CPSC 340: Machine Learning and Data Mining

Ensemble Methods Fall 2020

Admin

- Welcome to the course!
- Course webpage:

– <u>https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/</u>

- Assignment 1:
 - 2 late days to hand in tonight.
- Assignment 2 is out.
 - Due Friday of next week. It's long so start early.

Last Time: K-Nearest Neighbours (KNN)

- K-nearest neighbours algorithm for classifying \tilde{x}_i :
 - Find 'k' values of x_i that are most similar to \tilde{x}_i .
 - Use mode of corresponding y_i.
- Lazy learning:
 - To "train" you just store X and y.
- Non-parametric:
 - Size of model grows with 'n' (number of examples)
 - Nearly-optimal test error with infinite data.
- But high prediction cost and may need large 'n' if 'd' is large.

$$(x) = (x) = (x) = (x)$$

Defining "Distance" with "Norms"

- A common way to define the "distance" between examples:
 - Take the "norm" of the difference between feature vectors.

$$\begin{aligned} \|\mathbf{x}_{i} - \widetilde{\mathbf{x}}_{i}^{*}\|_{2} &= \sqrt{\sum_{j=1}^{2} (x_{ij} - \widetilde{\mathbf{x}}_{ij}^{*})^{2}} \\ \text{train} \quad \text{trest} \quad \|\mathbf{x}_{2} - norm\| \\ \text{example} \quad \text{example} \end{aligned}$$

- Norms are a way to measure the "length" of a vector.
 - The most common norm is the "L2-norm" (or "Euclidean norm"):

$$\|r\|_2 = \sqrt{\frac{2}{5}r_j^2}$$

- Here, the "norm" of the difference is the standard Euclidean distance.

L2-norm, L1-norm, and L ∞ -Norms.

The three most common norms: L2-norm, L1-norm, and L∞-norm.
 Definitions of these norms with two-dimensions:

Infinite Series Video

Norm and Norm^p Notation (MEMORIZE)

• Notation:

- We often leave out the "2" for the L2-norm: We use $||r|| for ||r||_2$

- We use superscripts for raising norms to powers: We use $||r||^2$ for $(||r||)^4$

- You should understand why all of the following quantities are equal: $\|r_{1}\|^{2} = \|r_{1}\|^{2}_{2} = (\|r_{1}\|_{2})^{2} = (\int_{j=1}^{2} r_{j}^{2})^{2} = \sum_{j=1}^{2} r_{j}^{2} = \sum_{j=1}^{2} r_{j}^{2} = r^{T}r$

= < rp> (we'll use these later)

Norms as Measures of Distance

• By taking norm of difference, we get a "distance" between vectors:

$$\|r - s\|_{2} = \sqrt{(r_{1} - s_{1})^{2} + (r_{2} - s_{2})^{2}}$$

$$= \|r - s\| \quad \text{"Euclidean distance"} \quad \text{S}$$

$$\|r - s\|_{1} = |r_{1} - s_{1}| + |r_{2} - s_{2}| \quad \text{"Number of blocks you need to}$$

$$\|r - s\|_{b} = \max \left\{ |r_{1} - s_{1}|_{2} | r_{2} - s_{2}| \right\} \quad \text{"Most number of blocks you need to}$$

$$\|r - s\|_{b} = \max \left\{ |r_{1} - s_{1}|_{2} | r_{2} - s_{2}| \right\} \quad \text{"Most number of blocks you would}$$

- Place different "weights" on large differences: have to walk.
 - L_1 : differences are equally notable.
 - L_2 : bigger differences are more important (because of squaring).
 - L_{∞} : only biggest difference is important.

KNN Distance Functions

VilXil 2"weight" of feature (1)

- Most common KNN distance functions: norm(x_i x_i).
 - L1-, L2-, and L∞-norm.
 - Weighted norms (if some features are more important): $\int_{j=1}^{d}$ "Mahalanobis" distance (takes into according
 - - See bonus slide for what functions define a "norm".
- But we can consider other distance/similarity functions:
 - Jaccard similarity (if x_i are sets).
 - Edit distance (if x_i are strings).
 - Metric learning (*learn* the best distance function).

Decision Trees vs. Naïve Bayes vs. KNN

p(sick | milk, egg, lactase) ~ p(milk lsick) plegg lsick) p(lactase lsick) p(sick)

$$(milk = 0.6, egg = 2, lactase = 0, ?)$$
 is close to
 $(milk = 0.7, egg = 2, lactase = 0, sick)$ so predict sick.

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

https://www.youtube.com/watch?v=IHZwWFHWa-w

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

- Turning this into a supervised learning problem (with 28 by 28 images):

	(1,1)	(2,1)	(3,1)		(28,1)	(1,2)	(2,2)	••••	(14,14)	•••	(28,28)
	0	0	0		0	0	0		1		0
λ	0	0	0		0	0	0		1		0
X-	0	0	0		0	0	0		0		0
	Ó	0	0		0	0	0		1		0
	Eac	h fea	ture i	s o	rayscul	e inte	nsity	6Ŧ	one of th	c 79	

Human vs. Machine Perception

• There is huge difference between what we see and what KNN sees:

What the Computer Sees

• Are these two images "similar"?

What the Computer Sees

• Are these two images "similar"?

• KNN does not know that labels should be translation invariant.

Encouraging Invariance

- May want classifier to be invariant to certain feature transforms.
 Images: translations, small rotations, changes in size, mild warping,...
- The hard/slow way is to modify your distance function:
 - Find neighbours that require the "smallest" transformation of image.
- The easy/fast way is to just add transformed data during training:
 - Add translated/rotate/resized/warped versions of training images.

- Crucial part of many successful vision systems.
- Also really important for sound (translate, change volume, and so on).

Application: Body-Part Recognition

- Microsoft Kinect:
 - Real-time recognition of 31 body parts and poses from laser depth data.

• How could we write a program to do this?

Some Ingredients of Kinect

- 1. Collect hundreds of thousands of labeled images (motion capture).
 - Variety of pose, age, shape, clothing, and crop.
- 2. Build a simulator that fills space of images by making even more images.

- 3. Extract features of each location, that are cheap enough for real-time calculation (depth differences between pixel and pixels nearby.)
- 4. Treat classifying body part of a pixel as a supervised learning problem.
- 5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

Supervised Learning Step

- ALL steps are important, but we'll focus on the learning step.
- Do we have any classifiers that are accurate and run in real time?
 - Decision trees and naïve Bayes are fast, but often not very accurate.
 - KNN is often accurate, but not very fast.
- Deployed system uses an ensemble method called random forests.

Ensemble Methods

- Ensemble methods are classifiers that have classifiers as input.
 - Also was called "meta-learning" (there are new incompatible means for metalearning).
- They have the best names:
 - Averaging.
 - Boosting.
 - Bootstrapping.
 - Bagging.
 - Cascading.
 - Random Forests.
 - Stacking.
- Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

- Remember the fundamental trade-off:
 - 1. E_{train}: How small you can make the training error.

VS.

- 2. E_{approx}: How well training error approximates the test error.
- Goal of ensemble methods is that meta-classifier:
 - Does much better on one of these than individual classifiers.
 - Doesn't do too much worse on the other.
- This suggests two types of ensemble methods:
 - 1. Boosting: improves training error of classifiers with high E_{train}.
 - 2. Averaging: improves approximation error of classifiers with high E_{approx}.

Averaging

- Input to averaging is the predictions of a set of models:
 - Decision trees make one prediction.
 - Naïve Bayes makes another prediction.
 - KNN makes another prediction.
- Simple model averaging:
 - Take the mode of the predictions (or average probabilities if probabilistic).

Digression: Stacking

- A common variation is stacking
 - Fit another classifier that uses the predictions as features.

- E.g., Netflix \$1M user-rating competition winner was stacked classifier.

Why can Averaging Work?

- Consider 3 binary classifiers, each independently correct with probability 0.80:
- With simple averaging, ensemble is correct if we have "at least 2 right":
 - P(all 3 right) = $0.8^3 = 0.512$.
 - $P(2 rights, 1 wrong) = 3*0.8^{2}(1-0.8) = 0.384.$
 - $P(1 \text{ right}, 2 \text{ wrongs}) = 3^*(1-0.8)^2 0.8 = 0.096.$
 - $P(all 3 wrong) = (1-0.8)^3 = 0.008.$
 - So ensemble is right with probability 0.896 (which is 0.512+0.384).
- Notes:
 - For averaging to work, classifiers need to be at least somewhat independent.
 - You also want the probability of being right to be > 0.5, otherwise it will do much worse.
 - Probabilities also shouldn't be to different (otherwise, it might be better to take most accurate).

Averaging

- Consider a set of classifiers that make these predictions:
 - Classifier 1: "spam".
 - Classifier 2: "spam".
 - Classifier 3: "spam".
 - Classifier 4: "not spam".
 - Classifier 5: "spam".
 - Classifier 6: "not spam".
 - Classifier 7: "spam".
 - Classifier 8: "spam".
 - Classifier 9: "spam".
 - Classifier 10: "spam".
- If these independently get 80% accuracy, mode will be close to 100%.
 - In practice errors won't be completely independent (due to noise in labels).

Why can Averaging Work?

- Why can averaging lead to better results?
- Consider classifiers that overfit (like deep decision trees):

 If they all overfit in exactly the same way, averaging does nothing.
- But if they make independent errors:
 - Probability that "average" is wrong can be lower than for each classifier.
 - Less attention to specific overfitting of each classifier.

Random Forests

- Random forests average a set of deep decision trees.
 - Tend to be one of the best "out of the box" classifiers.
 - Often close to the best performance of any method on the first run.
 - And predictions are very fast.
- Do deep decision trees make independent errors?
 - No: with the same training data you'll get the same decision tree.
- Two key ingredients in random forests:
 - Bootstrapping.
 - Random trees.

Bootstrap Sampling

- Start with a standard deck of 52 cards:
 - Sample a random card: (put it back and re-shuffle)
 - Sample a random card: (put it back and re-shuffle)
- e)
 - 3. Sample a random card:(put it back and re-shuffle)
 - 52. Sample a random card: (which may be a repeat)

Make a new deck of the 52 samples:

— ...

• •	² ◆	ب		•	•	:♠ •	۰ ب	\$ ♠	* * *	** * *	* *	** **	♠ ♠ ▲ '	** * * * * 	** **	♠ ♠ ₩	***	♠ ♠ ♥		
•	÷	•	5	3		\$₩ •	V,	\$ V	¥	₽ ₩	¥ ¥	₹ ₩ ₩	• 1 •		₹ ₩ ₩ 4	• 6		• a		
•	2 •	•	5	3		:+	+	÷+	2 ••• • •	₽ • •	**** *	!+ +	* * *		2+ + + +	6	9 • •			
4 +	2 +	+	5	3	• E •	i÷.	+ •	5 . ∔	+ +	\$ + +	* *	;+ ++	+ + +	*+ + + + + +	9 + + +	+ + + +	⁰ + + +	* () * *		
ţ		÷	ŧ		t	÷	4;	+	÷.	*	* §	*	τi	T T	•	• 6	T	•0.		l'A
ţ		*	ŧ		ι ε	÷	+ ;	÷	4	•	Ψį	*	₹i	• •	•	• 6	•	• 0.		2
ţ	L	+	Ż			÷	+ ;	÷	+	+	₩ ġ	*	₹1	• •	·	•6	•	▼ aj		
•	2.	+ + +	54	3		÷	+; + *	* *	+ • •	÷	* 3 * *	÷		••••			₽ + + + + + + +	• 01		•
•	2 ● 2	+ + +	t t t	3		;÷	+; + + + + + + ;	₽ ₽ ₽ ₽	* * * * * *	÷	* ; * ; * ; * ;	÷								
	2. • 2. •	+ + + + +		3 \$ ¥		÷	+; • • • • • •	÷ ₽ ₽ ₽ ₽ ₽ ₽	+ s + + s + + + + = = + + + + = + = + + + = + + + = + + + = + + + = + + + = + + + = +	÷ ÷ ;¥ ; * ; *	• • • • • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1			2+ + + + + + + + + + + + + + + + + + +					

Bootstrap Sampling

 New 52-card deck is called a "bootstrap sample":

- Some cards will be missing, and some cards will be duplicated.
 - So calculations on the bootstrap sample will give different results than original data.
- However, the bootstrap sample roughly maintains trends:
 - Roughly 25% of the cards will be diamonds.
 - Roughly 3/13 of the cards will be "face" cards.
 - There will be roughly four "10" cards.
- Common use: compute a statistic based on several bootstrap samples.
 - Gives you an idea of how the statistic varies as you vary the data.

Random Forest Ingredient 1: Bootstrap

- Bootstrap sample of a list of 'n' examples:
 - A new set of size 'n' chosen independently with replacement.

- Gives new dataset of 'n' examples, with some duplicated and some missing.
 - For large 'n', approximately 63% of original examples are included.
- Bagging: using bootstrap samples for ensemble learning.
 - Generate several bootstrap samples of the examples (x_i,y_i).
 - Fit a classifier to each bootstrap sample.
 - At test time, average the predictions.

Summary

- Encouraging invariance:
 - Add transformed data to be insensitive to the transformation.
- Ensemble methods take classifiers as inputs.
 - Try to reduce either E_{train} or E_{approx} without increasing the other much.
 - "Boosting" reduces E_{train} and "averaging" reduces E_{approx}.
- Averaging:
 - Improves predictions of multiple classifiers if errors are independent.
- Bagging:
 - Ensemble method where we apply same classifier to "bootstrap samples".
- Next time:
 - We start unsupervised learning.

3 Defining Properties of Norms

- A "norm" is any function satisfying the following 3 properties:
 - 1. Only '0' has a 'length' of zero.
 - 2. Multiplying 'r' by constant ' α ' multiplies length by $|\alpha|$
 - "If be will twice as long if you multiply by 2": $||\alpha r|| = |\alpha| \cdot ||r||$.
 - Implication is that norms cannot be negative.
 - 3. Length of 'r+s' is not more than length of 'r' plus length of 's':
 - "You can't get there faster by a detour".
 - "Triangle inequality": $||r + s|| \le ||r|| + ||s||$.

Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

$$\|x\|_2 = \sqrt{\sum_{j=1}^d w_j^2} \ \|x\|_1 = \sum_{j=1}^d |w_j|.$$

If the subscript is omitted, we mean the 2-norm:

$$||x|| = ||x||_2.$$

If we want to talk about the squared value of the norm we use a superscript of "2":

$$egin{aligned} \|x\|_2^2 &= \sum_{j=1}^d w_j^2. \ \|x\|_1^2 &= \left(\sum_{j=1}^d |w_j|
ight)^2. \end{aligned}$$

If we omit the subscript and have a superscript of "2", we're taking about the squared L2-norm:

$$\|x\|^2 = \sum_{j=1}^d w_j^2$$
.

Lp-norms

- The L₁-, L₂-, and L_∞-norms are special cases of Lp-norms: $||x||_{p} = \left(\sum_{j=1}^{d} x_{j}^{p}\right)^{l/p}$
- This gives a norm for any (real-valued) $p \ge 1$.
 - The L_{∞}-norm is limit as 'p' goes to ∞ .
- For p < 1, not a norm because triangle inequality not satisfied.

Why does Bootstrapping select approximately 63%?

• Probability of an arbitrary x_i being selected in a bootstrap sample:

$$p(\text{selected at least once in 'n' trials}) = [-p(\text{not selected in any of 'n' trials}) = [-(p(\text{not selected in one trial}))^n (trials are independent) = [-(1 - 1/n)^n (prob = n-1' for choosing any of the n-1 other sample) $\approx 1 - 1/e$ ((1-4n)ⁿ - e⁻¹ as n-no)$$

Why Averaging Works

- Consider 'k' independent classifiers, whose errors have a variance of σ^2 .
- If the errors are IID, the variance of the average is σ^2/k .
 - So the more classifiers you average, the more you decrease error variance.
 (And the more the training error approximates the test error.)
- Generalization to case where classifiers are not independent is:

$$C Q^{2} + (1-c)Q^{2}$$

- Where 'c' is the correlation.

- So the less correlation you have the closer you get to independent case.
- Randomization in random forests decreases correlation between trees.
 - See also "Sensitivity of Independence Assumptions".

How these concepts often show up in practice

- Here is a recent e-mail related to many ideas we've recently covered:
 - "However, the performance did not improve while the model goes deeper and with augmentation. The best result I got on validation set was 80% with LeNet-5 and NO augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract numerical information for me, so I trained the same dataset with nearly 100 features on random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of hidden layers increases, in addition to that I have changed from VGG to ResNet, which are theoretically trained differently. Moreover, why deep learning algorithm cannot surpass machine learning algorithm?"

• Above there is data augmentation, validation error, effect of the fundamental trade-off, the no free lunch theorem, and the effectiveness of random forests.

Bayesian Model Averaging

- Recall the key observation regarding ensemble methods:
 - If models overfit in "different" ways, averaging gives better performance.
- But should all models get equal weight?
 - E.g., decision trees of different depths, when lower depths have low training error.
 - E.g., a random forest where one tree does very well (on validation error) and others do horribly.
 - In science, research may be fraudulent or not based on evidence.
- In these cases, naïve averaging may do worse.

Bayesian Model Averaging

- Suppose we have a set of 'm' probabilistic binary classifiers w_i.
- If each one gets equal weight, then we predict using:

$$p(y_{i}|x_{i}) = \frac{1}{m} p(y_{i}|w_{1},x_{i}) + \frac{1}{m} p(y_{i}|w_{2},x_{i}) + \cdots + (\frac{1}{m}) p(y_{i}|w_{m},x_{i})$$

- Bayesian model averaging treats model 'w_j' as a random variable: ^{Assumption} $P(y_{i} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i}, w_{j} | x_{i}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, x_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{i} | w_{j}, y_{j}) P(w_{j} | x_{j}) = \bigotimes_{j=1}^{m} P(y_{j} | x_{$
- So we should weight by probability that w_i is the correct model:
 - Equal weights assume all models are equally probable.

Bayesian Model Averaging

• Can get better weights by conditioning on training set:

$$p(w_j | X, y) \propto p(y | w_j, X) p(w_j | X) = p(y | w_j, X) p(w_j)$$

Algain, assuning cyl X

- The 'likelihood' p(y | w_j, X) makes sense:
 - We should give more weight to models that predict 'y' well.
 - Note that hidden denominator penalizes complex models.
- The 'prior' p(w_i) is our 'belief' that w_i is the correct model.
- This is how rules of probability say we should weigh models.
 - The 'correct' way to predict given what we know.
 - But it makes some people unhappy because it is subjective.