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Outline

This lecture:
- Derivatives in machine learning
- Review of essential concepts (what is a derivative, Jacobian, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:
- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)



Derivatives and 
machine learning
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Derivatives in machine learning
“Backprop” and gradient descent are at the core of all recent advances 
Computer vision

NVIDIA DRIVE PX 2 segmentationTop-5 error rate for ImageNet (NVIDIA devblog) Faster R-CNN (Ren et al. 2015)

Speech recognition/synthesis

Word error rates (Huang et al., 2014) Google Neural Machine Translation System (GNMT)

Machine translation
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Derivatives in machine learning
“Backprop” and gradient descent are at the core of all recent advances 

Probabilistic programming (and modeling)

Pyro ProbTorch

Edward TensorFlow Probability 

- Variational inference
- “Neural” density estimation

- Transformed distributions via bijectors
- Normalizing flows (Rezende & Mohamed, 2015)
- Masked autoregressive flows (Papamakarios et al., 2017)

(2017) (2017)

(2016) (2018)



6

Derivatives in machine learning
At the core of all: differentiable functions (programs) whose parameters are 
tuned by gradient-based optimization

(Ruder, 2017) http://ruder.io/optimizing-gradient-descent/ 
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Automatic differentiation
Execute differentiable functions (programs) via automatic differentiation

A word on naming:
- Differentiable programming, a generalization of deep learning (Olah, LeCun)

“Neural networks are just a class of differentiable functions”
- Automatic differentiation
- Algorithmic differentiation
- AD
- Autodiff
- Algodiff
- Autograd

Also remember:
- Backprop
- Backpropagation (backward propagation of errors)



Essential concepts
refresher
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Derivative
Function of a real variable

Sensitivity of function value w.r.t. 
a change in its argument 
(the instantaneous rate of change)

Newton, c. 1665

Leibniz, c. 1675
Leibniz Lagrange Newton

Dependent Independent
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Derivative
Function of a real variable

Newton, c. 1665

Leibniz, c. 1675

around 15 such rules

… 

Note: the derivative is a linear operator, a.k.a. a higher-order 
function in programming languages
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Partial derivative
Function of several real variables

A derivative w.r.t. one independent variable, 
with others held constant

“del”
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Partial derivative
Function of several real variables

The gradient, given

is the vector of all partial derivatives

“nabla” 
or “del”

Nabla is the higher-order function:

points to the direction with the largest rate of 
change
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Total derivative
Function of several real variables

The derivative w.r.t. all variables 
(independent & dependent) 

Consider all partial derivatives simultaneously and accumulate all direct and 
indirect contributions (Important: will be useful later)
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Matrix calculus and machine learning
Extension to 
multivariable 
functions

Scalar output Vector output

Scalar input

Vector input

scalar field vector field

In machine learning, we construct (deep) compositions of
-                            , e.g., a neural network
-                            , e.g., a loss function, KL divergence, or log joint probability
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Matrix calculus and machine learning

Generalization to tensors (multi-dimensional arrays) for efficient
batching, handling of sequences, channels in convolutions, etc.

And many, many more rules
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Finally, two constructs relevant to machine learning: Jacobian and Hessian

Matrix calculus and machine learning



How to compute derivatives
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We can compute the derivatives not just of 
mathematical functions, but of general programs 
(with control flow)

Derivatives 
as code
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Derivatives 
as code
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Manual

Analytic derivatives are needed for theoretical insight
- analytic solutions, proofs
- mathematical analysis, e.g., stability of fixed points

Unnecessary when we just need derivative evaluations for optimization

You can see papers like this:
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Symbolic differentiation
Symbolic computation with Mathematica, Maple, Maxima, 
and deep learning frameworks such as Theano
Problem: expression swell
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Symbolic computation with Mathematica, Maple, Maxima, 
and deep learning frameworks such as Theano
Problem: expression swell

Symbolic differentiation

Graph optimization
(e.g., in Theano)



Symbolic graph builders such as Theano and TensorFlow
have limited, unintuitive control flow, loops, recursion

Problem: only applicable to closed-form mathematical functions

You can find the derivative of

but not of

Symbolic differentiation
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Finite difference approximation of          ,

Problem: we must select     and
we face approximation errors

Problem: needs to be evaluated      times, 
once with each standard basis vector

Numerical differentiation
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Finite difference approximation of          ,

Better approximations exist:
- Higher-order finite differences

e.g., center difference: 

- Richardson extrapolation
- Differential quadrature

These increase rapidly in complexity 
and never completely eliminate the error

Numerical differentiation
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Finite difference approximation of          ,

Better approximations exist:
- Higher-order finite differences

e.g., center difference: 

- Richardson extrapolation
- Differential quadrature

These increase rapidly in complexity 
and never completely eliminate the error

Numerical differentiation

Still extremely useful as a quick check of our gradient implementations
Good to learn:
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If we don’t need analytic derivative expressions, we can 
evaluate a gradient exactly with only one forward and one reverse execution

In machine learning, this is known as 
backpropagation or “backprop”

- Automatic differentiation is more than 
backprop

- Or, backprop is a specialized reverse mode 
automatic differentiation

- We will come back to this shortly

Nature 323, 533–536 (9 October 1986)

Automatic differentiation



Backprob or automatic 
differentiation?
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1960s 1970s 1980s

Precursors

Kelley, 1960
Bryson, 1961
Pontryagin et al., 1961
Dreyfus, 1962

Wengert, 1964
Forward mode

Linnainmaa, 1970, 1976
Backpropagation

Dreyfus, 1973
Control parameters

Werbos, 1974
Reverse mode

Speelpenning, 1980
Automatic reverse mode

Werbos, 1982
First NN-specific backprop

Parker, 1985

LeCun, 1985

Rumelhart, Hinton, Williams, 1986
Revived backprop

Griewank, 1989
Revived reverse mode
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Bryson, 1961
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Dreyfus, 1962

Wengert, 1964
Forward mode

Linnainmaa, 1970, 1976
Backpropagation

Dreyfus, 1973
Control parameters

Werbos, 1974
Reverse mode
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First NN-specific backprop

Parker, 1985

LeCun, 1985
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Revived backprop

Griewank, 1989
Revived reverse mode 30

Recommended reading: 

Griewank, A., 2012. Who Invented the Reverse Mode of Differentiation? 
Documenta Mathematica, Extra Volume ISMP, pp.389-400.

Schmidhuber, J., 2015. Who Invented Backpropagation?
http://people.idsia.ch/~juergen/who-invented-backpropagation.html 



Automatic differentiation
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

  c = a * b

  d = log(c)

  return d log*

a

b

c
d
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

  c = a * b

  d = log(c)

  return d

1.791 = f(2, 3)

log*

a

b

c
d

3

2
6

1.791

primal
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

  c = a * b

  d = log(c)

  return d

1.791 = f(2, 3)

[0.5, 0.333] = f’(2, 3)

log*

a

b

c
d

3

2
6

1.791
0.5

0.333

0.166 1

derivative
tangent, adjoint
“gradient”

primal
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Automatic differentiation
All numerical algorithms, when executed, evaluate to compositions of 
a finite set of elementary operations with known derivatives

- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):

  c = a * b

  d = log(c)

  return d

1.791 = f(2, 3)

[0.5, 0.333] = f’(2, 3)

log*

a

b

c
d

3

2
6

1.791
0.5

0.333

0.166 1

derivative
tangent, adjoint
“gradient”

primal
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Two main flavors

Forward mode Reverse mode (a.k.a. backprop)

Nested combinations 
(higher-order derivatives, Hessian–vector products, etc.)

- Forward-on-reverse
- Reverse-on-forward
- ...

Primals
Derivatives

    Primals

Derivatives

Automatic differentiation

(Tangents)
(Adjoints)
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What happens to control flow?

f(a, b):

  c = a * b

  if c > 0:

    d = log(c)

  else:

    d = sin(c)

  return d

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution
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What happens to control flow?

f(a = 2, b = 3):

  c = a * b = 6

  if c > 0:

    d = log(c) = 1.791

  else:

    d = sin(c)

  return d

log*

a

b

c
d

3

2
6

1.791

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution
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What happens to control flow?

f(a = 2, b = -1):

  c = a * b = -2

  if c > 0:

    d = log(c)

  else:

    d = sin(c) = -0.909

  return d

sin*

a

b

c
d

-1

2
-2

-0.909

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution
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What happens to control flow?

f(a = 2, b = -1):

  c = a * b = -2

  if c > 0:

    d = log(c)

  else:

    d = sin(c) = -0.909

  return d

sin*

a

b

c
d

-1

2
-2

-0.909

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

A directed acyclic graph (DAG)

Topological ordering
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

sin*x1 y1

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent

log +x2

v2

y2

v1
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

3

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

3

In general, forward mode evaluates 
a Jacobian–vector product

So we evaluated:

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Forward mode

sin*x1 y1

log +x2

v2

y2

v1
2

3

1

0

6

3

1.098

0

-0.279

2.880

7.098

3

In general, forward mode evaluates 
a Jacobian–vector product

So we evaluated:

Can be any
not only unit vectors

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent



For                             this is a 
directional derivative
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Forward mode

In general, forward mode evaluates 
a Jacobian–vector product

So we evaluated:

Can be any
not only unit vectors

                         Primals:  independent      dependent
Derivatives (tangents):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

sin*x1 y1

log +x2

v2

y2

v1

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent



68

Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent



71

Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent



75

Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

f(x1, x2):

  v1 = x1 * x2

  v2 = log(x2)

  y1 = sin(v1)

  y2 = v1 + v2

  return (y1, y2)

f(2, 3)

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

1.920

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

sin*x1 y1

log +x2

v2

y2

v1
2

3

6

1.098

-0.279

7.098

1

0

0.960

0

2.880

1.920

In general, forward mode evaluates a 
transposed Jacobian–vector product

So we evaluated:

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Reverse mode

In general, reverse mode evaluates a 
transposed Jacobian–vector product

So we evaluated:
For                             this is 
the gradient

                        Primals:  independent      dependent
Derivatives (adjoints):  independent      dependent
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Forward vs reverse summary
In the extreme
use forward mode to evaluate                            

In the extreme
use reverse mode to evaluate
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Forward vs reverse summary
In the extreme
use forward mode to evaluate                            

In the extreme
use reverse mode to evaluate

In general                                the Jacobian                                 can be evaluated in
-                         with forward mode
-                         with reverse mode

Reverse performs better when 



Backprop through 
normal PDF
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Backprop through normal PDF

-x

µ

σ

·2 *

·2 /

*

2 π

- exp

sqrt 1/·

* f
0.5

0

1



Summary
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Summary

This lecture:
- Derivatives in machine learning
- Review of essential concepts (what is a derivative, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:
- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)
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Forward mode                          Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

log*

a

b

c
d

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

1

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

6

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

3

6

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

3

6
1.791

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

1

0

3

6
1.791

0.5

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent
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Forward mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

2

3

                         Primals:  independent 🡨 dependent
Derivatives (tangents):  independent 🡨 dependent

1

0

3

6
1.791

0.5

In general, forward mode evaluates a Jacobian–vector product

We evaluated the partial derivative            with 
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent



102

Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

1
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

1
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

10.166
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

10.166
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

10.166

0.5
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

10.166

0.5
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

10.166

0.5

0.333
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

10.166

0.5

0.333

In general, reverse mode evaluates a transposed Jacobian–vector product

We evaluated the gradient                                       with 
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Reverse mode

f(a, b):

  c = a * b

  d = log(c)

  return d

f(2, 3)

log*

a

b

c
d

                        Primals:  independent 🡨 dependent
Derivatives (adjoints):  independent 🡨 dependent

2

3

6
1.791

10.166

0.5

0.333

In general, reverse mode evaluates a transposed Jacobian–vector product

We evaluated the gradient                                       with 


