Question 4. {12 marks, 6 marks each}

For each of the following schedules determine whether the schedule is conflict-serializable or viewserializable. Justify your answers.

a.

T1	T2	Т3
		write(C)
	write(B)	
	read(B)	
		read(C)
write(C)		
	read(C)	

Is it conflict-serializable?

WHY?

Precedence graph:

Graph has no cycle.

Is it view-serializable?

Yes

WHY?

if it is conflict-senalizable, it is also view serializable

b.

T1	T2	Т3
	read(C)	
write(C)		
	write(C)	
read(B)		
		write(C)

Is it conflict-serializable?

WHY?

Precedence graph:

Graph has a cycle

Is it view-serializable?

WHY?

It is view-equivalent to the serial schedule:

T2, T1, T3

[T2 reads unitial C, T1, reads unitial B, T3 writer final (, in both schedules)

Question 5. {12 marks, 4 marks each}

Consider the following schedule involving three transactions T1, T2, and T3:

Operation#	T1	T2	T3
1	read(C)		
2			read(B)
3	read(A)		
4		read(C)	
5			write(B)
6	write(A)		
7		read(B)	
8		SAMPLE SUPPLIES	read(A)
9		write(C)	
10		write(B)	
11	commit		
12		commit	
13			commit

with no lock upgrades

Can this schedule be produced by the regular two-phase locking protocol? Justify your answer. (Ether show that the protocol is violated or show when the release phase for each transaction

· Yes!

· Release phases start at:

T1: after 3 & before 4

T2: after 9

T3: after 6 and before 7

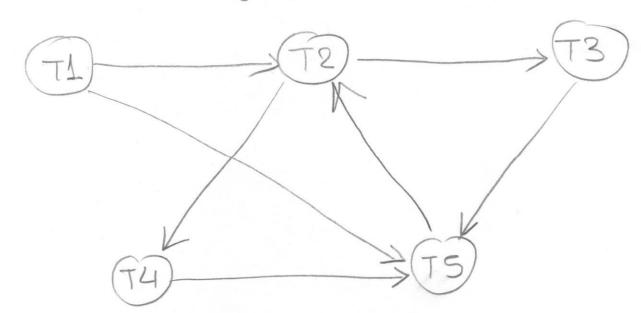
Can this schedule be produced by the strict two-phase locking protocol? Justify your answer.

· NO!

. The shar to keep the lock for C or A to the end; T2 cannot read/write C.

Is this schedule a recoverable schedule? Justify your answer.

T2 reads B that a produced by T3, but T2 commits before T3 commits.



{6 marks} Suppose that at some time during the execution of a database system we have the transaction scenario shown on the following table:

Transaction	Data items locked by transaction	Data items transaction is waiting for
T1	В	A, C
T2	C	D,E
Т3	E, F	G
T4	D	A
T5	A, G	С

Determine whether a deadlock exists and justify your answer.

. Wait - for graph

Graph has cycles

Therefore, there is a deadlock.