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AUGMENTATION-BASED PRECONDITIONERS FOR SADDLE-POINT SYSTEMS
WITH SINGULAR LEADING BLOCKS∗

SUSANNE BRADLEY† AND CHEN GREIF†

Abstract. We consider the iterative solution of symmetric saddle-point matrices with a singular leading block.
We develop a new ideal positive definite block-diagonal preconditioner that yields a preconditioned operator with four
distinct eigenvalues. We offer a few techniques for making the preconditioner practical and illustrate the effectiveness
of our approach with numerical experiments. The novelty of the paper lies in the generality of the assumptions made:
as long as the saddle-point matrix is nonsingular, there is no assumption on the specific rank of the leading block.
Current ideal preconditioners typically rely either on invertibility or a high nullity of the leading block, and the new
technique aims to bridge this gap. A spectral analysis is offered, accompanied by numerical experiments.
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1. Introduction. Consider the saddle-point system

(1.1)
[
A BT

B 0

] [
x
y

]
=

[
f
g

]
,

where A ∈ Rn×n is symmetric positive semidefinite and B ∈ Rm×n has full row rank, with
m < n. We denote the coefficient matrix by

K =

[
A BT

B 0

]
.

We assume throughout that K is invertible. A necessary and sufficient condition for this is
that ker(A) ∩ ker(B) = {0}; see [1, Theorem 3.2]. Thus, the nullity of A must be no greater
than m or K will necessarily be singular. We therefore say that a leading block A with nullity
m is lowest-rank or maximally rank-deficient. Under the assumptions above, the matrix K is
symmetric and indefinite, and the solution of the linear system (1.1) poses several numerical
challenges; we refer to the survey of [1] for an overview of related solution methods.

Our focus is on positive definite preconditioners which maintain symmetry of the pre-
conditioned operator and can therefore be used with a symmetric iterative solver such as
MINRES [16]. When A is positive definite, the preconditioner of Murphy, Golub, and
Wathen [14]

M1 =

[
A 0
0 BA−1BT

]
has the property that the preconditioned operator M−11 K has three distinct eigenvalues,
meaning that a preconditioned iterative solver (such as MINRES) will converge within three
iterations in exact arithmetic. In practice, the matrices A and BA−1BT are too expensive to
form and solve for exactly, so approximations must be sought.

The case in which A is singular has been studied less; see [6, 10, 11] for preconditioning
approaches in this setting. Golub, Greif, and Varah [10] have analyzed the positive definite
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block-diagonal preconditioner

M2 =

[
A+BTWB 0

0 B(A+BTWB)−1BT

]
,

where W ∈ Rm×m is a positive semidefinite matrix such that A + BTWB is positive
definite. This can be considered a generalization of M1 in which a semidefinite term is
first added to the leading block to make it positive definite. Because of the requirement that
ker(A) ∩ ker(B) = {0}, the matrix A + BTWB is necessarily positive definite if W is
positive definite (though this is not a necessary condition unless A is lowest-rank).

While the preconditioned operatorM−12 K is not guaranteed to have a fixed, small number
of distinct eigenvalues, it is shown in [10, Theorem 2.5] that the eigenvalues are bounded within
the intervals

[
−1, 1−

√
5

2

]
∪
[
1, 1+

√
5

2

]
. However, from [6, Theorem 3.5] and [11, Theorem 4.1],

we can observe thatM−12 K does have exactly two distinct eigenvalues when A has maximal
nullity.

Contribution of this paper. At present, to the best of our knowledge, the literature
provides ideal positive definite block-diagonal preconditioners that yield preconditioned
operators with a small number of distinct eigenvalues (and, therefore, will lead to convergence
of a preconditioned iterative solver in a small number of iterations in the absence of round-
off errors) in the cases where A has full rank and where A has maximal nullity. In this
work, we bridge the gap between the full-rank and minimal-rank (or maximal-nullity) cases
by providing such a preconditioner for cases in which (n − m) < rank(A) < n. This is
potentially meaningful because on the one hand we cannot invert A, and, given its assumed
rank deficiency, the Schur complement BA−1BT does not exist either, making it difficult to
develop standard preconditioners. On the other hand, unique algebraic properties that have
been studied in [6, 10, 11] for the maximal-nullity case cannot be applied either.

Outline. We provide relevant mathematical background in Section 2 and describe our
preconditioning approach in Section 3. We then provide numerical experiments in Section 4
and concluding remarks in Section 5.

2. Mathematical background. In this section, we provide some existing results that
will aid us in developing and analyzing our preconditioner. Section 2.1 describes previous
strategies in the literature for augmenting a rank-deficient leading block A, and Section 2.2
describes some special properties of matrices with maximally rank-deficient leading blocks.
We then use these techniques to provide an alternative proof of a result in [11] for matrices
with a maximally rank-deficient A, and we use the insights of this alternative proof to adapt
this approach to matrices with non-maximally rank-deficient A in Section 3.

2.1. Leading block augmentation. Our strategy for preconditioning involves augment-
ing the leading block A so that it becomes positive definite, rather than semidefinite. We
observe that (1.1) can be reformulated as (see, for example, [8, 9]):[

A+BTWB BT

B 0

] [
x
y

]
=

[
f +BTWg

g

]
,

where W is an m×m matrix. We will assume that W is positive semidefinite and that the
leading block

(2.1) AW = A+BTWB

is positive definite. An advantage of this approach is that a positive definite leading block
will provide flexibility in both forming and analyzing our preconditioners later in this paper.
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This approach proved effective in [2] for fluid flow problems. We also recall the following
result [8, 9]:

LEMMA 2.1. Let

K(W ) =

[
AW BT

B 0

]
,

where W ∈ Rm×m. If K and K(W ) are both nonsingular, then

K−1 = (K(W ))−1 +

[
0 0
0 W

]
.

2.2. Matrix properties when nullity(A) = m. When A has maximal nullity, that is,
when nullity(A) = m, the blocks of K and those of the augmented matrix K(W ) interact in
unique ways, which provide useful tools in the design and analysis of preconditioners.

Estrin and Greif [6, Theorem 3.5] provide the following result for the Schur complement
of K(W ):

PROPOSITION 2.2. Suppose that nullity(A) = m, and let W ∈ Rm×m be an invertible
matrix. Then

B(A+BTWB)−1BT = W−1.

We also recall the following result [7, Corollary 2.1] applying to more general matrices,
which we will use repeatedly in our analyses:

LEMMA 2.3. For matrices M,N ∈ Rn×n with rank(M) = r, rank(N) = n − r, and
M +N nonsingular, the matrix (M +N)−1M is a projector with rank r. Moreover,

M(M +N)−1N = 0.

A recent article by the authors [3] provides eigenvalue bounds for saddle-point systems
with a rank-deficient leading block. We will use the following result [3, Theorem 7] in our
analyses:

THEOREM 2.4. When rank(A) = n−m, the positive eigenvalues of K are greater than
or equal to

min
{
µ+
min(1− cos(θmin)), σmin

√
1− cos(θmin)

}
,

where µ+
min denotes the smallest positive eigenvalue of A, σmin the smallest singular value of

B, and θmin the minimum principal angle between range(A) and range(BT ).

2.3. Preconditioning when nullity(A) = m. We consider the block-diagonal precon-
ditioner [11]

(2.2) MW =

[
AW 0

0 W−1

]
,

where W is positive definite and AW is as defined in (2.1). Let us denote the blocks of the
split-preconditioned operatorM−1/2W KM−1/2W as follows:

M−1/2W KM−1/2W =

[
A
−1/2
W AA

−1/2
W A

−1/2
W BTW 1/2

W 1/2BA
1/2
W 0

]
=:

[
Ã B̃T

B̃ 0

]
.

LEMMA 2.5. When rank(A) = n − m, the blocks of M−1/2W KM−1/2W satisfy the
following:
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(i) All nonzero eigenvalues of Ã are equal to 1.
(ii) All singular values of B̃ are equal to 1.

(iii) The subspaces range(Ã) and range(B̃T ) are orthogonal.
Proof. To prove (i), we note that Ã is similar toA−1W A, which is a projector by Lemma 2.3.

Lemma 2.2 gives us that BA−1W BT = W−1, and therefore

B̃B̃T = W 1/2BA−1W BTW 1/2 = I,

which proves (ii). We prove (iii) by showing that range(B̃T ) ⊆ ker(Ã). We write

ÃB̃T = A
−1/2
W AA−1W BTW−1/2 = 0,

where the second equality follows from the result of [6, Proposition 2.6], which shows that
A−1W BT is a null-space matrix of A.

We now consider what the results of Lemma 2.5 tell us about the eigenvalues ofM−1W K
when rank(A) = n − m. The orthogonality of range(Ã) and range(B̃T ) means that the
value of cos(θmin) in Theorem 2.4 is 1 and thus that the positive eigenvalues are greater than
or equal to the minimum of the smallest positive eigenvalue of Ã and the smallest singular
value of B̃. These are both equal to 1 by parts (i) and (ii) of Lemma 2.5. Because the
maximal eigenvalues of Ã and singular values of B̃ are also equal to 1, all negative eigenvalues
are equal to −1 and all positive eigenvalues are less than or equal to 1 (as a consequence
of [17, Lemma 2.1]). This yields the following result, which is also shown via a different
proof method in [11, Theorem 4.1]; we refer to that proof for a derivation of the multiplicities
of the eigenvalues.

PROPOSITION 2.6. When rank(A) = n − m, the matrix M−1W K has two distinct
eigenvalues given by 1 and −1 with algebraic multiplicities n and m, respectively.

Proposition 2.6 tells us that when A has maximal nullity, there is a block-diagonal
preconditioner that yields a preconditioned operator with two distinct eigenvalues. This is
similar to the block-diagonal preconditioner of [14], which yields a preconditioner with three
distinct eigenvalues in the case that A is positive definite. What has not yet been developed is
a preconditioner that gives a small fixed number of distinct eigenvalues for the “in-between”
case where A is rank-deficient but not lowest-rank. This is the focus of the next section.

3. Block-diagonal preconditioning for non-maximal nullity.

3.1. Preconditioner derivation. Let us now consider the case in which A has nullity
k, with k < m. We first investigate how we can devise a preconditioner to preserve (perhaps
approximately) the properties listed in Lemma 2.5 in the case where we no longer have
maximal nullity.

LetM be a general block-diagonal preconditioner of the form

M =

[
A+G 0

0 C

]
,

where C is positive definite and G is a semidefinite matrix such that A+G is positive definite.
As before, let us define the split-preconditioned system:

M−1/2KM−1/2 =

[
(A+G)−1/2A(A+G)−1/2 (A+G)−1/2BTC−1/2

C−1/2B(A+G)−1/2 0

]
=:

[
Ã B̃T

B̃ 0

]
.
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Property (i) of Lemma 2.5 holds whenever rank(G) = k; see Lemma 2.3. It is also
straightforward to verify, using a similar process as in the proof of Lemma 2.5, that Property (ii)
holds if and only if

C = B(A+G)−1BT .

Property (iii) of Lemma 2.5 holds because, in that lemma’s setting,

A(A+G)−1BT = 0.

We can write this as

A(A+G)−1BT = (A+G−G)(A+G)−1BT = B −G(A+G)−1BT .(3.1)

Suppose that G has rank k, which we have argued will ensure Property (i). Then, as a
consequence of Lemma 2.3, G(A+G)−1 is a projector onto the range of G. From (3.1) we
see that Property (iii) will hold if G(A+G)−1 is a projector onto the range of BT ; however,
this is clearly not possible if rank(G) = k < m. We note that if we set

G = BTWkB,

where Wk is a symmetric positive semidefinite matrix of rank k, then this matrix will be a
projector onto a rank-k subspace of range(BT ). While Property (iii) will not hold in this case
because ÃB̃T 6= 0, we instead have that nullity(ÃB̃T ) = k, which is the highest nullity we
can achieve, as from (3.1) we have a rank-k term being subtracted from B.

Thus, we consider the preconditioner:

(3.2) Mk =

[
Ak 0
0 Sk

]
,

where Ak = A + BTWkB and Sk = BA−1k BT , with rank(Wk) = nullity(A) = k.
This is the same preconditioner analyzed in [10] but with the additional assumption that
rank(Wk) = k.

REMARK 3.1. We note that when A has maximal nullity, the preconditionerMk reduces
to (2.2) as shown by Greif and Schötzau. When A is positive definite,Mk is equivalent to the
preconditionerM1.

3.2. Analysis of Mk. We now present some lemmas that will be necessary for our
analysis.

LEMMA 3.2. When rank(Wk) = nullity(A) = k,

(BA−1k BT )−1 = Wk + (BBT )−1B(A−AV A)BT (BBT )−1,

where V = Z(ZTAZ)−1ZT with Z ∈ Rn×(n−m) being a null-space matrix of B.
Proof. The proof follows by considering the block inverses of K and

K(Wk) :=

[
Ak BT

B 0

]
.

Let Z ∈ Rn×(n−m) denote a matrix whose columns form a basis for ker(B). The inverse of
K is (see [1, Eq. (3.8)]):

K−1 =

[
V (I − V A)BT (BBT )−1

(BBT )−1B(I −AV ) −(BBT )−1B(A−AV A)BT (BBT )−1

]
,
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where V = Z(ZTAZ)−1ZT . We note that ZTAZ must be nonsingular for any nonsingular
K (see [1]). The result then follows from Lemma 2.1 and the fact that the (2, 2)-block of
(K(Wk))−1 is equal to −(BA−1k BT )−1 (see [1, Eq. (3.4)]).

LEMMA 3.3. The matrix V A is a projector. Moreover, when rank(Wk)=nullity(A)=k,
the following results hold:

(i) The matrix A−1k A is a projector.
(ii) The matrices V A and A−1k A commute.
Proof. By writing V A = Z(ZTAZ)−1ZTA, it is clear that V A is a projector onto

ker(B). Result (i) holds because of Lemma 2.3.
To verify (ii), we first note that

V AA−1k A = V A,

because AA−1k is a projector onto the range of A. This result follows from the fact that
A−1k A = (AA−1k )T is a projector. Because A−1k A = I −A−1k BTWkB, we can write

A−1k AZ = Z −A−1k BTWBZ = Z.

Therefore,

A−1k AV A = A−1k AZ(ZTAZ)−1ZTA = Z(ZTAZ)−1ZTA = V A = V AA−1k A.

THEOREM 3.4. Let K be nonsingular with A having nullity k, and let Wk ∈ Rm×m
be a rank-k matrix such that A+BTWkB is positive definite. The preconditioned operator
M−1k K has four distinct eigenvalues:

• λ = −1 with multiplicity k;
• λ = 1 with multiplicity n−m+ k;
• λ = 1±

√
5

2 , each with multiplicity m− k.
Proof. We consider the eigenvalue equations for the preconditioned system:

Ax+BT y = λAkx,(3.3a)
Bx = λSky.(3.3b)

From (3.3b) we obtain y = 1
λS
−1
k Bx. Substituting this into (3.3a) and rearranging yields

(3.4) A−1k Ax+
1

λ
A−1k BTS−1k Bx− λx = 0.

By Lemma 3.2, we can write

A−1k BTS−1k B = A−1k BTWkB

+A−1k BT (BBT )−1B(A−AV A)BT (BBT )−1B.
(3.5)

As was discussed in the proof of Lemma 3.3, V A is a projector onto ker(B), meaning that
I − V A is a projector onto range(B). Because BT (BBT )−1B is an orthogonal projector
onto this subspace, we have

(I − V A)BT (BBT )−1B = I − V A.

Similarly, BT (BBT )−1B(I − AV ) = I − AV . Thus, we can further simplify (3.5) using
relations we developed in Lemma 3.3:

A−1k BTS−1k B = A−1k BTWkB +A−1k (A−AV A) = I −A−1k AV A = I − V A.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

PRECONDITIONING FOR SINGULAR LEADING BLOCKS 227

We can thus rewrite (3.4) as

(3.6) A−1k Ax− 1

λ
V Ax+

(
1

λ
− λ
)
x = 0.

By Lemma 3.3, A−1k A and V A are commuting projectors; thus, they have the same eigenvec-
tors. Because V A has rank n−m and A−1k A has rank n− k, we have

range(V A) ⊆ range(A−1k A) and ker(A−1k A) ⊆ ker(V A).

We now consider x in the ranges/kernels of these projectors.
Case I: When x ∈ ker(A), (3.6) becomes

(3.7)
(

1

λ
− λ
)
x = 0.

We note that x cannot be zero, as (3.3a) would necessarily imply y = 0. Thus, (3.7) gives k
eigenvectors corresponding to each of the eigenvalues λ = ±1.

Case II: When x ∈ range(V A) (and therefore also in range(A−1k A)), (3.6) becomes

(1− λ)x = 0,

which gives n−m additional eigenvectors corresponding to the eigenvalue λ = 1.
Case III: If x ∈ ker(V A) and range(A−1k A), (3.6) becomes(

1 +
1

λ
− λ
)
x = 0,

which gives the eigenvalues λ = 1±
√
5

2 , each with geometric multiplicity m− k. We know
there are m− k such vectors because the projectors commute.

Cases I–III account for all n+m eigenvectors ofM−1k K.

3.3. Schur complement approximations. In practice, the blocks Ak and Sk of the ideal
preconditionerMk defined in (3.2) are too expensive to invert exactly. While developing
suitable approximation strategies for these terms often requires some knowledge of the problem
at hand, we provide two strategies for approximately inverting the Schur complement Sk.

First, recall from Lemma 2.2 that when A has maximal nullity we have S−1k = Wk. Thus,
when A has high but not maximal nullity, it is reasonable to use an approximation of the form

(3.8) S−1k ≈Wk + βI,

where β is a small positive value. We add the βI-term because if A is not maximally rank-
deficient, then Wk will be singular. We refer to this strategy as the “WkI Schur complement
approximation”.

For our second strategy, recall that Lemma 3.2 tells us that

S−1k = Wk + (BBT )−1B(A−AV A)BT (BBT )−1

= Wk + (BBT )−1BA (I − V A)︸ ︷︷ ︸
=:P

BT (BBT )−1.

Since V A is a projector whose range is ker(B) and whose kernel is ker(ZTA), the matrix
P = (I − V A) has range given by ker(ZTA) and kernel given by ker(B). Thus, we consider
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replacing the projector (I − V A) by the orthogonal projector onto range(B), defined by
PB = BT (BBT )−1B. This matrix has the same kernel as P but a different range and has the
advantage of yielding a considerably simpler second term, as we can write

(BBT )−1BAPBB
T (BBT )−1 = (BBT )−1BABT (BBT )−1BBT (BBT )−1

= (BBT )−1BABT (BBT )−1.

Thus, we can also consider the Schur complement approximation

(3.9) S−1k ≈Wk + (BBT )−1BABT (BBT )−1.

We note that this modified second term is similar to the BFBt preconditioner proposed by
Elman in [5] for the Navier-Stokes equations; thus, we refer to this as the “BFBt Schur
complement approximation”.

4. Numerical experiments. In this section we consider implementations of the block-
diagonal preconditioner described in Section 3. All experiments are run in MATLAB R2021a
on a commodity desktop PC. We report computation times for all experiments. The code is
not optimized for efficiency, and the measurements do not represent what would be possible
with an optimized, state-of-the-art code base; they are included as a way to compare the
computational costs of different approaches and validate our analytical observations.

4.1. Selection of the weight matrix. Here we detail our general approach for choosing
Wk. For simplicity, all our matrices Wk are diagonal matrices with either 1 or 0 on the
diagonal; thus, the augmented matrix Ak is equal to A in addition to k terms of the form bT b,
where b is a single row of B. Hence, our task of selecting Wk becomes the task of selecting
which rows of B to use to augment A.

We begin by constructing a matrix Adrop which is formed by eliminating very small
elements of A. For our purposes, we eliminate those matrix entries whose absolute values are
less than machine epsilon times the largest magnitude entry in A. We then select rows of B
that increase the structural rank of Adrop until the matrix Adrop +

∑
i b
T
i bi has full structural

rank. These selected rows of b do not guarantee that the augmented matrix A+
∑
i b
T
i bi has

full numerical rank or is sufficiently well-conditioned to avoid convergence problems, so in
some cases we add additional rows of B. In these cases, we greedily select the sparsest rows
of B to reduce fill-in of Ak.

We note that, in general, this approach of selecting Wk does not guarantee a “minimal-
rank” augmentation; that is, the rank of Wk may be greater than the nullity of A. Finding a Wk

with rank exactly equal to the nullity of A such that the augmented matrix Ak is sufficiently
well-conditioned to avoid numerical difficulty requires knowledge of the null-space of A and
of which vectors in B will span that null space. That said, in many practical applications, for
example in problems arising from discretizations of PDEs, some information on the discretized
differential operators and their null space is often available.

4.2. Constrained optimization problems.

Problem statement. Given a positive semidefinite Hessian matrix H ∈ Rn×n, vectors
c ∈ Rn and b ∈ Rm, and a Jacobian matrix J ∈ Rm×n, consider the primal-dual pair of
quadratic programs (QP) in standard form:

min
x
cTx+

1

2
xTHx s.t. Jx = b, x ≥ 0,(4.1a)

min
x,y,z

bT y − 1

2
xTHx s.t. JT y + z −Hx = c, z ≥ 0,(4.1b)
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where y and z are vectors of Lagrange multipliers. In linear programming (LP) problems, we
have H = 0.

Each step of a primal-dual interior-point method (IPM) to solve (4.1) requires solving a
linear system of the form [15]

[
H +X−1Z JT

J 0

] [
∆x
∆y

]
=

[
−c−HxJT y + τX−1e

b− Jx

]
.

Here, X and Z are diagonal matrices whose diagonal entries are the components of x and z,
respectively, and τ > 0 is the barrier parameter, which governs the progress of the interior-
point iterations; see [15] for full details. Some entries of the diagonal matrices X and Z
approach zero as the IPM iterations proceed, so the leading block of the saddle-point matrix
becomes increasingly ill-conditioned with the largest magnitude entries occurring along the
diagonal. Thus, the leading block may become nearly singular or numerically singular,
particularly if H is singular.

Description of test problems. We use an implementation of the predictor-corrector
algorithm of Mehrotra [13]. The matrices for the linear programming problems were obtained
from the Sparse Suite matrix collection [4], and the quadratic programming problems are from
TOMLAB1. A summary of the test suite of LP problems used in our experiments is given in
Table 4.1.

TABLE 4.1
Summary of linear programming (LP) problems used in the numerical experiments. The value nnz(K) gives

the number of nonzeros arising in the saddle-point system in each interior-point method iteration.

Problem ID m n nnz(K)

lp_80bau3b 2,262 12,061 35,325
lp_bandm 305 472 2,966
lp_capri 271 482 2,378
lp_finnis 497 1,064 3,824
lp_fit1p 627 1,677 11,545
lp_ganges 1,309 1,706 8,643
lp_lofti 153 366 1,502
lp_maros_r7 3,136 9,408 154,256
lp_osa_14 2,337 5,497 371,894
lp_osa_30 4,350 104,374 708,862
lp_pilot87 2,030 6,680 81,629
lp_scfxm1 330 600 3,332
lp_scsd8 397 2,750 11,334
lp_stair 356 614 4,617
lp_standmps 467 1,274 5,152
lp_stocfor2 2,157 3,045 12,402
lp_truss 1,000 8,806 36,642
lp_vtp_base 198 346 1,397

1Test matrices available at https://tomopt.com/tomlab/.
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TABLE 4.2
MINRES iteration counts for partial, full, and identity-augmentation preconditioners for the lp_80bau3b and

lp_maros_r7 problems, using various block approximation strategies (ID=ideal, D=diagonal, IC=incomplete
Cholesky). Time per iteration (in seconds) is given in parentheses.

Problem ID Partial Full Identity
ID D IC ID D IC ID

80bau3b 5 (0.03) 22 (0.03) 230 (0.02) 18 (2.0) 122 (0.02) 254 (0.01) 43 (0.02)
maros_r7 22 (3.7) 22 (0.2) 56 (0.1) 2 (2.2) 19 (0.1) 26 (0.1) 11 (0.1)

TABLE 4.3
Comparison of memory usage for partial and full augmentation for the lp_80bau3b and lp_maros_r7

problem.

Problem ID Partial augmentation Full augmentation
Rank(W ) nnz(AW ) nnz(IC(AW )) Rank(W ) nnz(AW ) nnz(IC(AW ))

80bau3b 2 12,249 12,101 2,262 456,943 14,183
maros_r7 2,511 1,101,752 31,343 3,136 1,230,928 10,761

Comparison of different augmentation and approximation strategies. In this experi-
ment we consider preconditioners of the form

(4.2) M =

[
Ãaug 0

0 BÂ−1augB
T

]
,

where Ãaug and Âaug are approximations (potentially the same approximation) of an aug-
mented leading block A. Our experiments are for matrices that arise while applying an
interior-point method for an LP problem, so the leading block A is diagonal. We consider
three augmentation strategies:

1. Partial augmentation: we takeAaug = A+BTWkB, where we formWk by selecting
just enough rows of B such that Adrop + BTWkB has full structural rank, where
Adrop is the matrix obtained by setting equal to zero all elements of A with absolute
value less than or equal to machine-epsilon times the largest absolute magnitude
value of A.

2. Full augmentation: we take Aaug = A+BTB.
3. Identity augmentation: we take Aaug = A+ ρI , for some positive ρ.

For Aaug arising from partial and full augmentation, we consider three approximations for
Ãaug and Âaug in (4.2):

(i) Ideal approximation (ID): Ãaug = Âaug = Aaug . We note that this is too expensive
to use in practice, but we include it here for comparison purposes.

(ii) Diagonal approximation (D): Ãaug = Âaug = diag(Aaug).
(iii) Incomplete Cholesky approximation (IC): Ãaug=IC(Aaug) and Âaug=diag(Aaug).

We use IC with a drop tolerance of 0.01.
For the identity-based augmentation, the matrix Aaug is diagonal, so we invert it exactly
(that is, Ãaug = Âaug = Aaug). We use matrices that arise from IPMs for the test problems
lp_80bau3b and lp_maros_r7. Iteration counts and time per iteration are given in
Tables 4.2 and 4.3.

We observe that for lp_80bau_3b, the partial augmentation preconditioner outperforms
the full augmentation preconditioner in terms of both iteration count and memory usage. This
is because the leading block of this matrix is only mildly rank-deficient, so we only need a
low-rank augmentation to make it nonsingular, which leads to a much sparser augmented
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matrix than the full augmentation. Additionally, when we fully augment this matrix, we are
far away from the “ideal” amount of augmentation (i.e., the rank of augmentation that would
yield a small fixed number of distinct eigenvalues in an ideally-preconditioned iterative solver)
because the leading block is nowhere near lowest-rank.

In contrast, the leading block for lp_maros_r7 is highly rank-deficient, as even the
minimal amount of augmentation to obtain a structurally nonsingular leading block requires
using most of the rows of B (2,511, when m for this problem is 3,136). We observe that, in
cases like these where the nullity of the leading block is high such that we are close enough to
the lowest-rank case, the full augmentation performs well. In this case, it actually performs
better than the partial augmentation in terms of iteration counts and computation time because
the fully augmented leading block is more well-conditioned than the partially augmented
leading block. Recall that our procedure for choosing Wk only looks at the structural rank
and does not guarantee that the augmented matrix is actually nonsingular (so we may still
encounter numerical difficulties without further augmentation).

Finally, we note that the incomplete Cholesky approximation strategy is less effective
than the diagonal approximation strategy. One reason for this is that by the time the IPM
matrices are singular, the largest magnitude entries tend to occur along the diagonal; thus, a
diagonal leading block approximation is generally effective as we will see in the next set of
experiments. The other reason is that, as previously mentioned, when we used the incomplete
Cholesky in the leading block, we avoided using the inverse of the incomplete Cholesky factors
in the Schur complement approximation to avoid increasing the computational cost. Thus,
the Schur complement approximation is not equal to BÃ−1augB

T (where Ãaug is the selected
leading block approximation), and as we saw in Section 3, this has an impact on the theoretical
properties of the preconditioned operator.

Running partial augmentation preconditioners for LP test suites. Here we con-
sider preconditioning the complete set of problems described in Table 4.4. The matrices
reported below are the first matrices for which the IPM generates a matrix with a numer-
ically singular leading block. We consider the partial augmentation preconditioner of the
form (4.2) with the diagonal leading block approximation strategy: that is, we define PD using
Ãaug = Âaug = diag(Aaug). In all cases, we select Wk by augmenting A until the matrix
Adrop +BTWkB is structurally nonsingular. The MINRES solver tolerance is set to a relative
residual norm of 10−8. The eigenvalues of the preconditioned operator P−1D K are displayed
in Figure 4.1 for the lp_fit1p problem. There is a strong clustering of the eigenvalues near
1 and 1±

√
5

2 .

Using preconditioned MINRES iterations in an IPM. Here we consider using precon-
ditioned inner solves in an IPM solver. For our test problems, we use the LP lp_stocfor2
and the TOMLAB QP problem 37 (which has m = 490; n = 1275; 3,288 nonzeros in the
Jacobian matrix; and 290 in the Hessian). Our preconditioning approach at each iteration is as
follows:

• If the leading block A is nonsingular, then we use the preconditioner

MLP =

[
A 0
0 BA−1BT

]
for the LP problem (recall that in this context A is diagonal) and

MQP =

[
IC(A) 0

0 B(diag(A))−1BT

]
for the QP, with an IC drop tolerance of 0.01.
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TABLE 4.4
MINRES iteration counts and time per iteration (in seconds) of the partial augmentation preconditioners with

diagonal approximations of Ak .

Problem ID rank(Wk) nnz(Ak)
PD

Iters Time per iter.
80bau3b 1 12,117 20 0.02
bandm 5 1,444 40 0.003
capri 13 2,230 67 0.003
finnis 29 11,184 77 0.006
fit1p 5 2,545 28 0.06
ganges 88 2,690 41 0.01
lofti 13 966 194 0.001
maros_r7 64 73,102 26 0.2
osa_14 34 98,459,317 171 0.06
osa_30 4 354,880,632 80 0.1
pilot87 5 133,798 37 0.2
scfxm1 1 840 32 0.003
scsd8 36 16,826 6 0.003
stair 33 9,994 11 0.006
standmps 2 557,906 65 0.004
stocfor2 61 3,411 9 0.1
truss 15 18,468 34 0.005
vtp_base 10 3,126 125 0.002
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FIG. 4.1. Eigenvalues of the preconditioned operator P−1
D K for the matrix arising in the IPM solution of the

lp_fit1p problem. Horizontal lines are shown at y = ±1, 1±
√
5

2
.
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• If the leading block A is singular, then we select the lowest-rank Wk to make
Adrop +BTWkB nonsingular and use the preconditioner

M =

[
diag(Ak) 0

0 B(diag(Ak))−1BT

]
.

We solve the IPM to a duality gap tolerance of 10−6 and use an inner tolerance of 10−7 for
the MINRES solves.

We observe that for both problems, using inexact solves results in modestly more IPM
iterations, as one would expect. For the LP problem, the leading block was nonsingular for the
first 21 iterations and numerically singular for the final 10. For the QP problem, the leading
block was nonsingular for the first 22 iterations and singular for the last 16. We note that the
average MINRES iteration counts are correspondingly higher for the QP. This is because at the
LP steps with a nonsingular leading block, we were able to use an ideal preconditioner because
the leading block is diagonal, and convergence was always achieved in roughly three iterations.
Additionally, the nonzero Hessian in the QP has some additional terms in the leading block
that are dropped in the diagonal leading block approximation once the leading block becomes
singular.

TABLE 4.5
Comparison of the IPM iterations using a direct vs. preconditioned MINRES solver for the inner linear system

solves. Average number of inner MINRES iterations are reported for both the predictor and corrector steps.

Problem Direct inner solve MINRES inner solve

ID Type IPM iterations IPM iterations Inner iters. (average)
Predictor Corrector

stocfor2 LP 27 31 4.1 4.1
TOMLAB37 QP 31 38 35.1 36.6

Testing different block approximation strategies. Here we test the WkI Schur com-
plement approximation strategy (see (3.8)). We use a matrix that arises at the 20th iteration
of the IPM solution for the LP maros_r7 and use β = 0.5. As we have seen in our earlier
LP experiments, by the time the IPM iterations have advanced enough to create a numerically
singular leading block, the diagonal has enough large entries such that the augmented matrix
Ak is mostly diagonally dominant. Thus, using diag(Ak) is often effective in approximating
Ak. We include comparisons between the preconditioners in which

• Ak is approximated by diag(Ak) and S−1k is approximated by B diag(Ak)−1BT

(the preconditioner PD explored in the previous set of experiments);
• Ak is approximated by diag(Ak) and S−1k is approximated by Wk + βI (“Diago-

nal+WkI” or “D+WkI”).
For this experiment, our weight matrix Wk has rank 2,911 (the minimum required to achieve a
structural nonsingularity of Adrop +BTWkB).

A convergence plot is shown in Figure 4.2. The PD preconditioner converges in 11
iterations and 1.4 seconds (0.1 seconds per iteration) and the Diagonal+WkI preconditioner in
102 iterations and 0.18 seconds (0.0018 seconds per iteration). While this is a significantly
higher iteration count, we note that this preconditioner is extremely cheap (in that it is fully
diagonal) and thus results in faster computational time overall. We note that a basic Jacobi
iteration for the original system (or Jacobi for the leading block combined with the WkI
approximation of the Schur complement) does not lead to convergence. Thus, the leading
block augmentation has the utility in arriving at this surprisingly simple-looking preconditioner.
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FIG. 4.2. Comparison of block approximation strategies (diagonal leading block + B(diag(Ak))
1BT

Schur complement; Diagonal leading block+WkI Schur complement) for a matrix arising from an IPM on the
lp_maros_r7 problem.

4.3. A geophysical inverse problem.

Problem statement. Here we consider the example of a geophysical inverse problem
described in [12], which involves recovering a model based on observations of a field. The
regularized problem is defined by

min
m,u

1

2
||Qu− b||2 +

β

2
||W (m−mref )||2

s.t. A(m)u = q,

where β is a regularization parameter, m is a model, mref is a reference model, W is a weight
matrix, and A(m) is a nonlinear map that encodes the model conditions of the field being
considered. If Gauss-Newton iterations are used, then the linear system to be solved at each
step takes the form QTQ 0 FT

0 βWTW GT

F G 0

 δuδm
δλ

 = −

rurm
rλ

 ,
where F is a large, sparse, nonsingular matrix that stands for the value of the nonlinear map A
at the current iterate mk and G is the Jacobian of A evaluated at the current iterate mk. In the
typical case of sparse observations, G is sparse, and QTQ has high nullity.

Testing different block approximation strategies. In this experiment we test the BFBt
Schur complement approximation strategy given in (3.9). We set the regularization parameter
β = 10−3. The leading block is highly singular, so we augment A by all of B to avoid
numerical difficulties (as simply augmenting by enough rows of B to make the augmented
matrix structurally nonsingular still leads to a matrix that is highly ill-conditioned).
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Recall that the BFBt Schur complement approximation requires two solves for BBT .
Fortunately, for the geophysics problem, this term is sparse and banded. Thus, in computing
this approximation, we will solve exactly for the BBT terms.

We note that the augmented matrix A+BTB has an interesting structure, as we can see
in Figure 4.3: if we partition the matrix into four blocks with the (1, 1)-block of size m and the
(2, 2)-block of size n−m, we observed that the (1, 1)- and (2, 2)-blocks are banded (e.g., for
a problem with m = 9, 261 and n = 17, 261, the bandwidths are 848 and 421, respectively)
and can therefore be solved less expensively than the entire matrix A+BTB. Thus, we use
a block Jacobi iteration as a preconditioner for an inner preconditioned conjugate gradient
(PCG) solver for Ak.

0 2000 4000 6000 8000 10000 12000 14000 16000

nz = 901167

0

2000
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10000
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FIG. 4.3. Sparsity pattern of Ak = A+BTB for a geophysics problem with m = 9, 261 and n = 17, 261.

Thus, in these experiments we compare the preconditioners in which
• Ak is inverted exactly (which is generally not practical for large problems but is

included here for validation and comparison) and S−1k is approximated with the BFBt
approximation. We denote this by “Akinv+BFBt”.

• Ak is inverted approximately using CG to an inner tolerance of 0.1, with a block
Jacobi iteration as a preconditioner, and S−1k is approximated by the BFBt approxi-
mation. We denote this by “CG+BFBt”.

We use MINRES for the Akinv+BFBt preconditioner and FGMRES(30) for the CG+BFBt.
Results are shown in Table 4.6. The Akinv+BFBt preconditioner performs well in terms

of iteration count but includes a very expensive term in the Ak solve. We note, however, that
the number of preconditioned iterations is very close to what we would expect of the ideal
preconditioner (with exact solves for both Ak and Sk), which highlights the effectiveness of
the BFBt Schur complement approximation for this problem. The CG+BFBt preconditioner
achieves similar convergence to the Akinv+BFBt—in particular, the number of iterations
appears to be independent of the problem size—and is modestly less expensive per iteration
in terms of computation time. This is because we avoid the direct solve for Ak but have
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TABLE 4.6
Results (solver iteration counts and time per iteration) for geophysics problems of varying size. Akinv+BFBt =

exact solve for Ak , BFBt approximation for Sk; CG+BFBt = block Jacobi preconditioned CG for Ak , BFBt for Sk .

m n
Akinv+BFBt CG+BFBt

Iters. Time per iter. Iters. Time per iter.
2,197 3,195 6 0.21 9 0.20
4,913 9,009 6 1.07 10 0.76
9,261 17,261 8 2.87 10 2.26

some added expense from the inner CG solves and additional orthogonalization for FGMRES.
On average, the inner PCG solves required 28.7 iterations for the first test problem (with
m = 2, 197 and n = 3, 195), 35.1 iterations for the second problem (with m = 4, 913 and
n = 9, 009), and 35.8 iterations for the third (with m = 9, 261 and n = 17, 261). For larger
problems, we speculate that CG+BFBt will outperform Akinv+BFBt by larger margins.

5. Concluding remarks. We have developed a block-diagonal preconditioner for saddle-
point systems with a singular leading block. We showed how, by augmenting A with a weight
matrix of just high enough rank to overcome its nullity, we yield a preconditioned operator
with a small fixed number of distinct eigenvalues. In doing so, we have closed a gap in the
existing literature by analyzing a preconditioning approach for a scenario where the leading
block of the saddle-point matrix is neither full rank nor does it have nullity equal to the number
of rows of B.

Specifically, we have considered block preconditioners that are based on approximating
the augmented leading block of the saddle-point matrix and the augmented Schur complement.
Typically, the construction of the weight matrix Wk and the selection of effective approxima-
tions may be guided by the problem at hand (for example, in cases where the matrix blocks
and Schur complement arise from well-studied discretized differential operators). We have
provided some general approaches that may work for different problems. For Ak, we have
included diagonal (for LPs), incomplete Cholesky (for QPs), block Jacobi and inner PCG
iterations (for geophysics), and for Sk, the B(diag(Ak))−1BT and WkI approximations (for
the optimization problems) and the BFBt approximation (for the geophysics problem).

We have restricted our attention to diagonal weight matrices with all ones and zeros along
the diagonal and have described a method that looks only at the structural rank of a modified
augmented matrix. Future work may include more sophisticated choices of the weight matrix,
which may in turn yield faster convergence.
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