CPSC 340:
Machine Learning and Data Mining

Ensemble Methods
Fall 2020



Admin

Welcome to the course!

Course webpage:
— https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

Assignment 1:
— 2 late days to hand in tonight.

Assignment 2 is out.

— Due Friday of next week. It’s long so start early.



Last Time: K-Nearest Neighbours (KNN)

K-nearest neighbours algorithm for classifying X:
— Find ‘k’ values of x; that are most similar to X ..

— Use mode of corresponding y;. T2 hew exa
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Non-parametric:

— Size of model grows with ‘n’ (number of examples) feature | (x1)
— Nearly-optimal test error with infinite data.

But high prediction cost and may need large ‘n’ if ‘d’ is large.



Defining “Distance” with “Norms”

* A common way to define the “distance” between examples:

— Take the “norm” of the difference between feature vectors.
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 Norms are a way to measure the “length” of a vector.
— The most common norm is the “L2-norm” (or “Euclidean norm”):
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— Here, the “norm” of the difference is the standard Euclidean distance.




L2-norm, L1-norm, and Lee-Norm:s.

 The three most common norms: L2-norm, L1-norm, and Lee-norm.

— Definitions of these norms with two-dimensions:
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— Definitions of these norms in d-dimensions.
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Norm and NormP Notation (MEMORIZE)

* Notation:
— We often leave out the “2” for the L2-norm: |/} USe }/,\// for |l

— We use superscripts for raising norms to powers: Wc Uuse ”r‘{}z {:Of' (U )2

— You should understand why all of the following quantltles are equal:
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Norms as Measures of Distance

* By taking norm of difference, we get a “distance” between vectors:
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* Place different “weights” on large differences: hae to wolk.

— L,: differences are equally notable.
— L,: bigger differences are more important (because of squaring).

— L..: only biggest difference is important.



KNN Distance Functions

* Most common KNN distance functions: norm(x; — x;).
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— L1-, L2-, and Lee-norm.
— Weighted norms (if some features are more important): & \{) IX) '

0,0
“Mahalanobis” distance (takes into account correlations). /C wf,9w of
* See bonus slide for what functions define a “norm”. Feafw{ /A
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* But we can consider other distance/similarity functions:
— Jaccard similarity (if x; are sets).
— Edit distance (if x, are strings).
— Metric learning (learn the best distance function).



Decision Trees vs. Naive Bayes vs. KNN
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Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:
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Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:

— “Optical character recognition” (OCR).
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— Turning this into a supervised learning problem (with 28 by 28 images):
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KNN for Optical Character Recognition
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KNN for Optical Character Recognition
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KNN for Optical Character Recognition




KNN for Optical Character Recognition




Human vs. Machine Perception

* There is huge difference between what we see and what KNN sees:

What we see: What the computer “sees”:  Actually, it’s worse:




What the Computer Sees

* Are these two images “similar”?




What the Computer Sees

* Are these two images “similar”?

Difference:

e KNN does not know that labels should be translation invariant.



Encouraging Invariance

* May want classifier to be invariant to certain feature transforms.
— Images: translations, small rotations, changes in size, mild warping,...

e The hard/slow way is to modify your distance function:
— Find neighbours that require the “smallest” transformation of image.

e The easy/fast way is to just add transformed data during training:
— Add translated/rotate/resized/warped versions of training images.

33— 333

— Crucial part of many successful vision systems.
— Also really important for sound (translate, change volume, and so on).




Application: Body-Part Recognition

 Microsoft Kinect:

— Real-time recognition of 31 body parts and poses from laser depth data.

 How could we write a program to do this?



Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
— Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.
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3. Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby.)

4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

synthetic ( train & test)
real (test)




Supervised Learning Step

* ALL steps are important, but we’ll focus on the learning step.

* Do we have any classifiers that are accurate and run in real time?
— Decision trees and naive Bayes are fast, but often not very accurate.
— KNN is often accurate, but not very fast.

* Deployed system uses an ensemble method called random forests.



Ensemble Methods

* Ensemble methods are classifiers that have classifiers as input.

— Also was called “meta-learning” (there are new incompatible means for meta-
learning).

* They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

* Ensemble methods often have higher accuracy than input classifiers.



Ensemble Methods

e Remember the fundamental trade-off:

1. E,.,: How small you can make the training error.
VS.

2. Egpprox: HOW well training error approximates the test error.

 Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.

* This suggests two types of ensemble methods:

1. Boosting: improves training error of classifiers with high E, ...

2. Averaging: improves approximation error of classifiers with high E, .



Averaging

* Input to averaging is the predictions of a set of models:
— Decision trees make one prediction.
— Naive Bayes makes another prediction.
— KNN makes another prediction.

* Simple model averaging:

— Take the mode of the predictions (or average probabilities if probabilistic).
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Digression: Stacking

e A common variation is stacking
— Fit another classifier that uses the predictions as features.

)

/-V A@CiSI.DY‘ -“fef '—"—7 ’/y\o'/’ anm \

)(l. — Naive ’gm/ej — NS{’"""‘ —

\

decision tree #2 “’—9"Sraml

k ~nearest ne g bbows ——9 "5,0“"”“\ /")W{f’/ midel 7 nodal 3 Yrue las,/
hot Spen Spam Sparm W pion
* Averaging/stacking often performs N :f’,”‘ ””;“‘ ¥ ‘/: P
better than individual models. T A e "
— Typically used by Kaggle winners. ‘ S | /

— E.g., Netflix S1M user-rating competition winner was stacked classifier.



Why can Averaging Work?

* Consider 3 binary classifiers, each independently correct with probability 0.80:

* With simple averaging, ensemble is correct if we have “at least 2 right”:
— P(all 3 right) =0.83=0.512.
— P(2 rights, 1 wrong) = 3*0.8%(1-0.8) = 0.384.
— P(1 right, 2 wrongs) = 3*(1-0.8)20.8 = 0.096.
— P(all 3 wrong) = (1-0.8)3 = 0.008.
— So ensemble is right with probability 0.896 (which is 0.512+0.384).

* Notes:
— For averaging to work, classifiers need to be at least somewhat independent.
— You also want the probability of being right to be > 0.5, otherwise it will do much worse.
— Probabilities also shouldn’t be to different (otherwise, it might be better to take most accurate).



Averaging

* Consider a set of classifiers that make these predictions:
— Classifier 1: “spam”.
— Classifier 2: “spam”.
— Classifier 3: “spam”.
— Classifier 4: “not spam”.
— Classifier 5: “spam”.
— Classifier 6: “not spam”.
— Classifier 7: “spam”.
— Classifier 8: “spam”.
— Classifier 9: “spam”.
— Classifier 10: “spam”.
* If these independently get 80% accuracy, mode will be close to 100%.
— In practice errors won’t be completely independent (due to noise in labels).



Why can Averaging Work?

 Why can averaging lead to better results?

* Consider classifiers that overfit (like deep decision trees):
— If they all overfit in exactly the same way, averaging does nothing.

e But if they make independent errors:
— Probability that “average” is wrong can be lower than for each classifier.
— Less attention to specific overfitting of each classifier.



Random Forests

 Random forests average a set of deep decision trees.

— Tend to be one of the best “out of the box” classifiers.
» Often close to the best performance of any method on the first run.

— And predictions are very fast.

* Do deep decision trees make independent errors?
— No: with the same training data you’ll get the same decision tree.

* Two key ingredients in random forests:

— Bootstrapping.
— Random trees.
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Sample a random card

3.

(put it back and re-shuffle)

52. Sample a random card

(which may be a repeat)

 Make a new deck of the 52 samples
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— Some cards will be missing, and some cards will be duplicated.

* So calculations on the bootstrap sample will give different results than original data.
— However, the bootstrap sample roughly maintains trends:

* Roughly 25% of the cards will be diamonds.

* Roughly 3/13 of the cards will be “face” cards.

* There will be roughly four “10” cards.
— Common use: compute a statistic based on several bootstrap samples.

* Gives you an idea of how the statistic varies as you vary the data.




Random Forest Ingredient 1: Bootstrap

e Bootstrap sample of a list of ‘'n” examples:
— A new set of size ‘n’ chosen independently with replacement.

YOF ([ n l’n
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— Gives new dataset of ‘n” examples, with some duplicated and some missing.
* For large ‘n’, approximately 63% of original examples are included.

* Bagging: using bootstrap samples for ensemble learning.
— Generate several bootstrap samples of the examples (x,,y;).
— Fit a classifier to each bootstrap sample.
— At test time, average the predictions.



Summary

Encouraging invariance:

e Add transformed data to be insensitive to the transformation.
Ensemble methods take classifiers as inputs.

e Try to reduce either E

* “Boosting” reduces E
Averaging:

* Improves predictions of multiple classifiers if errors are independent.

Bagging:

* Ensemble method where we apply same classifier to “bootstrap samples”.

train OF Eapprox Without increasing the other much.

and “averaging” reduces E

train approx*

Next time:
* We start unsupervised learning.



3 Defining Properties of Norms

 A“norm” is any function satisfying the following 3 properties:
1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘a’ multiplies length by | a]
*  “If be will twice as long if you multiply by 2”: | |ar]|| = |a]e]|]|r]|].
 |Implication is that norms cannot be negative.
3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:

*  “You can’t get there faster by a detour”.
“Triangle inequality”: | |[r+s]|| < ||r]]| + ||s]].
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Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

d
lll2 = /3751 wj.
2l = 351 sl

If the subscript is omitted, we mean the 2-norm:

]| = [|=[l2-

If we want to talk about the squared value of the norm we use a superscript of "2™

el = 354, u?.
2
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If we omit the subscript and have a superscript of "2", we're taking about the squared L2-norm:

22 = 375, w?.



Lp-norms

* The L, L,-, and L.-norms are special cases of Lp-norms:
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* This gives a norm for any (real-valued) p > 1.

— The L,-norm is limit as ‘p’ goes to oo.

 For p< 1, not anorm because triangle inequality not satisfied.



Why does Bootstrapping select approximately 63%?

* Probability of an arbitrary x; being selected in a bootstrap sample:
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Why Averaging Works

Consider ‘k’ independent classifiers, whose errors have a variance of o2.
If the errors are IID, the variance of the average is 6%/k.

— So the more classifiers you average, the more you decrease error variance.
(And the more the training error approximates the test error.)

Generalization to case where classifiers are not independent is:

co + (=c) @2
k

— Where ‘c’ is the correlation.
So the less correlation you have the closer you get to independent case.
Randomization in random forests decreases correlation between trees.

— See also “Sensitivity of Independence Assumptions”.




How these concepts often show up in practice

* Here is a recent e-mail related to many ideas we’ve recently covered:

— “However, the performance did not improve while the model goes deeper and with
augmentation. The best result | got on validation set was 80% with LeNet-5 and NO
augmentation (LeNet-5 with augmentation | got 79.15%), and later 16 and 50 layer
structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract
numerical information for me, so | trained the same dataset with nearly 100 features on
random forest with 500 trees. The accuracy was 90% on validation set.

| really don't understand that how could deep learning perform worse as the number of
hidden layers increases, in addition to that | have changed from VGG to ResNet, which
are theoretically trained differently. Moreover, why deep learning algorithm cannot
surpass machine learning algorithm?”

* Above there is data augmentation, validation error, effect of the fundamental
trade-off, the no free lunch theorem, and the effectiveness of random forests.



Bayesian Model Averaging

e Recall the key observation regarding ensemble methods:

— If models overfit in “different” ways, averaging gives better performance.

* But should all models get equal weight?

— E.g., decision trees of different depths, when lower depths have low
training error.

— E.g., arandom forest where one tree does very well (on validation error)
and others do horribly.

— In science, research may be fraudulent or not based on evidence.

* In these cases, naive averaging may do worse.



Bayesian Model Averaging

Suppose we have a set of ‘m’ probabilistic binary classifiers w..
If each one gets equal weight, then we predict using:
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So we should weight by probability that w; is the correct model:
— Equal weights assume all models are equally probable.



Bayesian Model Averaging Again
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Can get better weights by conditioning on training set: f

The ‘likelihood’ p(y | w;, X) makes sense:
— We should give more weight to models that predict ‘y’ well.
— Note that hidden denominator penalizes complex models.

The ‘prior’ p(w;) is our ‘belief” that w; is the correct model.
This is how rules of probability say we should weigh models.

— The ‘correct’ way to predict given what we know.
— But it makes some people unhappy because it is subjective.



