
Automatic Differentiation (1)

Slides Prepared By:

Atılım Güneş Baydin
gunes@robots.ox.ac.uk

2

Outline

This lecture:
- Derivatives in machine learning
- Review of essential concepts (what is a derivative, Jacobian, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:
- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)

Derivatives and
machine learning

3

4

Derivatives in machine learning
“Backprop” and gradient descent are at the core of all recent advances
Computer vision

NVIDIA DRIVE PX 2 segmentationTop-5 error rate for ImageNet (NVIDIA devblog) Faster R-CNN (Ren et al. 2015)

Speech recognition/synthesis

Word error rates (Huang et al., 2014) Google Neural Machine Translation System (GNMT)

Machine translation

5

Derivatives in machine learning
“Backprop” and gradient descent are at the core of all recent advances

Probabilistic programming (and modeling)

Pyro ProbTorch

Edward TensorFlow Probability

- Variational inference
- “Neural” density estimation

- Transformed distributions via bijectors
- Normalizing flows (Rezende & Mohamed, 2015)
- Masked autoregressive flows (Papamakarios et al., 2017)

(2017) (2017)

(2016) (2018)

6

Derivatives in machine learning
At the core of all: differentiable functions (programs) whose parameters are
tuned by gradient-based optimization

(Ruder, 2017) http://ruder.io/optimizing-gradient-descent/

7

Automatic differentiation
Execute differentiable functions (programs) via automatic differentiation

A word on naming:
- Differentiable programming, a generalization of deep learning (Olah, LeCun)

“Neural networks are just a class of differentiable functions”
- Automatic differentiation
- Algorithmic differentiation
- AD
- Autodiff
- Algodiff
- Autograd

Also remember:
- Backprop
- Backpropagation (backward propagation of errors)

Essential concepts
refresher

8

9

Derivative
Function of a real variable

Sensitivity of function value w.r.t.
a change in its argument
(the instantaneous rate of change)

Newton, c. 1665

Leibniz, c. 1675
Leibniz Lagrange Newton

Dependent Independent

10

Derivative
Function of a real variable

Newton, c. 1665

Leibniz, c. 1675

around 15 such rules

…

Note: the derivative is a linear operator, a.k.a. a higher-order
function in programming languages

11

Partial derivative
Function of several real variables

A derivative w.r.t. one independent variable,
with others held constant

“del”

12

Partial derivative
Function of several real variables

The gradient, given

is the vector of all partial derivatives

“nabla”
or “del”

Nabla is the higher-order function:

points to the direction with the largest rate of
change

13

Total derivative
Function of several real variables

The derivative w.r.t. all variables
(independent & dependent)

Consider all partial derivatives simultaneously and accumulate all direct and
indirect contributions (Important: will be useful later)

14

Matrix calculus and machine learning
Extension to
multivariable
functions

Scalar output Vector output

Scalar input

Vector input

scalar field vector field

In machine learning, we construct (deep) compositions of
- , e.g., a neural network
- , e.g., a loss function, KL divergence, or log joint probability

15

Matrix calculus and machine learning

Generalization to tensors (multi-dimensional arrays) for efficient
batching, handling of sequences, channels in convolutions, etc.

And many, many more rules

16

Finally, two constructs relevant to machine learning: Jacobian and Hessian

Matrix calculus and machine learning

How to compute derivatives

17

18

We can compute the derivatives not just of
mathematical functions, but of general programs
(with control flow)

Derivatives
as code

19

Derivatives
as code

20

Manual

Analytic derivatives are needed for theoretical insight
- analytic solutions, proofs
- mathematical analysis, e.g., stability of fixed points

Unnecessary when we just need derivative evaluations for optimization

You can see papers like this:

21

Symbolic differentiation
Symbolic computation with Mathematica, Maple, Maxima,
and deep learning frameworks such as Theano
Problem: expression swell

22

Symbolic computation with Mathematica, Maple, Maxima,
and deep learning frameworks such as Theano
Problem: expression swell

Symbolic differentiation

Graph optimization
(e.g., in Theano)

Symbolic graph builders such as Theano and TensorFlow
have limited, unintuitive control flow, loops, recursion

Problem: only applicable to closed-form mathematical functions

You can find the derivative of

but not of

Symbolic differentiation

24

Finite difference approximation of ,

Problem: we must select and
we face approximation errors

Problem: needs to be evaluated times,
once with each standard basis vector

Numerical differentiation

25

Finite difference approximation of ,

Better approximations exist:
- Higher-order finite differences

e.g., center difference:

- Richardson extrapolation
- Differential quadrature

These increase rapidly in complexity
and never completely eliminate the error

Numerical differentiation

26

Finite difference approximation of ,

Better approximations exist:
- Higher-order finite differences

e.g., center difference:

- Richardson extrapolation
- Differential quadrature

These increase rapidly in complexity
and never completely eliminate the error

Numerical differentiation

Still extremely useful as a quick check of our gradient implementations
Good to learn:

27

If we don’t need analytic derivative expressions, we can
evaluate a gradient exactly with only one forward and one reverse execution

In machine learning, this is known as
backpropagation or “backprop”

- Automatic differentiation is more than
backprop

- Or, backprop is a specialized reverse mode
automatic differentiation

- We will come back to this shortly

Nature 323, 533–536 (9 October 1986)

Automatic differentiation

Backprob or automatic
differentiation?

28

29

1960s 1970s 1980s

Precursors

Kelley, 1960
Bryson, 1961
Pontryagin et al., 1961
Dreyfus, 1962

Wengert, 1964
Forward mode

Linnainmaa, 1970, 1976
Backpropagation

Dreyfus, 1973
Control parameters

Werbos, 1974
Reverse mode

Speelpenning, 1980
Automatic reverse mode

Werbos, 1982
First NN-specific backprop

Parker, 1985

LeCun, 1985

Rumelhart, Hinton, Williams, 1986
Revived backprop

Griewank, 1989
Revived reverse mode

1960s 1970s 1980s

Precursors

Kelley, 1960
Bryson, 1961
Pontryagin et al., 1961
Dreyfus, 1962

Wengert, 1964
Forward mode

Linnainmaa, 1970, 1976
Backpropagation

Dreyfus, 1973
Control parameters

Werbos, 1974
Reverse mode

Speelpenning, 1980
Automatic reverse mode

Werbos, 1982
First NN-specific backprop

Parker, 1985

LeCun, 1985

Rumelhart, Hinton, Williams, 1986
Revived backprop

Griewank, 1989
Revived reverse mode 30

Recommended reading:

Griewank, A., 2012. Who Invented the Reverse Mode of Differentiation?
Documenta Mathematica, Extra Volume ISMP, pp.389-400.

Schmidhuber, J., 2015. Who Invented Backpropagation?
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Automatic differentiation

31

32

Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

33

Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

34

Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

 c = a * b

 d = log(c)

 return d log*

a

b

c
d

35

Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

 c = a * b

 d = log(c)

 return d

1.791 = f(2, 3)

log*

a

b

c
d

3

2
6

1.791

primal

36

Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

 c = a * b

 d = log(c)

 return d

1.791 = f(2, 3)

[0.5, 0.333] = f’(2, 3)

log*

a

b

c
d

3

2
6

1.791
0.5

0.333

0.166 1

derivative
tangent, adjoint
“gradient”

primal

37

Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

 c = a * b

 d = log(c)

 return d

1.791 = f(2, 3)

[0.5, 0.333] = f’(2, 3)

log*

a

b

c
d

3

2
6

1.791
0.5

0.333

0.166 1

derivative
tangent, adjoint
“gradient”

primal

38

Two main flavors

Forward mode Reverse mode (a.k.a. backprop)

Nested combinations
(higher-order derivatives, Hessian–vector products, etc.)

- Forward-on-reverse
- Reverse-on-forward
- ...

Primals
Derivatives

 Primals

Derivatives

Automatic differentiation

(Tangents)
(Adjoints)

39

What happens to control flow?

f(a, b):

 c = a * b

 if c > 0:

 d = log(c)

 else:

 d = sin(c)

 return d

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

40

What happens to control flow?

f(a = 2, b = 3):

 c = a * b = 6

 if c > 0:

 d = log(c) = 1.791

 else:

 d = sin(c)

 return d

log*

a

b

c
d

3

2
6

1.791

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

41

What happens to control flow?

f(a = 2, b = -1):

 c = a * b = -2

 if c > 0:

 d = log(c)

 else:

 d = sin(c) = -0.909

 return d

sin*

a

b

c
d

-1

2
-2

-0.909

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

42

What happens to control flow?

f(a = 2, b = -1):

 c = a * b = -2

 if c > 0:

 d = log(c)

 else:

 d = sin(c) = -0.909

 return d

sin*

a

b

c
d

-1

2
-2

-0.909

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

A directed acyclic graph (DAG)

Topological ordering

43

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

sin*x1 y1

 Primals: independent dependent
Derivatives (tangents): independent dependent

log +x2

v2

y2

v1

44

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1

 Primals: independent dependent
Derivatives (tangents): independent dependent

45

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

 Primals: independent dependent
Derivatives (tangents): independent dependent

46

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

 Primals: independent dependent
Derivatives (tangents): independent dependent

47

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

 Primals: independent dependent
Derivatives (tangents): independent dependent

48

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

 Primals: independent dependent
Derivatives (tangents): independent dependent

49

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

 Primals: independent dependent
Derivatives (tangents): independent dependent

50

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

 Primals: independent dependent
Derivatives (tangents): independent dependent

51

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

 Primals: independent dependent
Derivatives (tangents): independent dependent

52

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

 Primals: independent dependent
Derivatives (tangents): independent dependent

53

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

 Primals: independent dependent
Derivatives (tangents): independent dependent

54

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

 Primals: independent dependent
Derivatives (tangents): independent dependent

55

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

 Primals: independent dependent
Derivatives (tangents): independent dependent

56

Forward mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

3

 Primals: independent dependent
Derivatives (tangents): independent dependent

57

Forward mode

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

3

In general, forward mode evaluates
a Jacobian–vector product

So we evaluated:

 Primals: independent dependent
Derivatives (tangents): independent dependent

58

Forward mode

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

3

In general, forward mode evaluates
a Jacobian–vector product

So we evaluated:

Can be any
not only unit vectors

 Primals: independent dependent
Derivatives (tangents): independent dependent

For this is a
directional derivative

59

Forward mode

In general, forward mode evaluates
a Jacobian–vector product

So we evaluated:

Can be any
not only unit vectors

 Primals: independent dependent
Derivatives (tangents): independent dependent

60

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

sin*x1 y1

log +x2

v2

y2

v1

 Primals: independent dependent
Derivatives (adjoints): independent dependent

61

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1

 Primals: independent dependent
Derivatives (adjoints): independent dependent

62

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

 Primals: independent dependent
Derivatives (adjoints): independent dependent

63

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

 Primals: independent dependent
Derivatives (adjoints): independent dependent

64

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

 Primals: independent dependent
Derivatives (adjoints): independent dependent

65

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

 Primals: independent dependent
Derivatives (adjoints): independent dependent

66

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

 Primals: independent dependent
Derivatives (adjoints): independent dependent

67

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

 Primals: independent dependent
Derivatives (adjoints): independent dependent

68

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

 Primals: independent dependent
Derivatives (adjoints): independent dependent

69

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

 Primals: independent dependent
Derivatives (adjoints): independent dependent

70

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

 Primals: independent dependent
Derivatives (adjoints): independent dependent

71

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

 Primals: independent dependent
Derivatives (adjoints): independent dependent

72

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

 Primals: independent dependent
Derivatives (adjoints): independent dependent

73

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

 Primals: independent dependent
Derivatives (adjoints): independent dependent

74

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

 Primals: independent dependent
Derivatives (adjoints): independent dependent

75

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

 Primals: independent dependent
Derivatives (adjoints): independent dependent

76

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

 Primals: independent dependent
Derivatives (adjoints): independent dependent

77

Reverse mode

f(x1, x2):

 v1 = x1 * x2

 v2 = log(x2)

 y1 = sin(v1)

 y2 = v1 + v2

 return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

1.920

 Primals: independent dependent
Derivatives (adjoints): independent dependent

78

Reverse mode

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

1.920

In general, forward mode evaluates a
transposed Jacobian–vector product

So we evaluated:

 Primals: independent dependent
Derivatives (adjoints): independent dependent

79

Reverse mode

In general, reverse mode evaluates a
transposed Jacobian–vector product

So we evaluated:
For this is
the gradient

 Primals: independent dependent
Derivatives (adjoints): independent dependent

80

Forward vs reverse summary
In the extreme
use forward mode to evaluate

In the extreme
use reverse mode to evaluate

81

Forward vs reverse summary
In the extreme
use forward mode to evaluate

In the extreme
use reverse mode to evaluate

In general the Jacobian can be evaluated in
- with forward mode
- with reverse mode

Reverse performs better when

Backprop through
normal PDF

82

83

Backprop through normal PDF

-x

µ

σ

·2 *

·2 /

*

2 π

- exp

sqrt 1/·

* f
0.5

0

1

Summary

84

85

Summary

This lecture:
- Derivatives in machine learning
- Review of essential concepts (what is a derivative, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:
- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)

86

References
Baydin, A.G., Pearlmutter, B.A., Radul, A.A. and Siskind, J.M., 2017. Automatic differentiation in machine learning: a survey.
Journal of Machine Learning Research (JMLR), 18(153), pp.1-153.

Baydin, Atılım Güneş, Barak A. Pearlmutter, and Jeffrey Mark Siskind. 2016. “Tricks from Deep Learning.” In 7th International
Conference on Algorithmic Differentiation, Christ Church Oxford, UK, September 12–15, 2016.

Baydin, Atılım Güneş, Barak A. Pearlmutter, and Jeffrey Mark Siskind. 2016. “DiffSharp: An AD Library for .NET Languages.” In 7th
International Conference on Algorithmic Differentiation, Christ Church Oxford, UK, September 12–15, 2016.

Baydin, Atılım Güneş, Robert Cornish, David Martínez Rubio, Mark Schmidt, and Frank Wood. 2018. “Online Learning Rate
Adaptation with Hypergradient Descent.” In Sixth International Conference on Learning Representations (ICLR), Vancouver,
Canada, April 30 – May 3, 2018.

Griewank, A. and Walther, A., 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation (Vol. 105).
SIAM.

Nocedal, J. and Wright, S.J., 1999. Numerical Optimization. Springer.

Extra slides

87

88

Forward mode Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

89

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

90

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

91

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

92

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

93

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

1

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

94

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

95

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

6

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

96

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

3

6

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

97

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

3

6
1.791

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

98

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

3

6
1.791

0.5

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

99

Forward mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

2

3

 Primals: independent 🡨 dependent
Derivatives (tangents): independent 🡨 dependent

1

0

3

6
1.791

0.5

In general, forward mode evaluates a Jacobian–vector product

We evaluated the partial derivative with

100

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

101

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

102

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

103

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

104

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6

105

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

106

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

1

107

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

1

108

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

10.166

109

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

10.166

110

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

10.166

0.5

111

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

10.166

0.5

112

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

10.166

0.5

0.333

113

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

10.166

0.5

0.333

In general, reverse mode evaluates a transposed Jacobian–vector product

We evaluated the gradient with

114

Reverse mode

f(a, b):

 c = a * b

 d = log(c)

 return d

f(2, 3)

log*

a

b

c
d

 Primals: independent 🡨 dependent
Derivatives (adjoints): independent 🡨 dependent

2

3

6
1.791

10.166

0.5

0.333

In general, reverse mode evaluates a transposed Jacobian–vector product

We evaluated the gradient with

