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1. Introduction

We consider � × � double saddle-point matrices of the form

K =

⎡
⎣A BT 0
B −D CT

0 C E

⎤
⎦ , (1.1)

where A ∈ Rn×n, D ∈ Rm×m, E ∈ Rp×p and � = n +m +p. Given b ∈ R�, these matrices 
and the corresponding linear systems with solution vector u ∈ R�,

Ku = b, (1.2)

arise in a variety of applications in computational science and engineering, and their nu-
merical solution has been the subject of much interest and investigation in recent years. 
Block-tridiagonal linear systems of equations of the form (1.2) arise in the finite element 
or finite difference discretization of the coupled Stokes–Darcy flow equations [5,8,9,14], 
the treatment of mixed and mixed-hybrid formulations of second–order elliptic equa-
tions, elasticity, and liquid crystal problems [3,4,6,16,19], poromechanical equations [11], 
PDE-constrained optimization problems [18,20], and several other important applica-
tions.

The leading block of K is often symmetric positive definite or symmetric positive 
semidefinite. The matrices D or E or both may be zero, depending on the application. 
Permutations may lead to a different block structure of the matrix and additional con-
siderations in the design of numerical solvers, depending among other factors on the 
dimensions of the blocks and their ranks.

The main diagonal blocks A, D, and E in (1.1) are assumed to be symmetric positive 
(semi)definite in most cases. This implies that the matrix K is indefinite, and numerically 
solving the system (1.2) may be challenging, especially if the matrix is large and sparse, 
and iterative methods [21] are required. It is worth mentioning that, under certain as-
sumptions on the block matrices, several preconditioning techniques have been proposed 
to accelerate the convergence of Krylov subspace methods for solving the double (multi-
ple) saddle-point linear system (1.2) or its permuted forms, see [2,1,3,5,8,9,17,22] and the 
references therein. Our present study, however, does not focus on developing precondi-
tioning techniques. Here, we are interested in investigating conditions on invertibility of 
matrices of the form (1.1), which ensure the existence of a unique solution for (1.2). We 
will make nonrestrictive assumptions on the rank structure of the blocks of the matrix 
K, and study invertibility of K given by (1.1).

Some results on invertibility of double saddle-point matrices exist in the literature, but 
to the best of our knowledge they are more limited in scope than the results we present in 
this paper. In [25, Propositions 2.1–2.3], considering the specific situation where D and 
E are both zero matrices, the authors provide some conditions for invertibility, based 
either on assuming full row rank of B and C or assuming zero-only intersections of the 
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kernels of some of the blocks. Some additional conditions on invertibility are provided in 
[7], where all diagonal blocks are assumed to be potentially nonzero.

An outline of the remainder of the paper follows. In section 2, we study the nonsin-
gularity of K under the assumption that all three block diagonal matrices A, D, and E
are possibly rank deficient. We further focus on the case where the leading block A has 
a specific nullity in section 3, where an explicit formula for K−1 is also derived. Finally, 
we draw some conclusions in Section 4.

Notation. Let W be a square matrix. We use the notation W � (�) 0 when W is a 
symmetric (semi)-positive definite matrix. Given a matrix M , the range and kernel of M
are respectively denoted by ran(M) and ker(M). The notations rank(M) and null(M)
stand for the dimensions of ran(M) and ker(M), respectively. Given vectors x, y and z
of dimensions n, m and p, we use Matlab notation [x; y; z] to denote a column vector 
of dimension n + m + p.

2. Necessary and sufficient conditions on invertibility

In this section we present necessary and sufficient conditions for the invertibility of 
K under various assumptions including the case where the matrices A, D and E are 
allowed to be singular simultaneously. We first recall a result that provides necessary 
conditions for nonsingularity of K with respect to its blocks and sufficient conditions for 
the invertibility of K under stricter assumptions.

Proposition 2.1. [7, Proposition 2.1] The following conditions are necessary for K to be 
invertible:

(i) ker(A) ∩ ker(B) = {0};
(ii) ker(BT ) ∩ ker(D) ∩ ker(C) = {0};

(iii) ker(CT ) ∩ ker(E) = {0}.

In the case where A is nonsingular, sufficient conditions for K to be invertible are that 
S1 = D + BA−1BT and S2 = E + CS−1

1 CT are invertible.

We now extend the results of Proposition 2.1. In particular, it turns out that the exis-
tence of K−1 can be concluded without checking the invertibility of S1 = D +BA−1BT

and S2 = E + CS−1
1 CT (which may not even be defined if A is singular), provided that 

certain conditions on the blocks of K hold. In the theorems that follow, we show that 
the kernel of K is trivial to establish the existence of K−1.

Theorem 2.1. Let K be given by (1.1) such that A � 0, D � 0, E � 0 and

K := ker(BT ) ∩ ker(D) ∩ ker(C) = {0}. (2.1)
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Then, the following statements hold:

(1) If A � 0 and ker(CT ) ∩ ker(E) = {0}, then K is invertible;
(2) If E � 0 and ker(A) ∩ ker(B) = {0}, then K is invertible;
(3) If ran(B) ∩ ran(CT ) = {0}, ker(CT ) ∩ker(E) = {0} and ker(A) ∩ker(B) = {0}, then 

K is invertible.

Proof. Let Kū = 0 where ū = [x; y; z]. As a result, we have

Ax + BT y = 0; (2.2a)

Bx−Dy + CT z = 0; (2.2b)

Cy + Ez = 0. (2.2c)

Multiplying (2.2b) on the left by yT , we get

yTBx− yTDy + yTCT z = 0. (2.3)

From Eqs. (2.2a) and (2.2c), we respectively obtain

BT y = −Ax and Cy = −Ez.

Substituting the above relations into (2.3), we obtain

xTAx + yTDy + zTEz = 0. (2.4)

The semidefiniteness of A, D, and E yields

x ∈ ker(A), y ∈ ker(D), and z ∈ ker(E).

From (2.2a) and x ∈ ker(A), we deduce that y ∈ ker(BT ). Also, Eq. (2.2c) together with 
z ∈ ker(E) imply that y ∈ ker(C). Hence, we conclude that y ∈ K where K is defined by 
(2.1). By the assumption (2.1), this ensures that y is a zero vector. Consequently, Eqs. 
(2.2) reduce to

Bx + CT z = 0. (2.5)

To conclude the proof, we consider three cases corresponding to statements (1)–(3) in 
the theorem.

Case (1). If A � 0, then x = 0 by (2.4). Hence, (2.4) and (2.5) imply that z ∈ ker(CT ) ∩
ker(E) = {0}. Therefore, we can conclude that statement (1) of the theorem 
holds.
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Case (2). If E � 0, by Eq. (2.4), then z = 0, which implies that x ∈ ker(A) ∩ ker(B) =
{0}. Now it is immediate to deduce the statement (2).

Case (3). By Eq. (2.5), we have Bx = −CT z. This says that Bx ∈ ran(CT ) and CT z ∈
ran(B). Consequently, the vectors Bx and CT z belong to ran(B) ∩ ran(CT ), 
which is a trivial subspace by the assumption in (3). This implies that Bx and 
CT z are both zero, i.e., x ∈ ker(B) and z ∈ ker(CT ). As a result, from (2.4) it 
follows that x ∈ ker(A) ∩ ker(B) and z ∈ ker(CT ) ∩ ker(E), which completes 
the proof of (3). �

Corollary 2.1. Suppose that D, E � 0, A = 0, and m ≥ n. Then the matrix K is invertible 
if and only if rank(B) = n.

Proof. Let rank(B) = n and Kū = 0 where ū = [x; y; z]. In view of Eq. (2.4), one can 
verify that y and z are both zero when D, E � 0. Therefore, since A = 0, Eqs. (2.2)
reduce to Bx = 0, which implies that x = 0 and completes the proof of the nonsingularity 
of K.

Conversely, assume that K is invertible. If rank(B) < n, then there exists x �= 0 such 
that Bx = 0. Consequently, we have Kũ = 0 for ũ = [x; 0; 0] which contradicts the 
assumed nonsingularity of K. Therefore, we conclude rank(B) = n. �

The following two additional corollaries can be readily proven in a similar fashion to 
Corollary 2.1; their proofs are omitted.

Corollary 2.2. Suppose that A, D � 0 and E = 0, and suppose further that m ≥ p. The 
matrix K is invertible if and only if rank(C) = p.

Corollary 2.3. Suppose that A, E � 0 and D = 0. The matrix K is invertible if and only 
if ker(BT ) ∩ ker(C) = {0}.

We now further establish necessary and sufficient conditions on nonsingularity of 
K under different assumptions, using summation of subspaces. Recall that for given 
subspaces S1 and S2 of the vector space over real numbers, the sum of S1 and S2 is the 
subspace

S1 + S2 = Span{S1 ∪ S2} = {x + y | x ∈ S1, y ∈ S2}.

If S1∩S2 is trivial, the sum of S1 and S2 is called a direct sum and it is written as S1⊕S2; 
every z ∈ S1 ⊕ S2 can be written as z = x + y with x ∈ S1 and y ∈ S2 in a unique way 
[15, Subsection 0.1.3]. The assumptions below are motivated by the discussion in [10] for 
the nonsingular saddle-point system
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[
A BT

B 0

]
︸ ︷︷ ︸

ˆ̄K

[
u

p

]
=

[
f

g

]
,

in which A ∈ Rn×n, B ∈ Rm×n, and the matrix A is assumed to be a maximally rank 
deficient symmetric positive semidefinite matrix, i.e.,

rank(A) = n−m,

or equivalently, null(A) = m.
Bearing in mind that ker(A) ∩ ker(B) = {0} is a necessary condition for invertibility 

of ˆ̄K, then, if in addition rank(B) = m, we have

ker(A) ⊕ ker(B) = Rn. (2.6)

Theorem 2.2. Let K be given by (1.1). Suppose that A � 0, D � 0 and E � 0 such that 
ker(A) ∩ ker(B) = {0}, ker(CT ) ∩ ker(E) = {0}, and condition (2.1) holds. If

ran(B) ∩ ran(CT ) = {0}, (2.7)

then K is invertible. Furthermore, condition (2.7) is necessary for the invertibility of K
when (2.6) is satisfied and

ker(E) ⊕ ker(CT ) = Rp. (2.8)

Proof. Let (2.7) hold. We can conclude the nonsingularity from the third statement in 
Theorem 2.1.

To prove the second assertion stated in the theorem, let K be invertible. Assume that, 
in contradiction to (2.7), there exists a nonzero vector w ∈ ran(B) ∩ran(CT ). As a result

w = Bx and w = CT z (2.9)

for some x ∈ Rn and z ∈ Rp. By the assumptions (2.6) and (2.8), we deduce that the 
vectors x and z can be uniquely written in the form x = x1 + x2 and z = z1 + z2 such 
that x1 ∈ ker(A), x2 ∈ ker(B), z1 ∈ ker(E), and z2 ∈ ker(CT ). From (2.9) it follows 
that w = Bx1 and w = CT z1. Considering these two last relations, we conclude that 
Kũ = 0 for the nonzero vector ũ = [x1; 0; −z1], which is a contradiction to the assumed 
nonsingularity of K. Hence, the subspace ran(B) ∩ ran(CT ) is trivial, as required. �

The following two theorems reveal that the symmetric positive semidefiniteness re-
quirement of two of the block diagonal matrices in Theorem 2.2 can be relaxed under 
certain assumptions on ranks and dimensions of B and C.
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Theorem 2.3. Let K be given by (1.1) such that ker(CT ) ∩ker(E) = {0}. Suppose further 
that n ≥ m, rank(B) = m, and (2.6) holds. Assume that A � 0 and condition (2.7) holds, 
then K is invertible. When E is zero, condition (2.7) is necessary for the invertibility of K.

Proof. We first consider the case where n > m. Let (2.7) be satisfied and suppose that 
Kū = 0 where ū = [x; y; z]. Hence, the relations (2.2) are satisfied. Let Z be an n ×(n −m)
matrix whose columns form a basis for ker(B). It is known that ZTAZ is nonsingular, 
see [13]. In view of (2.6), the vector x can be written as x = x1 + x2 where x1 ∈ ker(A)
and x2 ∈ ker(B). We can write x2 = Zx̃2 for some x̃2 ∈ R(n−m). Using Eq. (2.2a), one 
observes that

AZx̃2 + BT y = 0. (2.10)

Multiplying (2.10) by ZT from the left, by nonsingularity of ZTAZ and ZTBT =
(BZ)T = 0, we conclude that x̃2 is zero, which implies x2 is a zero vector. Consequently, 
(2.10) reduces to

BT y = 0,

and this, together with rank(B) = m, shows that y is zero. As a result, Eqs. (2.2b) and 
(2.2c) take the form

Bx1 + CT z = 0 (2.11a)

Ez = 0. (2.11b)

Since the intersection of ran(B) and ran(CT ) is trivial, (2.11a) implies that x1 ∈ ker(B)
and z ∈ ker(CT ). Notice that z ∈ ker(E) by (2.11b), which yields z ∈ ker(CT ) ∩ ker(E). 
This, together with the fact that x1 ∈ ker(A), implies that z and x are zero. It has been 
already shown that y is zero. Consequently, we deduce the nonsingularity of K.

When n = m, by the assumptions rank(B) = n and (2.6), we conclude that 
null(B) = 0 and null(A) = n. This case happens when A is zero. Consequently, if 
Kū = 0 for ū = [x; y; z] then we can immediately observe that y is zero. Similar to the 
reasoning given above, we can further verify x and z are zero vectors which ensures the 
nonsingularity of K.

Now, suppose that E is zero and K−1 exists. Let w ∈ ran(B) ∩ ran(CT ). Therefore, 
w = Bx and w = CT z for some x ∈ Rn and z ∈ Rp. By (2.6), we have x = x1 + x2 such 
that x1 ∈ ker(A) and x2 ∈ ker(B), which implies that w = Bx1. Now it can be seen that 
Kū = 0 for ū = [−x1; 0; z]. The nonsingularity of K implies that ū is zero. Hence, the 
vector w is zero. �

The proof of the following theorem follows from applying Theorem 2.3 to the ma-
trix
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Ks :=

⎡
⎢⎣ E C 0
CT −D B

0 BT A

⎤
⎥⎦ , (2.12)

which is similar to K, i.e., Ks = PKP where P is the symmetric permutation matrix 
given as follows:

P =

⎡
⎢⎣ 0 0 I

0 I 0
I 0 0

⎤
⎥⎦ .

Theorem 2.4. Let K be given by (1.1) such that ker(A) ∩ ker(B) = {0}. Furthermore, 
assume that p ≥ m and rank(C) = m, condition (2.8) is satisfied and E � 0. If condition 
(2.7) holds, then K is invertible. When A is zero, condition (2.7) is necessary for the 
invertibility of K.

3. Invertibility when the (1, 1)-block is maximally rank deficient

In this section we mainly focus on obtaining the necessary and sufficient conditions 
for the existence of K−1 defined in (1.1) when null(A) = m. This case is particularly 
interesting in applications related to electromagnetics, such as time-harmonic Maxwell’s 
equations and incompressible magnetohydrodynamics problems. In those cases the lead-
ing block is a discrete curl-curl operator, which is known to have a large kernel of gradient 
functions.

As previously mentioned, the matrix K is similar to Ks given in (2.12). Consequently, 
the following established results can be stated for Ks which results in a distinct set of 
assumptions on the blocks. This entails swapping the roles of A, B, and C with E, CT , 
and BT , respectively.

3.1. On the nullity of the (3, 3) diagonal block

We establish a connection between the invertibility of the matrix E, which is the (3, 3)
diagonal block of K, and the invertibility of K. Some additional connections between the 
nullity of E and the nullity of other blocks of K or its inverse are then provided. Recall 
the following useful theorem.

Theorem 3.1. [10, Theorem 3.5] Suppose that null(A) = m, ker(A) ∩ ker(B) = {0} and 
let W ∈ Rm×m be an invertible matrix. Then,

B(A + BTW−1B)−1BT = W.

We can use the result stated in Theorem 3.1 to establish additional necessary and 
sufficient conditions for the invertibility of K, as follows.
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Proposition 3.1. Let A � 0, D � 0 and assume conditions (i)–(iii) in Proposition 2.1
hold. Assume also that null(A) = m. Then, the matrix K is invertible if and only if the 
matrix S̃ defined below is invertible:

S̃ =
[
− 1

α (2I − αD)−1 (2I − αD)−1
CT

C(2I − αD)−1
E − αC(2I − αD)−1

CT

]
, (3.1)

where α > 0 is a scalar that satisfies, for a nonzero matrix D,

α <
2

λmax(D) . (3.2)

Proof. Let us first define

W =

⎡
⎢⎣ I 0 0
αB I 0
0 0 I

⎤
⎥⎦ . (3.3)

Consider the matrix

WTKW = K̃, (3.4)

where

K̃ =

⎡
⎢⎣A + αBT (2I − αD)B (B − αDB)T α(CB)T

B − αDB −D CT

αCB C E

⎤
⎥⎦ . (3.5)

Notice that 2I − αD � 0, so the block A + αBT (2I − αD)B � 0. Using Theorem 3.1
with W = 1

α (2I − αD)−1, we can verify that

K̃ =
[

I 0
BÃ−1 I

][
Ã 0
0 S̃

][
I Ã−1BT

0 I

]
, (3.6)

where Ã := A + αBT (2I − αD)B, B := [B − αDB; αCB] and

S̃ =
[
−D CT

C E

]
−

[
1
α (I − αD)(2I − αD)−1(I − αD) (I − αD)(2I − αD)−1

CT

C(2I − αD)−1(I − αD) αC(2I − αD)−1
CT

]
.

Denoting M = 2I − αD, one can observe that

S̃ =
[
−D CT

C E

]
−
[

1
α (M − I)M−1(M − I) (M − I)M−1CT

CM−1(M − I) αCM−1CT

]
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=
[
−D CT

C E

]
−
[

1
α (M − 2I + M−1) (M − I)M−1CT

CM−1(M − I) αCM−1CT

]

=
[
−D CT

C E

]
−
[
−D + 1

αM
−1 CT −M−1CT

C − CM−1 αCM−1CT

]

=
[
− 1

αM
−1 M−1CT

CM−1 E − αCM−1CT

]
.

Now it is immediate to deduce (3.1). �
In practice, it is difficult to check the invertibility of S̃ in Proposition 3.1. However, 

it turns out that S̃ can be efficiently factored when λmax(D) < 2.

Proposition 3.2. Assume the same conditions as in Proposition 3.1, but with the addi-
tional assumption λmax(D) < 2. Then, the matrix E is nonsingular if and only if K is 
nonsingular.

Proof. Using the same notation and quantities as in Proposition 3.1, we set α = 1 and 
it is immediate to observe that the condition of the proposition is fulfilled. Denoting 
C̄ = C(2I −D)−1/2, we can verify that

S̃ =
[

(2I −D)−
1
2 0

0 I

][
−I C̄T

C̄ E − C̄C̄T

][
(2I −D)−

1
2 0

0 I

]
.

Hence, by Proposition 3.1, S̃ is invertible if and only if the matrix[
−I C̄T

C̄ E − C̄C̄T

]

is invertible. Straightforward algebraic computations reveal that[
−I C̄T

C̄ E − C̄C̄T

]
=

[
I 0

−C̄ I

][
−I 0
0 E

][
I −C̄T

0 I

]
. (3.7)

Now it is immediate to conclude the assertion. �
By Proposition 3.2, setting α = 1 and using decomposition (3.6), we can observe that 

the matrix K̃ in (3.5) can be written as follows:

K̃ =

⎡
⎢⎣ I 0 0

B1Ã
−1
1 I 0

CBÃ−1
1 −C I

⎤
⎥⎦
⎡
⎢⎣ Ã1 0 0

0 −(2I −D)−1 0
0 0 E

⎤
⎥⎦
⎡
⎢⎣ I Ã−1

1 BT
1 Ã−1

1 BTCT

0 I −CT

0 0 I

⎤
⎥⎦ ,

(3.8)
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where Ã1 = A +BT (2I−D)B and B1 = B−DB. Hence, provided that E is nonsingular, 
the inverse of K̃ exists and it can be decomposed as

K̃−1 =

⎡
⎢⎣ I −Ã−1

1 BT
1 −Ã−1

1 (B + B1)TCT

0 I CT

0 0 I

⎤
⎥⎦
⎡
⎢⎣ Ã−1

1 0 0
0 −(2I −D) 0
0 0 E−1

⎤
⎥⎦

⎡
⎢⎣ I 0 0

−B1Ã
−1
1 I 0

−C(B + B1)Ã−1
1 C I

⎤
⎥⎦ . (3.9)

It is evident that if we add λmax(D) < 2 to the assumptions of Proposition 3.1, then 
nonsingularity of E is a necessary condition for the existence of K−1. As observed in 
the previous section, the existence of E−1 is not always necessary for the nonsingularity 
of K. In the following theorem, we assume that K−1 exists and derive some relations 
between the nullity of the second block diagonal of K−1 and null(A) and null(E). The 
proof of the theorem is inspired by [23, Theorem 2.1].

Theorem 3.2. Let K be invertible with the dimensions n, m, and p defined (1.1), and 
consider the following partitioning of the inverse,

K−1 =

⎡
⎢⎣Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

⎤
⎥⎦ , (3.10)

where Z11, Z22 and Z33 are square matrices with dimensions n, m, and p, respectively. 
Then,

min{max{null(A),null(E)},m} ≤ null(Z22) ≤ null(A) + null(E). (3.11)

In addition, if condition (2.7) is satisfied, then

min{null(A) + null(E),m} ≤ null(Z22) ≤ null(A) + null(E). (3.12)

Proof. Given a matrix W , let N(W ) denote a matrix whose columns form a basis for 
ker(W ). In fact, the number of columns of N(W ) is the nullity of W . To verify relations 
(3.11) and (3.12), we use KK−1 = K−1K = I. First, note that

0 = (K−1K)21 = Z21A + Z22B

0 = (K−1K)23 = Z22C
T + Z23E.

Consequently, we get

Z22[BN(A) CTN(E)] = 0. (3.13)
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Note that BN(A) and CTN(E) have full column rank. Indeed, if there exist y1 and y2
such that

BN(A)y1 = 0 and CTN(E)y2 = 0,

then

N(A)y1 ∈ ker(A) ∩ ker(B) and N(E)y2 ∈ ker(CT ) ∩ ker(E). (3.14)

Since K is nonsingular, by Proposition 2.1, the above relations yield

N(A)y1 = 0 and N(E)y2 = 0,

which ensures that y1 = 0 and y2 = 0. Therefore, we conclude

null(Z22) ≥ min{null(A),m} and null(Z22) ≥ min{null(E),m}. (3.15)

If (2.7) is satisfied, we show that the columns of [BN(A) CTN(E)] are linearly inde-
pendent. To this end, let the vector y = [y1; y2] be such that

BN(A)y1 + CTN(E)y2 = 0.

The above relation together with (2.7) implies that

BN(A)y1 = 0 and CTN(E)y2 = 0,

which leads to (3.14). Hence, we deduce that the vectors y1 and y2 are both zero, and 
(3.13) implies that

null(Z22) ≥ min{null(A) + null(E),m}. (3.16)

Using the following identities

0 = (KK−1)12 = AZ12 + BTZ22

0 = (KK−1)32 = CZ22 + EZ32,

we find

AZ12N(Z22) = 0 and EZ32N(Z22) = 0,

which is equivalent to saying that[
A 0
0 E

][
Z12N(Z22)
Z32N(Z22)

]
=

[
0
0

]
. (3.17)
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In the sequel, we first show that the columns of [Z12N(Z22); Z32N(Z22)] are linearly 
independent. To do so, let [

Z12N(Z22)
Z32N(Z22)

]
y = 0.

As a result, we have Z12N(Z22)y = 0 and Z32N(Z22)y = 0. Therefore, bearing in mind 
that Z22N(Z22) is zero, we conclude that

K−1

⎡
⎢⎣ 0
N(Z22)y

0

⎤
⎥⎦ =

⎡
⎢⎣Z12N(Z22)y
Z22N(Z22)y
Z32N(Z22)y

⎤
⎥⎦ =

⎡
⎢⎣ 0

0
0

⎤
⎥⎦ .

From the above relation, it is immediate to conclude that N(Z22)y = 0, which implies 
y = 0. By (3.17), we have

null(A) + null(E) ≥ null(Z22).

The above relation together with (3.15) and (3.16) shows that both (3.11) and (3.12)
hold. �

We end this part by commenting that if null(E) = 0, regardless of condition (2.7), 
the following relations hold

min{null(A),m} ≤ null(Z22) ≤ null(A),

by Theorem 3.2. In particular, if null(A) = m then Z22 is the zero matrix.

3.2. An explicit formula for the inverse

As pointed out in the previous subsection, the nonsingularity of K implies the existence 
of E−1 under certain conditions. In addition, by Theorem 3.2, the second block of K−1

is zero when null(A) = m and null(E) = 0. We now assume that E is nonsingular and 
derive an explicit formula for the inverse of K without imposing any restrictions on D. 
Define

V = Z(ZTAZ)−1ZT , (3.18)

where Z is a matrix whose columns form a basis for ker(B). In the context of con-
strained optimization, the matrix ZTAZ is known as the reduced Hessian and it 
plays an important role in null-space methods [12]. Here we assume that A � 0 and 
ker(A) ∩ ker(B) = {0}, which ensures the nonsingularity of ZTAZ [13].

We start by establishing the following two propositions that facilitate the derivation 
of a formula for K−1.
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Proposition 3.3. Let A � 0 with null(A) = m, and suppose condition (2.6) holds. Then

A = AV A,

where V is defined in (3.18).

Proof. Let Z be a matrix whose columns form a basis for ker(B) and consider Eq. (3.18). 
We prove the desired result by verifying that for any vector x,

Ax = AV Ax. (3.19)

We have

AV AZ = AZ(ZTAZ)−1ZTAZ

= AZ.
(3.20)

Given an arbitrary vector x, by (2.6) we can write x = x1 + x2 where x1 ∈ ker(A) and 
x2 ∈ ker(B). Trivially, Ax1 = 0, and hence, we need to show the validity of (3.19) for 
x2 ∈ ker(B). We can write x2 = Zx̃ for some x̃. Consequently, (3.19) can be rewritten 
as

AZx̃ = AV AZx̃,

which completes the proof, using (3.20). �
Suppose Z is a matrix whose columns form an orthonormal basis for ker(B). This 

ensures that

BT (BBT )−1B = I − ZZT . (3.21)

Relation (3.21) will come handy in the proofs of Theorems 3.3 and 3.4.
In [10] an explicit formula for the inverse of a classical two-by-two saddle point system 

is derived, which shows that if null(A) = m and the trailing main (2,2) block is zero, then 
the inverse has a trailing zero block as well. The existence of the trailing zero block can 
also be established by the rank relations analyzed in [23]. In [24] the nonzero structure 
of the inverse of a matrix for an incompressible magnetohydrodynamics model problem 
is used to design a sparse approximate inverse as a preconditioner.

Below we show that the trailing block of the inverse remains zero when the trailing 
block of the matrix is nonzero.

Theorem 3.3. Suppose A � 0 with null(A) = m, and assume condition (2.6) holds. Then

K̂ :=
[
A BT

B −D

]
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is invertible and its inverse is given by

K̂−1 =
[

(I − V A)BT (BBT )−1
D(BBT )−1

B(I −AV ) + V (I − V A)BT (BBT )−1

(BBT )−1
B(I −AV ) 0

]
,

(3.22)
where V is as in (3.18) with Z ∈ Rn×(n−m) being any matrix whose columns form an 
orthonormal basis for ker(B).

Proof. Assume that K̂û = 0 where û = [x; y]. Because of (2.6), we have x = x1 + x2
where x1 ∈ ker(A) and x2 ∈ ker(B). Notice that one can verify that x2 = Zx̂2 for some 
x̂2 ∈ R(n−m). As a result, we get

AZx̂2 + BT y = 0 (3.23a)

Bx1 −Dy = 0. (3.23b)

From here we can proceed similarly to the way null-space methods are derived [12]. Mul-
tiplying Eq. (3.23a) by ZT from the left and using ZTBT = 0, we obtain ZTAZx̂2 and 
conclude that x̂2 is zero invoking the fact that ZTAZ is invertible. Also, we can observe 
that y is zero from Eq. (3.23a) and the fact that the columns of BT are linearly inde-
pendent. From (3.23b), we can deduce that x1 = 0, which establishes the nonsingularity 
of K̂.

From (3.18) it follows that

ZZTAV = ZZTAZ(ZTAZ)−1ZT = ZZT . (3.24)

Using (3.21), (3.24) and Proposition 3.3 yields A(I −V A) = (I −AV )A = 0. It can now 
be readily verified that K̂−1K̂ = I where K̂−1 is given by (3.22), as required, �

Under certain conditions, we can further derive an explicit formula for the inverse of 
K given by (1.1). To this end, we present the following theorem.

Theorem 3.4. Suppose that A � 0 with null(A) = m and condition (2.6) holds. If the 
matrix E is symmetric and nonsingular, then the inverse of K is given by

K−1 =

⎡
⎢⎣ T RT ST

R 0 0
S 0 E−1

⎤
⎥⎦ , (3.25)

where

T := (I − V A)BT (BBT )−1 (
D + CTE−1C

)
(BBT )−1

B(I −AV ) + V

R := (BBT )−1
B(I −AV )

S := −E−1C(BBT )−1
B(I −AV ),
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and V is as defined in (3.18), where Z ∈ Rn×(n−m) is any matrix whose columns form 
an orthogonal basis for ker(B).

Proof. To conclude the assertion, we verify that K−1K = I where K−1 is given by (3.25). 
Using Proposition 3.3, Eqs. (3.21) and (3.24), we can conclude

(K−1K)11 = TA + RTB

= V A + (I − V A)BT (BBT )−1B

= V A + (I − V A)(I − ZZT )

= I − ZZT + V AZZT = I.

Taking into account that V BT = (BV )T is zero, and applying some algebraic compu-
tations, we can check that (K−1K)12 = 0, (K−1K)32 = 0 and (K−1K)22 = I. We can 
immediately conclude from Proposition 3.3 that (K−1K)21 = 0 and (K−1K)31 = 0. In ad-
dition, straightforward algebraic computations reveal that (K−1K)13 = 0, (K−1K)23 = 0
and (K−1K)33 = I. �
4. Concluding remarks and future work

The conditions on invertibility provided in this work may be useful to understand 
under what circumstances double saddle-point systems of the form (1.2) can be solved. 
From a theoretical point of view, this is a necessary step in the analysis of solvability and 
other algebraic properties of such systems. From a numerical standpoint, the formulas 
of the inverses and their possible decompositions, may be useful within the context of 
developing preconditioned iterative solvers based on sparse approximate inverses. The 
fact that some of the blocks of the inverse are zero under appropriate rank conditions 
is potentially useful for deriving preconditioners with a specific block structure. Such 
preconditioners may be best utilized if additional information on the underlying appli-
cation beyond the algebraic structure of the blocks is available. Specifically, developing 
efficient preconditioners and analyzing the spectrum of the corresponding preconditioned 
matrices by exploiting the expressions for the inverse of K (Eqs. (3.9) and (3.25)) or the 
inverse of its two-by-two sub-block (Eq. (3.22)) to accelerate Krylov subspace methods 
is currently under investigation.
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