
Received: 4 November 2021 Revised: 16 January 2023 Accepted: 29 March 2023

DOI: 10.1002/nla.2500

R E S E A R C H A R T I C L E

A closed-form multigrid smoothing factor for an additive
Vanka-type smoother applied to the Poisson equation

Chen Greif Yunhui He

Department of Computer Science, The
University of British Columbia,
Vancouver, British Columbia, Canada

Correspondence
Yunhui He, Department of Computer
Science, The University of British
Columbia, Vancouver, BC, Canada.
Email: yunhui.he@ubc.ca

Funding information
Natural Sciences and Engineering
Research Council of Canada

Abstract
We consider an additive Vanka-type smoother for the Poisson equation
discretized by the standard finite difference centered scheme. Using local
Fourier analysis, we derive analytical formulas for the optimal smoothing fac-
tors for vertex-wise and element-wise Vanka smoothers. In one dimension the
element-wise Vanka smoother is equivalent to the scaled mass operator obtained
from the linear finite element method and in two dimensions the element-wise
Vanka smoother is equivalent to the scaled mass operator discretized by bilinear
finite element method plus a scaled identity operator. Based on these findings,
the mass matrix obtained from finite element method can be used as a smoother
for the Poisson equation, and the resulting mass-based relaxation scheme yields
small smoothing factors in one, two, and three dimensions, while avoiding the
need to compute an inverse of a matrix. Our analysis may help better understand
the smoothing properties of additive Vanka approaches and develop fast solvers
for numerical solutions of other partial differential equations.
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1 INTRODUCTION

Consider the Poisson equation in one dimension (1D), two dimensions (2D), and three dimensions (3D):

−Δu = f , (1)

where u and f are functions in the corresponding number of spatial variables. The function f is assumed to be sufficiently
smooth so that finite-difference discretizations of u provide effective approximations of the solution. The differential oper-
ator Δ stands for the Laplacian: Δ ≡ d2

dx2 in 1D, Δ ≡ 𝜕

2

𝜕x2 +
𝜕

2

𝜕y2 in 2D, and Δ ≡ 𝜕

2

𝜕x2 +
𝜕

2

𝜕y2 +
𝜕

2

𝜕z2 in 3D. We assume a uniform
mesh discretization with meshsize h.

We apply the standard three, five, and seven-point finite difference discretizations for the Laplacian. For 1D and 2D
the corresponding stencils are given by

Ah =
1

h2

[
− 1 2 −1

]
, (2)
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and

Ah =
1
h2

⎡
⎢⎢⎢⎣

−1
− 1 4 −1

−1

⎤
⎥⎥⎥⎦
, (3)

respectively. For 3D stencil (3) extends straightforwardly in a third dimension, with the value at its center being 6.
Let us denote the corresponding linear system by

Ahuh = bh. (4)

The numerical solution of (4) is one of the most extensively explored topics in the numerical linear algebra literature.
The discrete Laplacian Ah is a symmetric positive definite M-matrix, its eigenvalues are explicitly known, and it is used as
a primary benchmark problem for the development of fast solvers. When the problem is very large, iterative solvers may
be preferred over direct solvers, and may be further accelerated by parallelizing the computation.

One of the most efficient methods for solving (4) is multigrid.1,2 There are several studies of smoothers for multi-
grid for the Poisson equation, such as red–black Gauss Seidel (GS-RB),3,4 red–black SOR,5 lexicographic Gauss–Seidel,6
acceleration of five-point red–black Gauss–Seidel,7 to mention just a few papers.

The choice of additive Vanka as relaxation scheme is suitable for parallel computing. Vanka-type smoothers have
been applied to the Navier–Stokes equations,8-10 the Poisson equation using continuous and discontinuous finite elements
methods,11 the Stokes equations with finite element methods,12,13 poroelasticity equations14 in monolithic multigrid, and
other problems. A restricted additive Vanka for Stokes using Q1 − Q1 discretizations15 has demonstrated its competitive-
ness with the multiplicative Vanka smoother. Nonoverlapping block smoothing using different patches has been applied
to the Stokes equations discretized by the marker-and-cell scheme.16 Multiplicative Vanka smoothers in combination
with multigrid methods have been considered by several authors.17-19 Vanka-type relaxation has been used in several con-
texts.8,20,21 A two-grid analysis for Vanka smoothing is discussed for the mixed finite element discretization of the Poisson
equation.22 Weighted max-norm bounds are obtained for algebraic additive Schwarz iterations23 where the coefficient
matrix is an M-matrix. Different Vanka-type smoothers are presented24 for the Stokes equations. Vanka smoothers are
used in the context of discontinuous Galerkin discretization of the Stokes equations.20 Vanka-like multigrid smoothers
in the context of finite element simulations for elasticity equations have also been explored.25 Vanka-based multigrid
relaxation methods for incompressible fluid dynamics has been studied,26 compared with Braess-Sarazin smoother. Con-
vergence properties and numerical examples of Vanka-type smoothers for solving Stokes and Navier–Stokes problems
have been studied9 under suitable conditions. Recently, a scalable and robust vertex-star patch relaxation has been
proposed, applicable to higher polynomial degrees of finite element methods.27

Solvers for the Poisson equation often form the first step for designing fast solvers for more complex problems, such as
the Stokes equations, and Navier–Stokes equations. We therefore believe that the findings in this work can be potentially
useful for designing fast numerical methods for these complex problems.

In the literature, Vanka-type relaxation schemes demonstrate their high efficiency in a multigrid setting, but there
seems no theoretical analysis for the convergence speed even for the simple Poisson equation. In this work we take steps
towards closing this gap by considering the additive Vanka relaxation for the Poisson equation, and exploring stencils for
the Vanka patches. The simplicity of the Poisson equation allows us to make a distinct contribution from an analytical
point of view, because we are able to derive explicit stencils. Doing so, we find that the mass matrix (stencil) is related
to a type of a Vanka stencil, and we further derive the optimal smoothing factor using the mass matrix as a smoother.
This is possible only for the sufficiently-simple structure that the Laplacian offers, and in this regard the paper offers
new insights. As far as we know, no previous articles in the literature provide an analysis based on the stencil of a Vanka
smoother, nor do they consider the mass matrix as a specific potential smoother within this type.

This work further extends work on Vanka patches that was introduced for hybridized and embedded discontinuous
Galerkin methods.11 Here, we find the corresponding stencils for the Vanka operators, and show that they are closely
related to the scaled mass matrix obtained from the finite element method. Based on this discovery, we propose the
mass-based relaxation scheme, which yields rapid convergence. This mass-based relaxation is very simple: the compu-
tational cost is only matrix-vector product and there is no need to solve the subproblems needed in an additive Vanka
setting. Another advantage of the mass matrices obtained from (bi)linear elements is sparsity.

 10991506, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2500 by U

niversity O
f B

ritish C
olum

bia, W
iley O

nline L
ibrary on [06/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GREIF and HE 3 of 19

The remainder of this article is organized as follows. In Section 2, we introduce the two types of additive Vanka
smoothers for the Poisson equation. In Section 3, we present our theoretical analysis of optimal smoothing factors in 1D
and 2D. Based on our analysis we also propose a mass-based smoother for the three-dimensional problem, where the
mass matrix is obtained from the trilinear finite element method. In Section 4, we numerically validate our analytical
observations and present an LFA two-grid convergence factor and multigrid performance. Finally, in Section 5 we discuss
our findings and draw some conclusions.

2 VANKA-TYPE SMOOTHER

We are interested in exploring the structure of additive Vanka-type smoothers for solving the linear system (4) using
multigrid. In general, this type can be thought of as related to the family of block Jacobi smoothers, which are suitable
for parallel computation and are typically highly efficient within the context of multigrid smoothing.

Let the degrees of freedom (DoFs) of uh be the set Υ such that Υ=
⋃N

i=1Υi. Vi is a restriction operator that maps the
vector uh onto the vector in Υi. Define

Ai = ViAhV T
i .

Then, we update current approximation uj by a single Vanka relaxation given by:

Ai𝛿ui = Vi(bh − Ahuj), i = 1, … ,N,

and

uj+1 = uj +
N∑

i=1
V T

i Wi𝛿ui.

A single iteration of the Vanka smoother can be represented as

M =
N∑

i=1
V T

i WiA−1
i Vi, (5)

where the weighting matrix W = Wi is given by the natural weights of the overlapping block decomposition. Each diag-
onal entry is equal to the reciprocal of the number of patches that the corresponding degree of freedom appears in. We
refer to M the Vanka operator.

For a single additive Vanka relaxation process, the relaxation error operator is given by

S = I − 𝜔MAh. (6)

A key factor is the choice of the patch, that is, the {Υi}. We study two patches,11 which are selected based on simple
geometric considerations and a structural similarity to the five-point Laplacian stencil, shown in Figure 1. We refer to
the left patch in Figure 1 as an element-wise patch and the right one as a vertex-wise patch, and denote the corresponding
relaxation error operators defined in (6) as Se and Sv, respectively. We denote the additive smoothers by AS-e and AS-v,
respectively. The circles indicate the number of DoFs in one patch Υi. This means that the resulting subproblem is asso-
ciated with a small matrix Ai whose size is 4 × 4 or 5 × 5. In the remainder of this work, for simplicity and clarity we use
subscripts e and v to distinguish between the corresponding operators for element-wise Vanka and vertex-wise Vanka,
respectively.

3 LOCAL FOURIER ANALYSIS

Local Fourier analysis (LFA)28,29 is a useful tool for predicting and analyzing the convergence behavior of multigrid and
other numerical algorithms. In this section, we use LFA to study the proposed Vanka-type smoothers.
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F I G U R E 1 Left: Element-wise patch. Right: Vertex-wise patch.

LFA works under the assumption that the smoothing process reduces high frequencies and leaves low frequencies
unchanged.28 The LFA smoothing factor typically offers a rather sharp bound on the actual two-grid performance. We
proceed by defining the high and low frequencies for standard coarsening (H = 2h) as follows:

𝜽 ∈ Tlow =
[
−𝜋

2
,

𝜋

2

)d
, 𝜽 ∈ Thigh =

[
−𝜋

2
,

3𝜋
2

)d\[
−𝜋

2
,

𝜋

2

)d
,

where d is the dimension of the underlying problem.

Definition 1. Assume that a scalar operator Lh is defined by the stencil [s
𝜅
], which acts on a grid function

wh(x) given by28

Lhwh(x) =
∑
𝜅∈Ξ

s
𝜅

wh(x + 𝜅h),

where Ξ is a finite index set. Then, the symbol of Lh is defined as

̃Lh =
∑
𝜅∈Ξ

e𝜄𝜅𝜽, 𝜄

2 = −1.

Definition 2. Let S be the relaxation error operator. Then, the corresponding LFA smoothing factor for  is
given by

𝜇(𝜔) = max
𝜽∈Thigh

{
𝜌(̃S(𝜽, 𝜔))

}
, (7)

where ̃S(𝜽, 𝜔) is the symbol of S, 𝜔 is algorithmic parameter, and 𝜌(̃S(𝜽, 𝜔)) denotes the spectral radius of the
matrix ̃S(𝜽, 𝜔).

Note that the LFA smoothing factor 𝜇 is a function of 𝜔. Often, one can minimize (7) with respect to 𝜔 to obtain fast
convergence speed. We define the optimal smoothing factor as

𝜇opt = min
𝜔

𝜇. (8)

In this work, the symbol ̃S for the Laplacian considered is a scalar, so the spectral radius is reduced to the maximum
of a scalar function. In the following, we use LFA to identify the optimal smoothing factor for the additive Vanka-type
relaxation schemes and explore the structure of the Vanka operator M defined in (5). Before providing our detailed analysis
of the smoothing factor for different relaxation schemes, we summarize our results in Table 1. The table provides a review
of quantitative results of additive Vanka smoothers, and for comparison we include results for the standard point-wise
damped Jacobi smoother.

Note that a general form of the symbol of additive Vanka operator for the Stokes equations is available,12 which gives
̃M = ̃V T

̃WΦTA−1
i Φ̃V , where Φ is called the relative Fourier matrix. Here, we can directly apply the formula of ̃M to our

additive Vanka operator.12
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T A B L E 1 Optimal LFA smoothing factors in 1D and 2D.

Smoother Jacobi AS-e AS-v

1D

𝜔opt 2/3 12/17 81/104

𝜇opt 0.333 0.059 0.039

2D

𝜔opt 4/5 24/25 20/23

𝜇opt 0.600 0.280 0.391

3.1 Symbols of Vanka smoothers in 1D

In this section, we first consider the symbol of the element-wise smoother, then the vertex-wise smoother for the Laplacian
in 1D. We discuss the optimal smoothing factor for each case and derive the corresponding stencil for the Vanka operator.

3.1.1 Element-wise Vanka patch in 1D

Using Definition 1 it can easily be shown that the symbol of Ah, see (2), is given by

̃Ah =
1
h2 2(1 − cos 𝜃). (9)

Moreover, for the element-wise patch the subproblem matrix is

Ai =
1
h2

(
2 −1
− 1 2

)
.

The relative Fourier matrix12 Φ is

Φe =

(
1 0
0 e𝜄𝜃

)
.

Then, the symbol of Me is given by ̃Me = ̃V T
̃WΦT

e A−1
i ΦẽV , where

̃V =

(
1
1

)
,

̃W = 1
2

(
1 0
0 1

)
, A−1

i = h2

3

(
2 1
1 2

)
.

Based on the above formulas, we obtain

̃Me =
h2

6
(4 + e𝜄𝜃 + e−𝜄𝜃). (10)

Formula (10) indicates that the element-wise Vanka patch corresponds to the stencil

Me =
h2

6

[
1 4 1

]
. (11)

Recall that the mass stencil in 1D using linear finite elements is given by Matt30

Mfe =
h
6

[
1 4 1

]
. (12)
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6 of 19 GREIF and HE

This means that the element-wise Vanka operator is equivalent to a scaled mass matrix obtained from the linear finite
element method, Me = hMfe.

Next, we give the optimal smoothing factor for the element-wise Vanka relaxation scheme.

Theorem 1. The optimal smoothing factor of Se for the vertex-wise Vanka in 1D is

𝜇e,opt = min
𝜔

max
𝜃∈Thigh

|1 − 𝜔
̃MẽAh| = 1

17
≈ 0.059, (13)

where the minimum is uniquely achieved at 𝜔 = 𝜔opt = 12
17
≈ 0.706.

Proof. When 𝜃 ∈ Thigh = [ 𝜋
2
,

3𝜋
2
],

̃MẽAh =
2
3
(2 − cos 𝜃 − cos2

𝜃) ∈
[4

3
,

3
2

]
.

Thus,

𝜇(𝜔) = max |1 − 𝜔
̃MẽAh| = max

{||||1 − 𝜔

4
3
|||| ,
||||1 − 𝜔

3
2
||||
}

.

To minimize 𝜇(𝜔), we require

||||1 − 𝜔

4
3
|||| =

||||1 − 𝜔

3
2
|||| ,

which gives 𝜔 = 2
4∕3+3∕2

= 12
17

. Then, 𝜇opt = 1 − 2
4∕3+3∕2

4
3
= 1

17
. ▪

It is well known that the optimal smoothing factor for damped Jacobi relaxation for the Laplacian in 1D (with𝜔 = 2
3
) is

1
3
≈ 0.333 ≫ 0.059. This suggests that using the additive Vanka smoother for multigrid achieves much faster convergence.

3.1.2 Vertex-wise Vanka patch in 1D

We now consider the vertex-wise patch. The subproblem matrix is

Ai =
1
h2

⎛
⎜⎜⎜⎝

2 −1 0
− 1 2 −1
0 −1 2

⎞
⎟⎟⎟⎠
.

The relative Fourier matrix12 Φ is

Φv =
⎛
⎜⎜⎜⎝

e−𝜄𝜃 0 0
0 1 0
0 0 e𝜄𝜃

⎞
⎟⎟⎟⎠
.

Then, the symbol of Mv is given by ̃Mv = ̃V T
̃WΦT

v A−1
i ΦṽV , where

̃V =
⎛
⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎠
,

̃W = 1
3

⎛
⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎠
, A−1

i = h2

4

⎛
⎜⎜⎜⎝

3 2 1
2 4 2
1 2 3

⎞
⎟⎟⎟⎠
.
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Using the above formulas, we have

̃Mv = ̃V T
̃WΦT

v A−1
i ΦṽV = h2

12
(10 + 4e𝜄𝜃 + 4e−𝜄𝜃 + e𝜄2𝜃 + e−𝜄2𝜃). (14)

Based on (14), the stencil of Mv is

Mv =
h2

12

[
1 4 10 4 1

]
. (15)

Compared with (11), the vertex-wise Vanka uses a wider stencil.

Theorem 2. The optimal smoothing factor of Sv for the vertex-wise Vanka in 1D is

𝜇v,opt = min
𝜔

max
𝜃∈Thigh

|1 − 𝜔
̃MṽAh| = 1

26
≈ 0.039, (16)

where the minimum is uniquely achieved at 𝜔 = 𝜔opt = 81
104

≈ 0.779.

Proof. From (9) and (14), we have

̃MṽAh =
1
3
(1 − cos 𝜃) (5 + 4 cos 𝜃 + cos(2𝜃)) ,

= 2
3
(1 − cos 𝜃)(2 + 2 cos 𝜃 + cos2

𝜃),

= 2
3
(1 − cos 𝜃)

(
(cos 𝜃 + 1)2 + 1

)
.

Note that when 𝜃 ∈ Thigh = [ 𝜋
2
,

3𝜋
2
], cos 𝜃 ∈ [−1, 0]. Let g(x) = 2

3
(1 − x)

(
(x + 1)2 + 1

)
, where x = cos 𝜃 ∈

[−1, 0]. To identify the range of g(x), we first compute its derivative:

g′(x) = −2
3

x(3x + 2) < 0, for x ∈ [−1, 0].

It follows that
(10

9

)2
= g(−2∕3) ≤ g(x) ≤ g(0) = g(1) = 4

3
.

That is, ̃MṽAh ∈ [( 10
9
)2, 4

3
] for 𝜃 ∈ Thigh . To minimize 𝜇(𝜔), we require 𝜔 = 2

4∕3+(10∕9)2
= 81

104
. Then, it follows

that 𝜇opt = 1 − 2
4∕3+(10∕9)2

( 10
9
)2 = 1

26
. ▪

Again, the optimal smoothing factor for vertex-wise Vanka is significantly smaller (and hence better) than that of the
damped Jacobi relaxation scheme.

3.2 Symbols of Vanka smoothers in 2D

Similarly to previous subsection, we first consider the analytical symbol for the element-wise patch, then for the
vertex-wise patch for the Laplacian in 2D.

3.2.1 Element-wise Vanka patch in 2D

The symbol of Laplace operator discretized by five-point stencil, see (3), is

̃Ah =
1
h2 (4 − e𝜄𝜃1 − e𝜄𝜃2 − e−𝜄𝜃1 − e−𝜄𝜃2) = 1

h2 (4 − 2 cos 𝜃1 − 2 cos 𝜃2) . (17)
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8 of 19 GREIF and HE

For the element-wise patch, the relative Fourier matrix12 Φ is

Φe =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 e𝜄𝜃1 0 0
0 0 e𝜄𝜃2 0
0 0 0 e𝜄(𝜃1+𝜃2)

⎞
⎟⎟⎟⎟⎟⎠

.

Then, the symbol of Me is given by ̃Me = ̃V T
̃WΦT

e A−1
i ΦẽV , where

̃W = 1
4

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

,
̃V =

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎠

, Ai =
1
h2

⎛
⎜⎜⎜⎜⎜⎝

4 −1 −1 0
− 1 4 0 −1
− 1 0 4 −1
0 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎠

.

We have

A−1
i = h2

⎛
⎜⎜⎜⎜⎜⎝

7∕24 1∕12 1∕12 1∕24
1∕12 7∕24 1∕24 1∕12
1∕12 1∕24 7∕24 1∕12
1∕24 1∕12 1∕12 7∕24

⎞
⎟⎟⎟⎟⎟⎠

,

and it follows that

̃Me = ̃V T
̃WΦT

e A−1
i ΦẽV ,

= h2

96
(
28 + 4(e𝜄𝜃1 + e−𝜄𝜃1 + e𝜄𝜃2 + e−𝜄𝜃2) + e𝜄(𝜃1+𝜃2) + e−𝜄(𝜃1+𝜃2) + (e𝜄𝜃1 e−𝜄𝜃2 + e−𝜄𝜃1 e𝜄𝜃2)

)
,

= h2

24
(7 + 2(cos 𝜃1 + cos 𝜃2) + cos 𝜃1 cos 𝜃2) . (18)

Based on the symbol of Me, we obtain the stencil of Me,

Me =
h2

96

⎡
⎢⎢⎢⎣

1 4 1
4 28 4
1 4 1

⎤
⎥⎥⎥⎦
. (19)

Recall that the mass matrix stencil using bilinear finite elements is30

Mfe =
h2

36

⎡
⎢⎢⎢⎣

1 4 1
4 16 4
1 4 1

⎤
⎥⎥⎥⎦
. (20)

Now, we can make a connection between Me and Mfe:

Me =
3
8

Mfe +
h2

8
, (21)

where

 =
⎡
⎢⎢⎢⎣

0 0 0
0 1 0
0 0 0

⎤
⎥⎥⎥⎦
. (22)
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GREIF and HE 9 of 19

Next, we give the optimal smoothing factor for the element-wise Vanka relaxation in 2D.

Theorem 3. The optimal smoothing factor of Se for the element-wise Vanka relaxation in 2D is given by

𝜇e,opt = min
𝜔

max
𝜽∈Thigh

|1 − 𝜔
̃MẽAh| = 7

25
≈ 0.280, (23)

where the minimum is uniquely achieved at 𝜔 = 𝜔opt = 24
25
≈ 0.960.

Proof. From (17) and (18), we have

̃MẽAh =
1

24
(7 + 2(cos 𝜃1 + cos 𝜃2) + cos 𝜃1 cos 𝜃2) (4 − 2 cos 𝜃1 − 2 cos 𝜃2) ,

= 1
12
(7 + 2(cos 𝜃1 + cos 𝜃2) + cos 𝜃1 cos 𝜃2) (2 − (cos 𝜃1 + cos 𝜃2)) ,

= 1
12
(7 + 2(𝜂1 + 𝜂2) + 𝜂1𝜂2) (2 − 𝜂1 − 𝜂2) ,

where 𝜂1 = cos 𝜃1, 𝜂2 = cos 𝜃2. Let

g(𝜂1, 𝜂2) =
1

12
(7 + 2(𝜂1 + 𝜂2) + 𝜂1𝜂2) (2 − 𝜂1 − 𝜂2) .

We have (𝜂1, 𝜂2) ∈ [−1,−1]2 =∶ Ω and g(𝜂1, 𝜂2) is continuous inΩ. By the Extreme Value Theorem, g achieves
its extreme values at the boundary of Ω or at points where its derivatives are zeros. We first consider the
derivatives,

g
𝜂1 =

1
12
(−3 − 4𝜂1 − 2𝜂1𝜂2 − 𝜂

2
2 − 2𝜂2),

g
𝜂2 =

1
12
(−3 − 4𝜂2 − 2𝜂1𝜂2 − 𝜂

2
2 − 2𝜂1).

Solving g
𝜂1 = g

𝜂1 = 0 gives 𝜂1 = 𝜂2 = −1. Thus, g(−1,−1) = 4
3

is a possible global extreme value.
Next, we compute the extremals of g(𝜂1, 𝜂2) at the boundary Ω. Due to the symmetry of g, we only need to

consider the following two cases.

• Case 1: 𝜂1 = −1 and 𝜂2 ∈ [−1, 1]. We have

g(−1, 𝜂2) =
1

12
(5 + 𝜂2)(3 − 𝜂2).

Thus,

1 = g(−1, 1) ≤ g(−1, 𝜂2) ≤ g(−1,−1) = 4
3
.

• Case 2: 𝜂1 = 1 and 𝜂2 ∈ [−1, 1]. We have

g(1, 𝜂2) =
1
4
(3 + 𝜂2)(1 − 𝜂2).

Thus,

0 = g(1, 1) ≤ g(1, 𝜂2) ≤ g(1,−1) = 1.
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10 of 19 GREIF and HE

If we restrict (𝜃1, 𝜃2) ∈ Thigh, we find that the maximum and minimum of ̃MẽAh = g(𝜂1, 𝜂2) are given by

g(−1,−1) = 4
3
, g(1, 0) = 3

4
, (24)

respectively. It follows that 𝜔opt = 2
3∕4+4∕3

= 24
25

and 𝜇e,opt = 1 − 2
4∕3+3∕4

3
4
= 7

25
. ▪

It is well known that the optimal smoothing factor for damped Jacobi relaxation for the Laplacian in 2D is 3
5

with
𝜔 = 4

5
.28 This suggests that using the additive Vanka smoother for multigrid method, convergence is faster compared to

the damped Jacobi relaxation scheme.
The relationship (21) indicates that the Vanka smoother can be expressed as a linear combination of the identity and

the mass matrix obtained from bilinear elements. The scaled identity is related to damped Jacobi smoothing. It is therefore
natural to consider the other term, namely the mass matrix, as a smoother. Let us, then, move to consider the smoothing
properties of the mass matrix (20).

Theorem 4. Given the mass stencil Mfe in (20) and the relaxation scheme Sfe = I − 𝜔Mfe Ah, the correspond-
ing optimal smoothing factor is

𝜇fe,opt = min
𝜔

max
𝜽∈Thigh

|1 − 𝜔
̃MfẽAh| = 1

3
≈ 0.333, (25)

where the minimum is uniquely achieved at 𝜔 = 𝜔opt = 3
4

.

Proof. It can easily be shown that ̃MfẽAh ∈
[

8
9
,

16
9

]
for (𝜃1, 𝜃2) ∈ Thigh. Thus, the optimal 𝜔 is 𝜔 = 2

8∕9+16∕9
= 3

4
.

Then, 𝜇fe,opt = 1 − 2
16∕9+8∕9

8
9
= 1

3
. ▪

From Theorem 4, we see that the optimal smoothing factor of 0.333 for the mass-based relaxation is close to the optimal
smoothing factor 0.280 for the element-wise Vanka patch, and it is better than 0.391 obtained from the vertex-wise Vanka
(30), discussed in the next subsection. Thus, mass matrix could be used as a good smoother for this problem.

3.2.2 Vertex-wise Vanka patch in 2D

Now, we analyse the smoothing factor for the vertex-wise patch. The relative Fourier matrix12 Φ is

Φv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−𝜄𝜃2 0 0 0 0
0 e−𝜄𝜃1 0 0 0
0 0 1 0 0
0 0 0 e𝜄𝜃1 0
0 0 0 0 e𝜄𝜃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

The symbol of Mv is given by ̃Mv = ̃V T
̃WΦT

v A−1
i ΦṽV with

̃W = 1
5

I, ̃V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Ai =
1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 0 −1 0 0
0 4 −1 0 0
− 1 −1 4 −1 −1
0 0 −1 4 0
0 0 −1 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where I stands for identity matrix of size 5 × 5.
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GREIF and HE 11 of 19

It can be shown that

A−1
i = h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

13∕48 1∕48 1∕12 1∕48 1∕48
1∕48 13∕48 1∕12 1∕48 1∕48
1∕12 1∕12 1∕3 1∕12 1∕12
1∕48 1∕48 1∕12 13∕48 1∕48
1∕48 1∕48 1∕12 1∕48 13∕48

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

From (26)–(28), we have

̃Mv = ̃V T
̃WΦT

v A−1
i ΦṽV ,

= h2

240
(
8(e−𝜄𝜃2 + e𝜄𝜃2 + e−𝜄𝜃1 + e𝜄𝜃1) + 68 + (e−𝜄𝜃2 + e−𝜄𝜃1)2 + (e𝜄𝜃2 + e𝜄𝜃1)2 + 2(e−𝜄𝜃2 e𝜄𝜃1 + e𝜄𝜃2 e−𝜄𝜃1)

)
,

= h2

240
(
16(cos 𝜃1 + cos 𝜃2) + 68 + 2

(
(cos 𝜃1 + cos 𝜃2)2 − (sin 𝜃1 + sin 𝜃2)2

)
+ 4 cos(𝜃1 − 𝜃2)

)

= h2

120
(
(cos 𝜃1 + cos 𝜃2 + 4)2 + (cos 𝜃1 + cos 𝜃2)2 + 16

)
.

Based on the symbol of Mv, we can write the corresponding stencil of Mv as follows:

Mv =
h2

240

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 2 8 2 0
1 8 68 8 1
0 2 8 2 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Now, we are able to give the optimal smoothing factor for the vertex-wise Vanka relaxation scheme.

Theorem 5. The optimal smoothing factor of Sv for the vertex-wise Vanka relaxation in 2D is

𝜇opt = min
𝜔

max
𝜽∈Thigh

|1 − 𝜔
̃MṽAh| = 9

23
≈ 0.391, (30)

where the minimum is uniquely achieved at 𝜔 = 𝜔opt = 20
23
≈ 0.8696.

Proof. We first compute

̃MṽAh =
1

120
(
(cos 𝜃1 + cos 𝜃2 + 4)2 + (cos 𝜃1 + cos 𝜃2)2 + 16

)
(4 − 2 cos 𝜃1 − 2 cos 𝜃2)

= 1
60

(
(4 + 𝜂)2 + 𝜂

2 + 16
)
(2 − 𝜂),

where 𝜂 = (cos 𝜃1 + cos 𝜃2) ∈ [−2, 2] with (𝜃1, 𝜃2) ∈
[
− 𝜋

2
,

3𝜋
2

]2
.

Let g(𝜂) = 1
60

(
(4 + 𝜂)2 + 𝜂

2 + 16
)
(2 − 𝜂). We find that

g′(𝜂) = 1
30
(−3𝜂2 − 4𝜂 − 8) < 0, ∀𝜂 ∈ R.

This means that g(𝜂) is a decreasing function. Thus, for 𝜂 ∈ [−2, 2], we have

0 = g(𝜂 = 2) ≤ g(𝜂) ≤ g(𝜂 = −2) = 8
5
.
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12 of 19 GREIF and HE

This means that g(𝜂) ∈ [0, 8
5
].

If we restrict (𝜃1, 𝜃2) ∈ Thigh, then 𝜂 ∈ [−2, 1]. In this situation, we have

7
10
= g(𝜂 = 1) ≤ g(𝜂) ≤ g(𝜂 = −2) = 8

5
.

Since ̃MṽAh ∈ [ 7
10
,

8
5
] for (𝜃1, 𝜃2) ∈ Thigh, we have 𝜔opt = 2

7∕10+8∕5
= 20

23
and 𝜇opt = 1 − 20

23
7

10
= 9

23
. ▪

Remark 1. Note that in 2D the element-wise Vanka stencil, see (19), uses fewer points than that of vertex-wise
Vanka, see (29). However, the corresponding optimal smoothing factor of element-wise Vanka, see (23), is
smaller than that of vertex-wise Vanka, see (30), which is different than the case in 1D.

3.3 Extension to the 3D case

While we do not include a smoothing analysis of Vanka-type solvers for the 3D case, we can still make a few interesting
observations. In particular, motivated by our findings on the potential role of the mass matrix for relaxation, we further
explore the scaled mass matrix in 3D as a smoother for the Laplacian. Let

M = h−4Me ⊗ Me ⊗ Me,

where Me is defined in (11). The symbol of M can be obtained by tensor product given by

̃M = h2

27
(2 + cos 𝜃1)(2 + cos 𝜃2)(2 + cos 𝜃3).

The symbol of Ah in 3D is

̃Ah =
1
h2 2(3 − cos 𝜃1 − cos 𝜃2 − cos 𝜃3).

Let MJ = 6
h2 I, which is the Jacobi matrix. If we consider the point-wise damped Jacobi as a smoother for the Laplacian,

then the corresponding optimal smoothing factor of S = I − 𝜔MJAh is

𝜇J,opt = min
𝜔

max
𝜽∈Thigh

|1 − 𝜔
̃MJ̃Ah| = 5

7
≈ 0.714, (31)

where the minimum is uniquely achieved at 𝜔opt = 6
7
≈ 0.857. This result can be found in Trottenberg et al.28 Next, we

consider mass-based relaxation scheme for the Laplacian in 3D.

Theorem 6. Given the scaled mass stencil M in (3.3) and mass-based relaxation scheme Sm = I − 𝜔MAh in
3D, the corresponding optimal smoothing factor is

𝜇m,opt = min
𝜔

max
𝜽∈Thigh

|1 − 𝜔
̃M̃Ah| = 131

212
≈ 0.618, (32)

where the minimum is uniquely achieved at 𝜔 = 𝜔opt = 729
848

≈ 0.860.

Proof. Let

̃M̃Ah =
2

27
(2 + cos 𝜃1)(2 + cos 𝜃2)(2 + cos 𝜃2)(3 − cos 𝜃1 − cos 𝜃2 − cos 𝜃3).

Define g(x, y, z) = 2
27
(2 + x)(2 + y)(2 + z)(3 − x − y − z) with x, y, z ∈ [−1, 1]. To find the extremals of g, we

will consider its derivatives and the function values at the boundary of underlying domain. We compute the
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GREIF and HE 13 of 19

derivatives of g with respect to x, y, and z, given by

gx =
2

27
(2 + y)(2 + z)(1 − 2x − y − z),

gy =
2

27
(2 + x)(2 + z)(1 − 2y − x − z),

gz =
2

27
(2 + x)(2 + y)(1 − 2z − x − y).

Solving gx = gy = gz = 0 with x, y, z ∈ [−1, 1] gives x = y = z = 1∕4. However, 𝜽∗ = (𝜃1, 𝜃2, 𝜃3) such that
(cos 𝜃1, cos 𝜃2, cos 𝜃3) = (1∕4, 1∕4, 1∕4) does not belong to Thigh.

Let us define Ω1 = [−1, 1]3, Ω2 = [0, 1]3, and Ω = Ω1 ⧵Ω2. Note that Ω corresponds to 𝜽 ∈ Thigh. To find
the extremals of g for 𝜽 ∈ Thigh, we only need to find the extremals of g at the boundary of Ω, denoted as 𝜕Ω.
Note that 𝜕Ω contains the following four cases.
Case 1:

x = −1, (y, z) ∈ [−1, 1]2,
y = −1, (x, z) ∈ [−1, 1]2,
z = −1, (x, y) ∈ [−1, 1]2.

Case 2:

x = 1, (y, z) ∈ [−1, 0] × [−1, 1],
y = 1, (x, z) ∈ [−1, 0] × [−1, 1],
z = 1, (x, y) ∈ [−1, 0] × [−1, 1].

Case 3:

x = 0, (y, z) ∈ [0, 1]2,
y = 0, (x, z) ∈ [0, 1]2

z = 0, (x, y) ∈ [0, 1]2.

Case 4:

x = 1, (y, z) ∈ [0, 1] × [−1, 0],
y = 1, (x, z) ∈ [0, 1] × [−1, 0],
z = 1, (x, y) ∈ [0, 1] × [−1, 0].

Due to the symmetry of g(x, y, z) and our interest of maximum and minimum of g(x, y, z), we only need to
consider the following sets

1 =
{
(x, y, z)| x = −1, (y, z) ∈ [−1, 1]2

}
,

2 = {(x, y, z)| x = 1, (y, z) ∈ [−1, 0] × [−1, 1]} ,
3 =

{
(x, y, z)| x = 0, (y, z) ∈ [0, 1]2

}
,

4 = {(x, y, z)| x = 1, (y, z) ∈ [0, 1] × [−1, 0]} .

For 𝜽 ∈ Thigh, we check the extremals of g(x, y, z) on the sets 1
⋃
2

⋃
3

⋃
4, and find that the max-

imum of g is 4⋅73

36 achieved at (cos 𝜃1, cos 𝜃2, cos 𝜃3) = (0, 1∕3, 1∕3) and the smallest value of g is 4
9

with
(cos 𝜃1, cos 𝜃2, cos 𝜃3) = (−1,−1,−1). Thus, the optimal parameter is 𝜔 = 2

4∕9+4⋅73∕36 =
729
848

≈ 0.860 and the

corresponding smoothing factor is 𝜇m,opt = 1 − 729
848

4
9
= 131

212
≈ 0.618. ▪
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14 of 19 GREIF and HE

Remark 2. One might consider a tensor-product generalization, that is, h−4Mv ⊗ Mv ⊗ Mv, where Mv is
defined in (15), as a smoother for the Laplacian in 3D. However, with this choice, we find that the numer-
ically optimal smoothing factor is 0.800, which is larger than 0.618, see (32), obtained from the mass-based
relaxation. Thus, we do not further explore this tensor product form.

For the smoothing analysis of Vanka-type smoothers, we need to solve the minmax problem (7) in 3D for 𝜽 and 𝜔.
Obtaining an analytical solution for such a problem seems difficult or impossible, and we do not further pursue it.

4 NUMERICAL EXPERIMENTS

We comment on the computational cost. In general, the Jacobi scheme is attractively simple and a single iteration is
computationally cheap. For the mass-based and Vanka-type smoothers, our LFA allows us to derive the inverses of the
smoothers explicitly, so that in the corresponding algorithms we apply matrix-vector products and avoid computing
inverses. This presents significant computational savings and results in relatively cheap iterations. In our numerical exper-
iments, implemented straightforwardly in a Matlab environment, we observe that the Vanka scheme and mass scheme
are slightly more efficient than Jacobi; see Section 4.2.

4.1 LFA predictions

In this subsection we compute the smoothing factor to validate our theoretical results. We also report the LFA two-grid
convergence factor and compare it to the corresponding smoothing factor.

In general, the two-grid error-propagation operator can be expressed as1,2

E = S𝜈2(I − PA−1
H RAh)S𝜈1

, (33)

where R is the restriction operator from grid h to grid H, P is the interpolation operator from grid H to grid h, AH represents
the coarse-grid operator, and the integers 𝜈1 and 𝜈2 are the numbers of pre- and post-relaxation sweeps, respectively. Here,
S is the relaxation error operator defined in (6).

Definition 3. The LFA two-grid convergence factor28,29 for E is defined as

𝜌 = max
𝜽∈Tlow

{
𝜌(̃E(𝜽, 𝜔))

}
, (34)

where 𝜔 is a parameter, ̃E denotes the symbol of the two-grid error operator E, and 𝜌(̃E(𝜽, 𝜔)) denotes the
spectral radius of the matrix ̃E.

In our tests, we consider P to be the standard (bi)linear interpolation and take R = cPT , where c = 2−d and d is the
dimension, and AH = RAhP. We take 𝜌 to be the LFA prediction sampled at 64 equispaced points in each dimension of
the Fourier domain. For simplicity, we denote by T(𝜈) the two-grid method with 𝜈 = 𝜈1 + 𝜈2.

In Figure 2, we present the eigenvalue distribution of ̃E for the Vanka-type method in 2D with the optimal value of 𝜔.
We see that all eigenvalues of ̃E are real and their largest magnitude matches the optimal smoothing factor.

Figure 3 shows the magnitude of eigenvalues of ̃Ee and ̃Sv as a function of the Fourier modes, (𝜃1, 𝜃2), in 2D. We see that
the eigenvalues of the two-grid error operator are distributed almost evenly in the entire Fourier domain. On the other
hand, for the vertex-wise Vanka, the largest magnitude occurs at (0,±𝜋) or (±𝜋, 0), see Figure 4. The plots on the right
in Figures 3 and 4 show that the smoother reduces the high frequency errors rather rapidly. The (experimental) value of
𝜇opt validates our analytical result for the smoothing factor.

From Table 2, we see that the smoothing factors match the two-grid convergence factor with 𝜈 = 1 (except for the
vertex-wise patch for 1D), which is as expected since the smoothing factor typically offers a sharp prediction of the two-grid
convergence factor. As 𝜈 increases, we see a little degradation of 𝜌(𝜈), that is 𝜌(𝜈) > 𝜇

𝜈 for Vanka-type relaxation, and so
does the mass-based relaxation scheme with 𝜈 = 4.
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F I G U R E 2 Eigenvalue distribution of ̃E for Vanka-type method with 𝜈 = 1. Left: Element-wise Vanka. Right: Vertex-wise Vanka.

F I G U R E 3 Element-wise Vanka with 𝜈 = 1. Left: The magnitude of eigenvalues of ̃Ee as a function of the Fourier modes, (𝜃1, 𝜃2).
Right: The magnitude of eigenvalues of ̃Se as a function of the Fourier modes, (𝜃1, 𝜃2).

For the 2D problem, the smoothing factor of GS-RB is 0.25,28 which is close to our element-wise Vanka smoothing
factor of 0.28. For 3D, GS-RB has a smoothing factor of 0.44, which is superior to our mass smoothing factor of 0.62. We
speculate that the gap is smaller for Vanka-type smoothing; we have not pursued this.

To compare the optimal smoothing factor with the optimal LFA two-grid convergence factor, we run our LFA code to
minimize the LFA two-grid convergence factor for 𝜈 = 1 with respect to 𝜔 by an exhaustive search with stepsize 0.01 and
h = 1∕64. Denote the corresponding optimal 𝜔 as 𝜔∗. Table 3 shows the LFA predictions with 𝜔 = 𝜔

∗. We have found that
in both the 2D and 3D cases the optimal smoothing factor is equal to the optimal LFA two-grid convergence factor. For
the vertex-wise Vanka in 1D, the gap between the LFA two-grid convergence factor with 𝜈 = 1 and the smoothing factor
is reasonable, because the LFA two-grid convergence factor accounts for the effect of coarse-grid correction as well as
smoothing. However, for 𝜈 > 1, using 𝜔

∗ and 𝜔opt leads to same LFA two-grid convergence factor. For the element-wise
Vanka in 1D, optimizing the LFA two-grid convergence factor with 𝜈 = 1 gives a very small two-grid convergence factor
compared with the optimal smoothing factor. Again, for 𝜈 > 1, using 𝜔

∗ and 𝜔opt leads to almost the same convergence
factors.
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16 of 19 GREIF and HE

F I G U R E 4 Vertex-wise Vanka with 𝜈 = 1. Left: The magnitude of eigenvalues of ̃Ev as a function of the Fourier modes, (𝜃1, 𝜃2). Right:
The magnitude of eigenvalues of ̃Sv as a function of the Fourier modes, (𝜃1, 𝜃2).

T A B L E 2 LFA prediction: 𝜔opt is obtained from our analytical result and h = 1
64

.

Cycle 𝝎opt 𝝁opt TG(1) TG(2) TG(3) TG(4)

1D

𝜌e 12/17 0.059 0.059 0.059 0.040 0.031

𝜌v 81/104 0.038 0.091 0.033 0.022 0.017

2D

𝜌e 24/25 0.280 0.280 0.092 0.059 0.045

𝜌v 20/23 0.391 0.391 0.153 0.076 0.055

𝜌fe 3/4 0.333 0.333 0.111 0.037 0.029

3D

𝜌J 6/7 0.714 0.714 0.510 0.364 0.260

𝜌m 729/848 0.618 0.618 0.382 0.236 0.146

Remark 3. The LFA two-grid convergence and smoothing factors seem independent of the meshsize h. We
have tested different values of h for Table 2 to confirm this. Further details are omitted.

4.2 Multigrid performance

In this section, we report multigrid performance for the 2D and 3D Poisson problems defined on the domains [0, 1]2
and [0, 1]3, respectively. We set up the problems so that the analytical solutions are given by u(x, y) = sin(𝜋x) sin(𝜋y) and
u(x, y, z) = sin(𝜋x) sin(𝜋y) sin(𝜋z), respectively. To confirm our LFA predictions, we report the results of W-cycle multi-
grid, where we use one pre-smoothing relaxation and no post-smoothing relaxation. The coarsest grid has four cells in
each direction and the finest grid has n = 256 cells in each direction. For our tests, we have used an open-source Matlab
code, available at https://github.com/junliu2050/SPAI-MG-Laplacian . The stopping criterion is ||rk||2 ≤ 10−10 ||r0||2,
where rk = bh − Ahxk with xk being the kth multigrid approximation. For generating Kronecker products for the
three-dimensional problem, we have used an efficient open-source Matlab code.31
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T A B L E 3 LFA prediction: 𝜔∗ is obtained from numerically optimizing LFA two-grid convergence factor with 𝜈 = 1, and h = 1
64

.

Cycle 𝝎
∗

𝝁 TG(1) TG(2) TG(3) TG(4)

1D

𝜌e 0.75 0.125 3e-09 0.062 0.037 0.029

𝜌v 0.80 0.067 0.066 0.031 0.022 0.016

2D

𝜌e 0.96 0.280 0.280 0.092 0.059 0.045

𝜌v 0.87 0.392 0.392 0.154 0.076 0.055

𝜌fe 0.75 0.331 0.331 0.111 0.037 0.029

3D

𝜌J 0.85 0.710 0.716 0.513 0.368 0.263

𝜌m 0.86 0.618 0.618 0.382 0.236 0.146
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F I G U R E 5 Left: Multigrid convergence history for 2D; Right: Multigrid convergence history for 3D.

In Figure 5, we report W-cycle multigrid convergence history. As per the discussion thus far, for 2D we show the results
related to element-wise Vanka and mass smoothing, whereas for 3D we only show the results of mass smoothing. We
compare those results to damped Jacobi. We see that in 2D there is no significant difference between the Vanka smoothing
and the mass smoothing, and both converge within approximately a half of the iteration count of Jacobi. In 3D, the mass
smoothing scheme takes approximately two thirds of the iteration count of Jacobi. Those results are consistent with our
LFA predictions.

We add the following information about the multigrid results given in Figure 5. We have run one hundred experiments
with random initial guesses for each of the 2D and the 3D problems, and are reporting the average running times. For 2D,
multigrid with Jacobi takes an average of 0.19 s, multigrid with mass smoothing takes 0.15 seconds, and multigrid with
element-wise Vanka takes 0.14 s. In 3D, multigrid with Jacobi takes 59.34 s on average and multigrid with mass smoothing
takes 55.49 s. This indicates that the proposed new schemes are potentially efficient and may be advantageous especially
for complicated problems.

5 CONCLUSIONS

We have presented a theoretical analysis of the optimal multigrid smoothing factor for two types of additive Vanka
smoothers, applied to the Poisson equation discretized by the standard centered finite difference scheme. The smoothers
are shown to have a fast convergence rate. We have found that element-wise Vanka can be expressed as a linear combina-
tion of the mass matrix obtained from the (bi)linear finite element method and a scaled identity. This observation has led
us to explore using the mass matrix as a smoother. Solvers for equations related to the Laplacian are a natural first step
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in developing new algorithms for more complex problems, such as the Stokes equations, Navier–Stokes equations and
other saddle-point problems. Exploring a similar approach as part of the development of fast solvers for those problems
may prove computationally beneficial.
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