Lecture Slides Chapter Extras
00 Introduction 1  
01 No lecture.    
02 Simple linear regression model; least squares; residuals 2  
03 Introduction to MATLAB   demo.m
plot_gpa_fit.m
my_regress.m
CH01PR19.txt
Getting started guide
04 Normal error regression model; maximum likelihood    
05 Confidence intervals and hypothesis testing in the normal regression model.    
06 Proof of Gauss Markov Theorem    
07 Inference in Normal Regression Model 2.7-2.10  
08 ANOVA   Cochran’s theorem
09 Diagnostics and Remedial Measures 3  
10 Remedial Measures and Transformations 4  
11 Joint estimation, Bonferroni joint confidence intervals 5  
12 Linear Algebra Review   Cheat sheets
Matrix, Gaussian, Linear Algebra
13 cont.    
14 cont.    
15 Multivariate Normal Review    
16 cont.    
17 Matrix Linear Regression 5  
18 Multiple linear regression, Testing 6  
19 Quantitative and Qualitative Inputs, Interactions, and Interpretation 8  
20 ANOVA / Extra Sums of Squares 7  
21 Proof of Cochran’s Theorem, extra    
Term: Fall 2011
Time: Tu-Th, 9:10am-10:25am
Location : Fayerweather 310
Professor: Frank Wood
Email: fwood@stat.columbia.edu
Office:
Room 1017
School of Social Work
Hours:
Wed. 1pm-2pm
TA: Ran He
Email: ran@stat.columbia.edu
Office:
TBA
School of Social Work
Hours:
TBA
TBA