming:

- Differentiable programming, a generalization of deep learning (Olah, LeCun)
"Neural networks are just a class of differentiable functions"
- Automatic differentiation
- Algorithmic differentiation
- AD
- Autodiff
- Algodiff
- Autograd

Also remember:

- Backprop
- Backpropagation (backward propagation of errors)


## Essential concepts refresher

## Derivative

Function of a real variable $f: \mathbb{R} \rightarrow \mathbb{R}$
Sensitivity of function value w.r.t. a change in its argument (the instantaneous rate of change) Dependent Independent




Newton, c. 1665


Leibniz, c. 1675

## Derivative

## Function of a real variable $f: \mathbb{R} \rightarrow \mathbb{R}$

General Formulas Exponential and Logarithmic Functions

| 1. | $\frac{d}{d x} c=0$ | 7. |
| :--- | :--- | :--- |
| 2. | $\frac{d}{d x}[f(x) \mp g(x)]=f^{\prime}(x) \mp g^{\prime}(x)$ | 8. |
| 3. | $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x)+f(x)$ | $\frac{d}{d x} \ln (C\|f(x)\|)=\frac{d}{d x}[\ln (C)+\ln (f(x))]=\frac{f^{\prime}(x)}{f(x)}$ |
| 4. | $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{(g(x))^{2}}$ |  |
| 5. | $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$ |  |
| 6. | around 15 SUCh rules |  |

Note: the derivative is a linear operator, a.k.a. a higher-order function in programming languages $(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R})$


Newton, c. 1665


Leibniz, c. 1675

## Partial derivative

Function of several real variables $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
A derivative w.r.t. one independent variable, with others held constant

$$
z=f(x, y)=x^{2}+x y+y^{2}
$$

$$
\begin{aligned}
\text { "del" }^{2} \\
\begin{aligned}
\frac{\partial z}{\partial x} & =2 x+y \\
\frac{\partial z}{\partial y} & =2 y+x
\end{aligned}
\end{aligned}
$$



## Partial derivative

Function of several real variables $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
The gradient, given
$f(\mathbf{x}), \mathbf{x} \in \mathbf{R}^{n}$
is the vector of all partial derivatives

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

"nabla"
or "del"


Nabla is the higher-order function: $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$

## Total derivative

Function of several real variables $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
The derivative w.r.t. all variables (independent \& dependent)
$f(t, x(t), y(t))$
$\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$


Consider all partial derivatives simultaneously and accumulate all direct and indirect contributions (Important: will be useful later)

## Matrix calculus and machine learning

| Extension to multivariable functions |  | Scalar output | Vector output |
| :---: | :---: | :---: | :---: |
|  | Scalar input | $f: \mathbb{R} \rightarrow \mathbb{R}$ | $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ |
|  | Vector input | $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ <br> scalar field | $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ |

In machine learning, we construct (deep) compositions of

- $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, e.g., a neural network
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad$, e.g., a loss function, KL divergence, or log joint probability


## Matrix calculus and machine learning

Differential identities: matrix ${ }^{[1][5]}$

| Condition | Expression | Result (numerator layout) |
| :---: | :---: | :---: |
| A is not a function of $\mathbf{X}$ | $d(\mathbf{A})=$ | 0 |
| $a$ is not a function of $\mathbf{X}$ | $d(a \mathbf{X})=$ | $a d \mathbf{X}$ |
|  | $d(\mathbf{X}+\mathbf{Y})=$ | $d \mathbf{X}+d \mathbf{Y}$ |
|  | $d(\mathbf{X Y})=$ | $(d \mathbf{X}) \mathbf{Y}+\mathbf{X}(d \mathbf{Y})$ |
|  | $d(\mathbf{X} \otimes \mathbf{Y})=$ | $(d \mathbf{X}) \otimes \mathbf{Y}+\mathbf{X} \otimes(d \mathbf{Y})$ |
| (Kronecker product) | $d(\mathbf{X} \circ \mathbf{Y})=$ | $(d \mathbf{X}) \circ \mathbf{Y}+\mathbf{X} \circ(d \mathbf{Y})$ |
| (Hadamard product) | $d\left(\mathbf{x}^{\top}\right)=$ | $(d \mathbf{X})^{\top}$ |
|  | $d\left(\mathbf{X}^{\top}\right)=$ | $-\mathbf{X}^{-1}(d \mathbf{X}) \mathbf{X}^{-1}$ |
|  | $d\left(\mathbf{X}^{-1}\right)=$ | $(d \mathbf{X})^{\mathrm{H}}$ |
| (conjugate transpose) | $d\left(\mathbf{X}^{\mathrm{H}}\right)=$ |  |



And many, many more rules
Generalization to tensors (multi-dimensional arrays) for efficient batching, handling of sequences, channels in convolutions, etc.

## Matrix calculus and machine learning

Finally, two constructs relevant to machine learning: Jacobian and Hessian

$$
\begin{array}{cc}
\mathbf{J}_{i j}=\frac{\partial f_{i}}{\partial x_{j}} & \mathbf{H}_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \\
\mathbf{J}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \cdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\partial \mathbf{f}}{\partial x_{1}} & \cdots & \frac{\partial \mathbf{f}}{\partial x_{n}}
\end{array}\right]
\end{array} \quad \mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right], ~ \$
$$

$\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n}\right)$

$$
\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}\right)_{16}
$$

## How to compute derivatives

## Derivatives as code

We can compute the derivatives not just of mathematical functions, but of general programs (with control flow)

Derivatives as code


## Manual

You can see papers like this:
anisotropic CVT over a sound mathematical framework. In this article a new objective function is defined, and both this function and its gradient are derived in closed-form for surfaces and volumes. This method opens a wide range of possibilities, also described in the


Analytic derivatives are needed for theoretical insight

- analytic solutions, proofs
- mathematical analysis, e.g., stability of fixed points


## Symbolic differentiation

Symbolic computation with Mathematica, Maple, Maxima, and deep learning frameworks such as Theano

## Problem: expression swell

| Logistic map $I_{n+1}=4 I_{n}\left(1-I_{n}\right), I_{1}=x$ |  |  |
| :--- | :--- | :--- |
| $n$ | $l_{n}$ | $\frac{d}{d x} l_{n}$ |
| 1 | $x$ | 1 |
| 2 | $4 x(1-x)$ | $4(1-x)-4 x$ |
| 3 | $16 x(1-x)(1-2 x)^{2}$ | $16(1-x)(1-2 x)^{2}-16 x(1-2 x)^{2}-$ <br>  <br>  <br> 4 |
|  | $64 x(1-x)(1-2 x)^{2}$ |  |
|  | $\left(1-8 x+8 x^{2}\right)^{2}$ | $128 x(1-x)(1-2 x)$ |
|  |  | $\left.8 x+8 x^{2}\right)+64(1-x)(1-2 x)^{2}(1-8 x+$ |
|  |  | $\left.8 x^{2}\right)^{2}-64 x(1-2 x)^{2}\left(1-8 x+8 x^{2}\right)^{2}-$ |
| $256 x(1-x)(1-2 x)\left(1-8 x+8 x^{2}\right)^{2}$ |  |  |

## Symbolic differentiation

Symbolic computation with Mathematica, Maple, Maxima, and deep learning frameworks such as Theano Problem: expression swell

Graph optimization (e.g., in Theano)

| Logistic map $I_{n+1}=4 I_{n}\left(1-I_{n}\right), I_{1}=x$ |  |  | 1 |
| :---: | :---: | :---: | :---: |
| $n$ | $l_{n}$ | $\frac{d}{d x} l_{n}$ | $\frac{d}{d x} l_{n}$ (Simplified form) |
| 1 | $x$ | 1 | 1 |
| 2 | $4 x(1-x)$ | $4(1-x)-4 x$ | $4-8 x$ |
| 3 | $16 x(1-x)(1-2 x)^{2}$ | $\begin{aligned} & 16(1-x)(1-2 x)^{2}-16 x(1-2 x)^{2}- \\ & 64 x(1-x)(1-2 x) \end{aligned}$ | $16\left(1-10 x+24 x^{2}-16 x^{3}\right)$ |
| 4 | $\begin{aligned} & 64 x(1-x)(1-2 x)^{2} \\ & \left(1-8 x+8 x^{2}\right)^{2} \end{aligned}$ | $\begin{aligned} & 128 x(1-x)(-8+16 x)(1-2 x)^{2}(1- \\ & \left.8 x+8 x^{2}\right)+64(1-x)(1-2 x)^{2}(1-8 x+ \\ & \left.8 x^{2}\right)^{2}-64 x(1-2 x)^{2}\left(1-8 x+8 x^{2}\right)^{2}- \\ & 256 x(1-x)(1-2 x)\left(1-8 x+8 x^{2}\right)^{2} \end{aligned}$ | $\begin{aligned} & 64\left(1-42 x+504 x^{2}-2640 x^{3}+\right. \\ & \left.7040 x^{4}-9984 x^{5}+7168 x^{6}-2048 x^{7}\right) \end{aligned}$ |

## Symbolic differentiation

Problem: only applicable to closed-form mathematical functions
You can find the derivative of

```
In [1]: def f(x):
    return 64 *(1-x) *(1-2*x)^2 *(1-8*x+8*x*x)^2
```

but not of

```
In [2]: def f(x,n):
    if n == 1:
        return x
    else:
            v = x
    for i in range(1,n):
                v = 4*v*(1-v)
            return v
```

Symbolic graph builders such as Theano and TensorFlow have limited, unintuitive control flow, loops, recursion

## Numerical differentiation

Finite difference approximation of $\nabla f, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$\frac{\partial f(\mathbf{x})}{\partial x_{i}} \approx \frac{f\left(\mathbf{x}+h \mathbf{e}_{i}\right)-f(\mathbf{x})}{h}, \quad 0<h \ll 1$
Problem: needs to be evaluated $n$ times, once with each standard basis vector $\mathbf{e}_{i} \in \mathbb{R}^{n}$

Problem: we must select $h$ and we face approximation errors

$h$

$$
\begin{aligned}
E\left(h, x^{*}\right) & \left.=\left|\frac{f\left(x^{*}+h\right)-f\left(x^{*}\right)}{h}-\frac{d}{d x} f(x)\right|_{x^{*}} \right\rvert\, \\
f(x) & =64 x(1-x)(1-2 x)^{2}\left(1-8 x+8 x^{2}\right)^{2} \\
x^{*} & =0.2
\end{aligned}
$$

## Numerical differentiation

Finite difference approximation of $\nabla f, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$\frac{\partial f(\mathbf{x})}{\partial x_{i}} \approx \frac{f\left(\mathbf{x}+h \mathbf{e}_{i}\right)-f(\mathbf{x})}{h}, \quad 0<h \ll 1$
Better approximations exist:

- Higher-order finite differences
e.g., center difference:

$$
\frac{\partial f(\mathbf{x})}{\partial x_{i}}=\frac{f\left(\mathbf{x}+h \mathbf{e}_{i}\right)-f\left(\mathbf{x}-h \mathbf{e}_{i}\right)}{2 h}+O\left(h^{2}\right)
$$

- Richardson extrapolation
- Differential quadrature

These increase rapidly in complexity and never completely eliminate the error

$h$

$$
\begin{aligned}
E\left(h, x^{*}\right) & \left.=\left|\frac{f\left(x^{*}+h\right)-f\left(x^{*}\right)}{h}-\frac{d}{d x} f(x)\right|_{x^{*}} \right\rvert\, \\
f(x) & =64 x(1-x)(1-2 x)^{2}\left(1-8 x+8 x^{2}\right)^{2} \\
x^{*} & =0.2
\end{aligned}
$$

Still extremely useful as a quick check of our gradient implementations Good to learn:

$$
\frac{\partial f(\mathbf{x})}{\partial x_{i}}=\frac{f\left(\mathbf{x}+h \mathbf{e}_{i}\right)-f\left(\mathbf{x}-h \mathbf{e}_{i}\right)}{2 h}+O\left(h^{2}\right)
$$

レIIEIEIItIal Yuduldule

These increase rapidly in complexity
and never completely eliminate the error

## Automatic differentiation

If we don't need analytic derivative expressions, we can evaluate a gradient exactly with only one forward and one reverse execution
$f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$
In machine learning, this is known as
backpropagation or "backprop"

- Automatic differentiation is more than backprop
- Or, backprop is a specialized reverse mode automatic differentiation
- We will come back to this shortly

nature<br>International journal of science

Nature 323, 533-536 (9 October 1986)

## Learning representations <br> by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton $\dagger$ \& Ronald J. Williams*

* Institute for Cognitive Science, C.015, University of California, San Diego, La Jolla, California 92093, USA
$\dagger$ Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the waiahte of the ennmartinns in the matworte se se to minimize o

## Backprob or automatic differentiation?

| < 1960s | > 1970s | 1980s |
| :---: | :---: | :---: |
| Precursors | Linnainmaa, 1970, 1976 | Speelpenning, 1980 |
|  | Backpropagation | Automatic reverse mode |
| Kelley, 1960 |  |  |
| Bryson, 1961 | Dreyfus, 1973 | Werbos, 1982 |
| Pontryagin et al., 1961 | Control parameters | First NN-specific backprop |
| Dreyfus, 1962 |  |  |
|  | Werbos, 1974 | Parker, 1985 |
| Wengert, 1964 | Reverse mode |  |
| Forward mode |  | LeCun, 1985 |
|  |  | Rumelhart, Hinton, Williams, 1986 Revived backprop |

## Griewank, 1989

Revived reverse mode

Recommended reading:

Griewank, A., 2012. Who Invented the Reverse Mode of Differentiation?
Documenta Mathematica, Extra Volume ISMP, pp.389-400.
Schmidhuber, J., 2015. Who Invented Backpropagation?
http://people.idsia.ch/~juergen/who-invented-backpropagation.html
Rumelhart, Hinton, Williams, 1986
Revived backprop

Griewank, 1989
Revived reverse mo de

Automatic differentiation

## Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies


## Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

$$
f(a, b)=\log (a b)
$$

$$
\nabla f(a, b)=(1 / a, 1 / b)
$$

## Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$



## Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned} \begin{aligned}
& 1.791=f(2,3)
\end{aligned}
$$



## Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \quad \text { return } d \\
& 1.791=f(2,3) \\
& {[0.5,0.333]=f^{\prime}(2,3)}
\end{aligned}
$$



## Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \quad \text { return } d \\
& 1.791=f(2,3) \\
& {[0.5,0.333]=f^{\prime}(2,3)} \\
& \nabla f(a, b)=(1 / a, 1 / b)
\end{aligned}
$$



## Automatic differentiation

Two main flavors

Forward mode


Reverse mode (a.k.a. backprop)


## Nested combinations

(higher-order derivatives, Hessian-vector products, etc.)

- Forward-on-reverse
- Reverse-on-forward


## What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc. until we are left with the linear trace of execution

```
f(a, b):
    c = a * b
    if c > 0:
        d = log(c)
    else:
        d = sin(c)
    return d
```


## What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc. until we are left with the linear trace of execution

$$
\begin{aligned}
& f(a=2, b=3): \\
& c=a * b=6 \\
& d=\log (c)=1.791
\end{aligned}
$$


return d

## What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc. until we are left with the linear trace of execution

$$
\begin{aligned}
& f(a=2, b=-1): \\
& c=a * b=-2 \\
& d=\log (c) \\
& d=\sin (c)=-0.909 \\
& \text { return } d
\end{aligned}
$$



## What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc. until we are left with the linear trace of execution

$$
\begin{aligned}
f(\mathrm{a} & =2, \mathrm{~b}=-1): \\
c & =a * b=-2
\end{aligned}
$$

$$
\begin{aligned}
& d=\sin (c)=-0.909 \\
& \text { return } d
\end{aligned}
$$



## Forward mode

```
f(x1, x2):
    v1 = x1 * x2
    v2 = log(x2)
    y1 = sin(v1)
    y2 = v1 + v2
    return (y1, y2)
```



## Forward mode

```
f(x1, x2):
    v1 = x1 * x2
    v2 = log(x2)
    y1 = sin(v1)
    y2 = v1 + v2
    return (y1, y2)
```


$f(2,3)$

## Forward mode

```
f(x1, x2):
    v1 = x1 * x2
    v2 = log(x2)
    y1 = sin(v1)
    y2 = v1 + v2
    return (y1, y2)
```

$f(2,3)$

## Forward mode

```
f(x1, x2):
    v1 = x1 * x2
    v2 = log(x2)
    y1 = sin(v1)
    y2 = v1 + v2
    return (y1, y2)
```

$f(2,3)$

## Forward mode

```
f(x1, x2):
    v1 = x1 * x2
    v2 = log(x2)
    y1 = sin(v1)
    y2 = v1 + v2
    return (y1, y2)
```


$f(2,3)$

$$
\frac{\partial x_{1}}{\partial x_{1}}=1
$$

## Forward mode

```
f(x1, x2):
    v1 = x1 * x2
    v2 = log(x2)
    y1 = sin(v1)
    y2 = v1 + v2
    return (y1, y2)
```

$f(2,3)$

$$
\frac{\partial x_{2}}{\partial x_{1}}=0
$$

## Forward mode

```
\[
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
\]
```


$f(2,3)$

$$
\frac{\partial v_{1}}{\partial x_{1}}=
$$

## Forward mode

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial v_{1}}{\partial x_{1}}=\frac{\partial x_{1}}{\partial x_{1}} x_{2}+x_{1} \frac{\partial x_{2}}{\partial x_{1}}=x_{2}
$$

## Forward mode

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial v_{2}}{\partial x_{1}}=
$$

## Forward mode

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial v_{2}}{\partial x_{1}}=\frac{1}{x_{2}} \frac{\partial x_{2}}{\partial x_{1}}=0
$$

## Forward mode

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial y_{1}}{\partial x_{1}}=
$$

## Forward mode

```
\[
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
\]
```

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial y_{1}}{\partial x_{1}}=\cos \left(v_{1}\right) \frac{\partial v_{1}}{\partial x_{1}}
$$

## Forward mode

```
\[
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
\]
```

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial y_{2}}{\partial x_{1}}=
$$

## Forward mode

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial y_{2}}{\partial x_{1}}=\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{1}}
$$

## Forward mode

In general, forward mode evaluates a Jacobian-vector product $\mathbf{J}_{f}(\mathbf{x}) \mathbf{v}$

So we evaluated:

$$
\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}} \\
\frac{\partial y_{2}}{\partial x_{1}}
\end{array}\right]
$$



## Forward mode

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
In general, forward mode evaluates a Jacobian-vector product $\mathbf{J}_{f}(\mathbf{x}) \mathbf{v}$

So we evaluated:

$$
\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}} \\
\frac{\partial y_{2}}{\partial x_{1}}
\end{array}\right]
$$

Can be any $\mathbf{v} \in \mathbb{R}^{2}$ not only unit vectors


## Forward mode

In general, forward mode evaluates a Jacobian-vector product $\mathbf{J}_{f}(\mathbf{x}) \mathbf{v}$

So we evaluated:

$$
\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}} \\
\frac{\partial y_{2}}{\partial x_{1}}
\end{array}\right]
$$

Can be any $\mathbf{v} \in \mathbb{R}^{2}$ not only unit vectors

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ this is a directional derivative $\nabla f(\mathbf{x}) \cdot \mathbf{v}$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& \mathrm{v} 1=\mathrm{x} 1 * \mathrm{x} 2 \\
& \mathrm{v} 2=\log (\mathrm{x} 2) \\
& \mathrm{y} 1=\sin (\mathrm{v} 1) \\
& \mathrm{y} 2=\mathrm{v} 1+\mathrm{v} 2 \\
& \text { return }(\mathrm{y} 1, \mathrm{y} 2)
\end{aligned}
$$



$$
f(2,3)
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



$$
f(2,3)
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



$$
f(2,3)
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& \mathrm{v} 1=x 1 * x 2 \\
& \mathrm{v} 2=\log (\mathrm{x} 2) \\
& \mathrm{y} 1=\sin (\mathrm{v} 1) \\
& \mathrm{y} 2=\mathrm{v} 1+\mathrm{v} 2 \\
& \text { return }(\mathrm{y} 1, \mathrm{y} 2)
\end{aligned}
$$



Reverse mode
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$

$$
f(2,3)
$$

Primals: independent $\rightarrow$ dependent
Derivatives (adjoints): independent $\leftarrow$ dependent

Reverse mode
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$

$$
f(2,3)
$$

Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent


Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



$$
f(2,3)
$$

$$
\frac{\partial y_{1}}{\partial y_{1}}=1
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



$$
f(2,3)
$$

$$
\frac{\partial y_{1}}{\partial y_{2}}=0
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& \mathrm{v} 1=\mathrm{x} 1 * \mathrm{x} 2 \\
& \mathrm{v} 2=\log (\mathrm{x} 2) \\
& \mathrm{y} 1=\sin (\mathrm{v} 1) \\
& \mathrm{y} 2=\mathrm{v} 1+\mathrm{v} 2 \\
& \text { return }(\mathrm{y} 1, \mathrm{y} 2)
\end{aligned}
$$

$$
f(2,3)
$$

$$
\frac{\partial y_{1}}{\partial v_{1}}=
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



$$
f(2,3)
$$

$$
\frac{\partial y_{1}}{\partial v_{1}}=\cos (v 1) \frac{\partial y_{1}}{\partial y_{1}}
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& \mathrm{v} 1=\mathrm{x} 1 * \mathrm{x} 2 \\
& \mathrm{v} 2=\log (\mathrm{x} 2) \\
& \mathrm{y} 1=\sin (\mathrm{v} 1) \\
& \mathrm{y} 2=\mathrm{v} 1+\mathrm{v} 2 \\
& \text { return }(\mathrm{y} 1, \mathrm{y} 2)
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial y_{1}}{\partial v_{2}}=
$$

Reverse mode
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$

$$
f(2,3)
$$

Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent


$$
\frac{\partial y_{1}}{\partial v_{2}}=0
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$

$f(2,3)$

$$
\frac{\partial y_{1}}{\partial x_{1}}=
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



$$
f(2,3)
$$

$$
\frac{\partial y_{1}}{\partial x_{1}}=\frac{\partial v_{1}}{\partial x_{1}} \frac{\partial y_{1}}{\partial v_{1}}=x_{2} \frac{\partial y_{1}}{\partial v_{1}}
$$

Reverse mode
Primals: independent $\rightarrow$ dependent Derivatives (adjoints): independent $\leftarrow$ dependent

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$



$$
f(2,3)
$$

$$
\frac{\partial y_{1}}{\partial x_{2}}=
$$

## Reverse mode

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\begin{aligned}
& f(x 1, x 2): \\
& v 1=x 1 * x 2 \\
& v 2=\log (x 2) \\
& y 1=\sin (v 1) \\
& y 2=v 1+v 2 \\
& \text { return }(y 1, y 2)
\end{aligned}
$$

$$
f(2,3)
$$



$$
\frac{\partial y_{1}}{\partial x_{2}}=\frac{\partial v_{1}}{\partial x_{2}} \frac{\partial y_{1}}{\partial v_{1}}+\frac{\partial v_{2}}{\partial x_{2}} \frac{\partial y_{1}}{\partial v_{2}}=x_{1} \frac{\partial y_{1}}{\partial v_{1}}
$$

## Reverse mode

In general, forward mode evaluates a transposed Jacobian-vector product

$$
\mathbf{J}_{f}^{\top}(\mathbf{x}) \mathbf{v}
$$

So we evaluated:

$$
\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}} \\
\frac{\partial y_{1}}{\partial x_{2}}
\end{array}\right]
$$



## Reverse mode

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
In general, reverse mode evaluates a transposed Jacobian-vector product

$$
\mathbf{J}_{f}^{\top}(\mathbf{x}) \mathbf{v}
$$

So we evaluated:

> For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ this is the gradient $\nabla f(\mathbf{x})$

$$
\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}} \\
\frac{\partial y_{1}}{\partial x_{2}}
\end{array}\right]
$$

## Forward vs reverse summary

In the extreme $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ use forward mode to evaluate

$$
\left(\frac{\partial f_{1}}{\partial x}, \cdots, \frac{\partial f_{m}}{\partial x}\right)
$$

In the extreme $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ use reverse mode to evaluate

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)
$$

## Forward vs reverse summary

In the extreme $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ use forward mode to evaluate

$$
\left(\frac{\partial f_{1}}{\partial x}, \cdots, \frac{\partial f_{m}}{\partial x}\right)
$$

In the extreme $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ use reverse mode to evaluate

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)
$$

In general $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the Jacobian $\mathbf{J}_{f}(\mathbf{x}) \in \mathbb{R}^{m \times n}$ can be evaluated in

- $O(n$ time $(\mathbf{f}))$ with forward mode
- $O(m$ time $(\mathbf{f}))$ with reverse mode

Reverse performs better when $n \gg m$

## Backprop through normal PDF

## Backprop through normal PDF

$$
f(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad \frac{\partial f}{\partial x}=\frac{(\mu-x) e^{-(\mu-x)^{2}}}{\sqrt{2 \pi \sigma^{2}}} \frac{\partial f}{\partial \sigma^{2}} \quad \frac{\partial(x-\mu) e^{-\frac{(\mu-x)^{2}}{2)^{2}}}}{\sqrt{2 \pi \sigma^{3}}}
$$



## Summary

## Summary

This lecture:

- Derivatives in machine learning
- Review of essential concepts (what is a derivative, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:

- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)


## References

Baydin, A.G., Pearlmutter, B.A., Radul, A.A. and Siskind, J.M., 2017. Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research (JMLR), 18(153), pp.1-153.

Baydin, Atılım Güneş, Barak A. Pearlmutter, and Jeffrey Mark Siskind. 2016. "Tricks from Deep Learning." In 7th International Conference on Algorithmic Differentiation, Christ Church Oxford, UK, September 12-15, 2016.

Baydin, Atılım Güneş, Barak A. Pearlmutter, and Jeffrey Mark Siskind. 2016. "DiffSharp: An AD Library for .NET Languages." In 7th International Conference on Algorithmic Differentiation, Christ Church Oxford, UK, September 12-15, 2016.

Baydin, Atılım Güneş, Robert Cornish, David Martínez Rubio, Mark Schmidt, and Frank Wood. 2018. "Online Learning Rate Adaptation with Hypergradient Descent." In Sixth International Conference on Learning Representations (ICLR), Vancouver, Canada, April 30 - May 3, 2018.

Griewank, A. and Walther, A., 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation (Vol. 105). SIAM.

Nocedal, J. and Wright, S.J., 1999. Numerical Optimization. Springer.

## Extra slides

## Forward mode

## Forward mode

```
f(a, b):
    c = a * b
    d = log(c)
    return d
```



## Forward mode

```
f(a, b):
    c = a * b
    d = log(c)
    return d
```


$f(2,3)$

## Forward mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$$
f(2,3)
$$

$f(2,3)$


## Forward mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$$
f(2,3)
$$

$f(2,3)$


## Forward mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial a}{\partial a}=1
$$

## Forward mode

$f(a, b):$
$c=a * b$
d $=\log (c)$
return d
$f(2,3)$

$\frac{\partial b}{\partial a}=0$

## Forward mode



## Forward mode



## Forward mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$$
f(2,3)
$$


$\frac{\partial d}{\partial a}=$

## Forward mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$$
f(2,3)
$$


$\frac{\partial d}{\partial a}=\frac{1}{c} \frac{\partial c}{\partial a}$

## Forward mode



In general, forward mode evaluates a Jacobian-vector product $\mathbf{J}_{f}(\mathbf{x}) \mathbf{v}$
We evaluated the partial derivative $\frac{\partial d}{\partial a}$ with $\mathbf{x}=(a, b), \mathbf{v}=(1,0)$

```
f(a, b):
    c = a * b
    d = log(c)
    return d
```



```
f(a, b):
    c = a * b
    d = log(c)
    return d
```


$f(2,3)$

## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$f(2,3)$


## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$$
f(2,3)
$$



## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$f(2,3)$


## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$f(2,3)$


## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial d}{\partial d}=1
$$

## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial d}{\partial c}=
$$

## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial d}{\partial c}=\frac{1}{c} \frac{\partial d}{\partial d}
$$

## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial d}{\partial a}=
$$

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$


$f(2,3)$

$$
\frac{\partial d}{\partial a}=\frac{\partial c}{\partial a} \frac{\partial d}{\partial c}=b \frac{\partial d}{\partial c}
$$

## Reverse mode

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$f(2,3)$


$$
\frac{\partial d}{\partial b}=
$$

$$
\begin{aligned}
& f(a, b): \\
& c=a * b \\
& d=\log (c) \\
& \text { return } d
\end{aligned}
$$

$$
f(2,3)
$$



$$
\frac{\partial d}{\partial b}=\frac{\partial c}{\partial b} \frac{\partial d}{\partial c}=a \frac{\partial d}{\partial c}
$$

## Reverse mode



In general, reverse mode evaluates a transposed Jacobian-vector product $\mathbf{J}_{f}^{\top}(\mathbf{x}) \mathbf{v}$ We evaluated the gradient $\nabla f(a, b)=\left(\frac{\partial d}{\partial a}, \frac{\partial d}{\partial b}\right)$ with $\mathbf{x}=(a, b), \mathbf{v}=(1)$

## Reverse mode

```
import torch
def f(x):
    c = x[0] * x[1]
    if c>0:
        d = torch.log(c)
    else:
        d = torch.sin(c)
    return d
x = torch.tensor([2., 3.], requires_grad=True)
y = f(x)
y.backward()
print(y)
print(x.grad)
```


tensor(1.7918, grad_fn=<LogBackward>)
tensor([0.5000, 0.3333])
In general, reverse mode evaluates a transposed Jacobian-vector product $\mathbf{J}_{f}^{\top}(\mathbf{x}) \mathbf{v}$ We evaluated the gradient $\nabla f(a, b)=\left(\frac{\partial d}{\partial a}, \frac{\partial d}{\partial b}\right)$ with $\mathbf{x}=(a, b), \mathbf{v}=(1)$

