
CPSC	340:
Machine	Learning	and	Data	Mining

Ensemble	Methods
Fall	2020

Admin
• Welcome	to	the	course!

• Course	webpage:	
– https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/

• Assignment	1:
– 2	late	days	to	hand	in	tonight.

• Assignment	2 is	out.
– Due	Friday	of	next	week.	It’s	long	so	start	early.

Last	Time:	K-Nearest	Neighbours (KNN)
• K-nearest	neighbours algorithm	for	classifying	𝑥"i:

– Find	‘k’	values	of	xi that	are	most	similar	to	𝑥"i.
– Use	mode	of	corresponding	yi.

• Lazy	learning:
– To	“train”	you	just	store	X	and	y.

• Non-parametric:
– Size	of	model	grows	with	‘n’ (number	of	examples)
– Nearly-optimal	test	error	with	infinite	data.

• But	high	prediction	cost	and	may	need	large	‘n’	if	‘d’	is	large.

Defining	“Distance”	with	“Norms”
• A	common	way	to	define	the	“distance”	between	examples:
– Take	the	“norm”	of	the	difference	between	feature	vectors.

• Norms are	a	way	to	measure	the	“length”	of	a	vector.
– The	most	common	norm	is	the	“L2-norm”	(or	“Euclidean norm”):

– Here,	the	“norm”	of	the	difference	is	the	standard	Euclidean	distance.

L2-norm,	L1-norm,	and	L∞-Norms.
• The	three	most	common	norms:	L2-norm,	L1-norm,	and	L∞-norm.
– Definitions	of	these	norms	with	two-dimensions:

– Definitions	of	these	norms in	d-dimensions.

Infinite	Series	Video

Norm	and	Normp Notation	(MEMORIZE)	
• Notation:
– We	often leave	out	the	“2” for	the	L2-norm:

– We	use	superscripts	for	raising	norms	to	powers:

– You	should	understand	why	all	of	the	following	quantities	are	equal:

Norms	as	Measures	of	Distance
• By	taking	norm	of	difference,	we	get	a	“distance”	between	vectors:

• Place	different	“weights”	on	large	differences:
– L1:	differences	are	equally	notable.
– L2:	bigger	differences	are	more	important	(because	of	squaring).
– L∞:	only	biggest	difference	is	important.

KNN	Distance	Functions
• Most	common	KNN	distance	functions:	norm(xi – xj).
– L1-,	L2-,	and	L∞-norm.
– Weighted	norms	(if	some	features	are	more	important):
– “Mahalanobis”	distance	(takes	into	account	correlations).

• See	bonus	slide	for	what	functions	define	a	“norm”.

• But	we	can	consider	other	distance/similarity	functions:
– Jaccard similarity	(if	xi are	sets).
– Edit	distance	(if	xi are	strings).
– Metric	learning	(learn the	best	distance	function).

Decision	Trees	vs.	Naïve	Bayes	vs.	KNN

Application:	Optical	Character	Recognition
• To	scan	documents,	we	want	to	turn	images	into	characters:
– “Optical	character	recognition”	(OCR).

https://www.youtube.com/watch?v=IHZwWFHWa-w

Application:	Optical	Character	Recognition
• To	scan	documents,	we	want	to	turn	images	into	characters:
– “Optical	character	recognition”	(OCR).

– Turning	this	into	a	supervised	learning	problem	(with	28	by	28	images):

“3”

(1,1) (2,1) (3,1) … (28,1) (1,2) (2,2) … (14,14) … (28,28)

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

char

3

6

0

9

KNN	for	Optical	Character	Recognition

KNN	for	Optical	Character	Recognition

KNN	for	Optical	Character	Recognition

KNN	for	Optical	Character	Recognition

Human	vs.	Machine	Perception
• There	is	huge	difference	between	what	we	see	and	what	KNN	sees:

What	we	see: What	the	computer	“sees”: Actually,	it’s	worse:

• Are	these	two	images	“similar”?

What	the	Computer	Sees

• Are	these	two	images	“similar”?

• KNN	does	not	know	that	labels	should	be	translation	invariant.

What	the	Computer	Sees

Difference:

Encouraging	Invariance
• May	want	classifier	to	be	invariant	to	certain	feature	transforms.

– Images:	translations,	small	rotations,	changes	in	size,	mild	warping,…
• The	hard/slow	way	is	to	modify	your	distance	function:

– Find	neighbours that	require	the	“smallest”	transformation	of	image.

• The	easy/fast	way	is	to	just	add	transformed	data during	training:
– Add	translated/rotate/resized/warped	versions	of	training	images.

– Crucial	part	of	many	successful	vision	systems.
– Also	really	important	for	sound	(translate,	change	volume,	and	so	on).

Application:	Body-Part	Recognition
• Microsoft	Kinect:
– Real-time	recognition	of	31	body	parts	and	poses	from	laser	depth	data.

• How	could	we	write	a	program	to	do	this?

http://research.microsoft.com/pubs/158806/CriminisiForests_FoundTrends_2011.pdf

Some	Ingredients	of	Kinect
1. Collect	hundreds	of	thousands	of	labeled	images	(motion	capture).
– Variety	of	pose,	age,	shape,	clothing,	and	crop.

2. Build	a	simulator	that	fills	space	of	images	by	making	even	more	images.

3. Extract	features	of	each	location,	that	are	cheap	enough	for	real-time	
calculation	(depth	differences	between	pixel	and	pixels	nearby.)

4. Treat	classifying	body	part	of	a	pixel	as	a	supervised	learning	problem.
5. Run	classifier	in	parallel	on	all	pixels using	graphical	processing	unit	(GPU).

http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf

Supervised	Learning	Step
• ALL	steps	are	important,	but	we’ll	focus	on	the	learning	step.

• Do	we	have	any	classifiers	that	are	accurate	and	run	in	real	time?
– Decision	trees	and	naïve	Bayes	are	fast,	but	often	not	very	accurate.
– KNN	is	often	accurate,	but	not	very	fast.

• Deployed	system	uses	an	ensemble	method	called	random	forests.

Ensemble	Methods
• Ensemble	methods	are	classifiers	that	have	classifiers	as	input.

– Also	was	called	“meta-learning”	(there	are	new	incompatible	means	for	meta-
learning).

• They	have	the	best	names:
– Averaging.
– Boosting.	
– Bootstrapping.
– Bagging.
– Cascading.
– Random	Forests.
– Stacking.

• Ensemble	methods	often	have	higher	accuracy than	input	classifiers.

Ensemble	Methods
• Remember	the	fundamental	trade-off:

1. Etrain:	How	small	you	can	make	the	training	error.
vs.

2. Eapprox:	How	well	training	error	approximates	the	test	error.

• Goal	of	ensemble	methods	is	that	meta-classifier:
– Does	much	better	on	one	of	these	than	individual	classifiers.
– Doesn’t	do	too	much	worse	on	the	other.

• This	suggests	two	types	of	ensemble	methods:
1. Boosting:	improves	training	error	of	classifiers	with	high	Etrain.
2. Averaging:	improves	approximation	error	of	classifiers	with	high	Eapprox.

Averaging
• Input	to	averaging is	the	predictions	of	a	set	of	models:
– Decision	trees	make	one	prediction.
– Naïve	Bayes	makes	another	prediction.
– KNN	makes	another	prediction.

• Simple model	averaging:
– Take	the	mode	of	the	predictions	(or	average	probabilities	if	probabilistic).

Digression:	Stacking
• A	common	variation	is stacking
– Fit	another	classifier	that	uses	the	predictions	as	features.

• Averaging/stacking	often	performs	
better	than	individual	models.
– Typically	used	by	Kaggle winners.
– E.g.,	Netflix	$1M	user-rating	competition	winner	was	stacked	classifier.

Why	can	Averaging	Work?
• Consider	3	binary	classifiers,	each	independently	correct	with	probability	0.80:

• With	simple	averaging,	ensemble	is	correct	if	we	have	“at	least	2	right”:
– P(all	3	right)	=	0.83 =	0.512.
– P(2	rights,	1	wrong)	=	3*0.82(1-0.8)	=	0.384.
– P(1	right,	2	wrongs)	=	3*(1-0.8)20.8	=	0.096.
– P(all	3	wrong)	=	(1-0.8)3 =	0.008.
– So	ensemble	is	right	with	probability	0.896	(which	is	0.512+0.384).

• Notes:
– For	averaging	to	work,	classifiers	need	to	be	at	least	somewhat	independent.
– You	also	want	the	probability	of	being	right	to	be	>	0.5,	otherwise	it	will	do	much	worse.
– Probabilities	also	shouldn’t	be	to	different (otherwise,	it	might	be	better	to	take	most	accurate).

Averaging
• Consider	a	set	of	classifiers	that	make	these	predictions:

– Classifier	1:	“spam”.
– Classifier	2:	“spam”.
– Classifier	3:	“spam”.
– Classifier	4:	“not	spam”.
– Classifier	5:	“spam”.
– Classifier	6:	“not	spam”.
– Classifier	7:	“spam”.
– Classifier	8:	“spam”.
– Classifier	9:	“spam”.
– Classifier	10:	“spam”.

• If	these	independently	get	80%	accuracy,	mode	will	be	close	to	100%.
– In	practice	errors	won’t	be	completely	independent	(due	to	noise	in	labels).

Why	can	Averaging	Work?
• Why	can	averaging	lead	to	better	results?

• Consider	classifiers	that	overfit (like	deep	decision	trees):
– If	they	all	overfit in	exactly	the	same	way,	averaging	does	nothing.

• But	if	they	make	independent	errors:
– Probability	that	“average”	is	wrong	can	be	lower	than	for	each	classifier.
– Less	attention	to	specific	overfitting	of	each	classifier.

Random	Forests
• Random	forests	average	a	set	of	deep	decision	trees.
– Tend	to	be	one	of	the	best	“out	of	the	box”	classifiers.

• Often	close	to	the	best	performance	of	any	method	on	the	first	run.
– And	predictions	are	very	fast.

• Do	deep	decision	trees	make	independent	errors?
– No:	with	the	same	training	data	you’ll	get	the	same	decision	tree.

• Two	key	ingredients	in	random	forests:
– Bootstrapping.
– Random	trees.

Bootstrap	Sampling
• Start	with	a	standard	deck	of	52	cards:

1. Sample	a	random	card:
(put	it	back	and	re-shuffle)

2. Sample	a	random	card:
(put	it	back	and	re-shuffle)

3. Sample	a	random	card:
(put	it	back	and	re-shuffle)

– …
52. Sample	a	random	card:

(which	may	be	a	repeat)

• Make	a	new	deck	of	the	52	samples:
https://commons.wikimedia.org/wiki/File:English_pattern_playing_cards_deck.svg

Bootstrap	Sampling
• New	52-card	deck	is	called	a
“bootstrap	sample”:

– Some	cards	will	be	missing,	and	some	cards	will	be	duplicated.
• So	calculations	on	the	bootstrap	sample	will	give	different	results	than	original	data.

– However,	the	bootstrap	sample	roughly	maintains	trends:
• Roughly	25%	of	the	cards	will	be	diamonds.
• Roughly	3/13	of	the	cards	will	be	“face”	cards.
• There	will	be	roughly	four	“10”	cards.

– Common	use:	compute	a	statistic	based	on	several	bootstrap	samples.
• Gives	you	an	idea	of	how	the	statistic	varies	as	you	vary	the	data.

Random	Forest	Ingredient	1:	Bootstrap
• Bootstrap	sample	of	a	list	of	‘n’	examples:

– A	new	set	of	size	‘n’	chosen	independently	with	replacement.

– Gives	new	dataset	of	‘n’	examples,	with	some	duplicated	and	some	missing.
• For	large	‘n’,	approximately	63%	of	original	examples	are	included.

• Bagging:	using	bootstrap	samples	for	ensemble	learning.
– Generate	several	bootstrap	samples	of	the	examples	(xi,yi).
– Fit	a	classifier	to	each	bootstrap	sample.
– At	test	time,	average	the	predictions.

Summary
• Encouraging	invariance:	
• Add	transformed	data	to	be	insensitive	to	the	transformation.

• Ensemble	methods take	classifiers	as	inputs.
• Try	to	reduce	either	Etrain or	Eapprox without	increasing	the	other	much.
• “Boosting”	reduces	Etrain and	“averaging”	reduces	Eapprox.

• Averaging:	
• Improves	predictions	of	multiple	classifiers	if	errors	are	independent.

• Bagging:
• Ensemble	method	where	we	apply	same	classifier	to	“bootstrap	samples”.

• Next	time:
• We	start	unsupervised	learning.

3	Defining	Properties	of	Norms
• A	“norm”	is	any	function	satisfying	the	following	3	properties:

1. Only	‘0’	has	a	‘length’	of	zero.
2. Multiplying	‘r’	by	constant	‘α’	multiplies	length	by	|α|
• “If	be	will	twice	as	long	if	you	multiply	by	2”:	||αr||	=	|α|•||r||.
• Implication	is	that	norms	cannot	be	negative.

3. Length	of	‘r+s’	is	not	more	than	length	of	‘r’	plus	length	of	‘s’:
• “You	can’t	get	there	faster	by	a	detour”.
• “Triangle	inequality”:	||r	+	s||	≤	||r||	+	||s||.

Squared/Euclidean-Norm	Notation

Lp-norms
• The	L1-,	L2-,	and	L∞-norms	are	special	cases	of	Lp-norms:

• This	gives	a	norm	for	any	(real-valued)	p	≥	1.
– The	L∞-norm	is	limit	as	‘p’	goes	to	∞.

• For	p	<	1,	not	a	norm	because	triangle	inequality	not	satisfied.

Why	does	Bootstrapping	select	approximately	63%?

• Probability	of	an	arbitrary	xi being	selected	in	a	bootstrap	sample:

Why	Averaging	Works
• Consider	‘k’	independent	classifiers,	whose	errors	have	a	variance	of	σ2.
• If	the	errors	are	IID,	the	variance	of	the	average	is	σ2/k.

– So	the	more	classifiers	you	average,	the	more	you	decrease	error	variance.
(And	the	more	the	training	error	approximates	the	test	error.)

• Generalization	to	case	where	classifiers	are	not	independent	is:

– Where	‘c’	is	the	correlation.

• So	the	less	correlation	you	have	the	closer	you	get	to	independent	case.
• Randomization	in	random	forests	decreases	correlation	between	trees.

– See	also	“Sensitivity	of	Independence	Assumptions”.

How	these	concepts	often	show	up	in	practice
• Here	is	a	recent	e-mail	related	to	many	ideas	we’ve	recently	covered:

– “However,	the	performance	did	not	improve	while	the	model	goes	deeper	and	with	
augmentation.	The	best	result	I	got	on	validation	set	was	80%	with	LeNet-5	and	NO	
augmentation	(LeNet-5	with	augmentation	I	got	79.15%),	and	later	16	and	50	layer	
structures	both	got	70%~75%	accuracy.

In	addition,	there	was	a	software	that	can	use	mathematical	equations	to	extract	
numerical	information	for	me,	so	I	trained	the	same	dataset	with	nearly	100	features	on	
random	forest	with	500	trees.	The	accuracy	was	90%	on	validation	set.

I	really	don't	understand	that	how	could	deep	learning	perform	worse	as	the	number	of	
hidden	layers	increases,	in	addition	to	that	I	have	changed	from	VGG	to	ResNet,	which	
are	theoretically	trained	differently.	Moreover,	why	deep	learning	algorithm	cannot	
surpass	machine	learning	algorithm?”

• Above	there	is	data	augmentation,	validation	error,	effect	of	the	fundamental	
trade-off,	the	no	free	lunch	theorem,	and	the	effectiveness	of	random	forests.

Bayesian	Model	Averaging
• Recall	the	key	observation	regarding	ensemble	methods:
– If	models	overfit in	“different”	ways,	averaging	gives	better	performance.

• But	should	all	models	get	equal	weight?
– E.g.,	decision	trees	of	different	depths,	when	lower	depths	have	low	
training	error.

– E.g.,	a	random	forest	where	one	tree	does	very	well	(on	validation	error)	
and	others	do	horribly.

– In	science,	research	may	be	fraudulent	or	not	based	on	evidence.

• In	these	cases,	naïve	averaging	may	do	worse.

Bayesian	Model	Averaging
• Suppose	we	have	a	set	of	‘m’	probabilistic	binary	classifiers	wj.
• If	each	one	gets	equal	weight,	then	we	predict	using:

• Bayesian	model	averaging	treats	model	‘wj’	as	a	random	variable:

• So	we	should	weight	by	probability	that	wj is	the	correct	model:
– Equal	weights	assume	all	models	are	equally	probable.

Bayesian	Model	Averaging
• Can	get	better	weights	by	conditioning	on	training	set:

• The	‘likelihood’	p(y	|	wj,	X)	makes	sense:
– We	should	give	more	weight	to	models	that	predict	‘y’	well.
– Note	that	hidden	denominator	penalizes	complex	models.

• The	‘prior’	p(wj)	is	our	‘belief’	that	wj is	the	correct	model.	
• This	is	how	rules	of	probability	say	we	should	weigh	models.
– The	‘correct’	way	to	predict	given	what	we	know.
– But	it	makes	some	people	unhappy	because	it	is	subjective.

